NAME :

Open book, open notes, but please do not ask questions. Write all answers on these sheets.

question	1	2	3	4	5	total
points						
maximum	15	20	15	25	25	100

1. Write a Python function BiDiag which takes on input a positive number n and returns an *n*-by-*n* matrix *A*. All diagonal elements of *A* are 2 and all elements just above and below the diagonal are 1:

	2	1	0	• • •	0	0	0]
	1	2	1	· · · ·	0	0	0
	0	1	2	•••	0	0	0
A =	÷	÷	÷	·	÷	÷	:
	0	0	0	• • •	2	1	0
	0	0	0	• • •	1	2	1
	0	0	0		0	1	2

.

BiDiag returns A as a two dimensional numpy array.

- Write a Python function which removes all duplicate elements of a list given on input. Call this function RemoveDuplicates. If L = [1, 3, 1, 4, 3, 3, 2], RemoveDuplicates will return [1, 4, 3, 2].
 - (a) Write an *iterative* version of RemoveDuplicates.

(b) Write a *recursive* version of RemoveDuplicates.

/20

 Apply divide and conquer to compute the sum of all numbers in a list: the total sum is the sum of the first half and the sum of the second half. Give a recursive function RecSum <u>using divide and conquer</u> which returns the sum of a list given on input. 4. The Cantor set is defined by removing the middle third of [0,1] and then removing the middle third of the remaining intervals. The n-th Cantor set is obtained by executing the recursive removal n times. Cantor sets for n = 0, 1, and 2 are below:

n = 0 : [0,1] n = 1 : [0,1/3], [2/3,1] n = 2 : [0,1/9], [2/9,1/3], [2/3,7/9], [8/9,1]

(a) Write a function that returns the total length of all intervals which have been removed to form the n-th Cantor set. Complete the function definition below:

```
def LengthCut(n,a,b):
"""
Returns the total length of the intervals removed
from the interval [a,b] to form the n-th Cantor set.
"""
```

(b) Write a function that returns the lists of intervals in the n-th Cantor set. Complete the function definition below:

```
def CantorSet(n,a,b,L):
"""
Returns the list of intervals for the n-th Cantor set.
The list is accumulated in L. In the first call L is [].
"""
```

5. We use a binary tree to store a frequency table of words. The data at a node in the tree is a tuple like (w,n), where the number n is the frequency of the string w.

The binary tree is ordered: all words less than the word at a node in the tree are in the left branch while all other words are in the right branch of the tree.

The tree T is represented as a recursive triple of triplets: as (left,(w,n),right) where left and right are again trees. The empty tree is the empty tuple ().

(a) Give a Python function LookUp that given a tree and a word returns the corresponding frequency count stored in the tree. If the word does not occur in T, zero must be returned. Write a *recursive* version of LookUp below.

(b) **Use a stack** to write an *iterative* version of the recursive LookUp.