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The Class MultiGon

from Tkinter inmport *
i nport nath

class Multi Gon():

GU to draw a regul ar n-gon on canvas.

def __init_ (self,wdw:
"determ nes the | ayout of the GU "

def DrawCon(self,v):
"Draws a regul ar n-gon"
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The Class MultiGon

from Tkinter inmport *
i nport nath

class Multi Gon():

GU to draw a regul ar n-gon on canvas.

def __init_ (self,wdw:
"determ nes the | ayout of the GU "

def DrawCon(self,v):
"Draws a regul ar n-gon"

def main():
top = Tk()
show = Mul ti Gon(top)
t op. mai nl oop()

if name =" _min__":

mai n()
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The Layout of the GUI MCS 275 L7

P 30 January 2008
the constructor _Init__

aregular n-gon

def __init__ (self,wdw):
"determi nes the | ayout of the GU "
wdw. title(’ regular n-gon’)
self.d = 400 # di mensi on of canvas
self.n = 1IntVar() # nunber of points
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the constructor _Init__

aregular n-gon

def __init__ (self,wdw):

"determi nes the | ayout of the GU "

wdw. title(’ regular n-gon’)

self.d = 400 # di mensi on of canvas

self.n = 1IntVar() # nunber of points

sel f.sn = Scal e(wdw, ori ent =" hori zontal’,\
from=1,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
command=sel f. Dr awGon)

sel f.sn. grid(row=0, col utm=0)

sel f.sn. set(10)
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the constructor _Init__

aregular n-gon

def __init__ (self,wdw):

"determi nes the | ayout of the GU "

wdw. title(’ regular n-gon’)

self.d = 400 # di mensi on of canvas

self.n = 1IntVar() # nunber of points

sel f.sn = Scal e(wdw, ori ent =" hori zontal’,\
from=1,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
command=sel f. Dr awGon)

sel f.sn. grid(row=0, col utm=0)

sel f.sn. set(10)

self.c = Canvas(wdw, wi dt h=sel f. d,\
hei ght =sel f.d, bg = white’)

sel f.c.grid(row=1, col um=0)
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The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.



The Function DrawGon() MCS 275 L7
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The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.

The second argument v is the value for n
passed to DrawGon() via the Scale.

def DrawGon(self,v):
"Draws a regular n-gon"
cx = self.d/2
cy = self.d/2
radius = 0.4*self.d



The Function DrawGon() MCS 275 L7
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The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.

The second argument v is the value for n
passed to DrawGon() via the Scale.

def DrawGon(self,v):
"Draws a regular n-gon"
cx = self.d/2
cy = self.d/2
radius = 0.4*self.d
sel f.c.del ete(ALL)
self.c.create_text(cx,cy,text=v,tags="text")
n=int(v)

The value v is passed as a string,
to use it as an integer n we convert it with i nt () .
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All n points lie on a circle, R
equispaced using angle 27/n.



MCS 275 L-7

The Function DrawGon() continued
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All n points lie on a circle, R
equispaced using angle 27/n.

L =[]
for i in range(0,n):
vX = cX + radius*math. cos(2*i *nmat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
sel f.c.create_oval (vx-6, vy-6, vx+6, vy+6, wi dt h=1, \
outline="black’,fill=" SkyBlue2',tags="dot")
L. append((vx, vy))
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All n points lie on a circle, R
equispaced using angle 27/n.

L =[]
for i in range(0,n):
vX = cX + radius*math. cos(2*i *nmat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
sel f.c.create_oval (vx-6, vy-6, vx+6, vy+6, wi dt h=1, \
outline="black’,fill=" SkyBlue2',tags="dot")
L. append((vx, vy))
for i in range(0,n-1):
self.c.create_line(L[i][O],L[i][1],\
L[i+1][0],L[i+1][1], w dth=2)
self.c.create line(L[n-1][0],L[n-1]]1],\
L[O][O],L[O][1],w dth=2)
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The Cantor Set is defined by three rules rocursiv dofion
1. take the interval [O, 1]
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The Cantor Set is defined by three rules recursive defion
1. take the interval [O, 1]
2. remove the middle part third of the interval
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The Cantor Set is defined by three rules rocursiv dofion
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part



The Cantor Set

The Cantor Set is defined by three rules
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part

The Cantor set is infinite, to visualize at level n:
» n=0: start at [0, 1]
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The Cantor Set

The Cantor Set is defined by three rules
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part

The Cantor set is infinite, to visualize at level n:

» n=0: start at [0, 1]
» n > 0: apply rule 2 n times
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the Class CantorSet

from Tkinter inmport *
i mport math

class CantorSet():

GQJ to draw a Cantor set on canvas.

def __init_ (self,wdw N):
"a Cantor set with N | evels"

def DrawSet(self,v):
"Draws a Cantor set"

def O ear Canvas(sel f):
"Clears the entire canvas"
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def __init_ (self,wdw, N):
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
Sel f ) d = 3** N+20 recursive definition
self.n = IntVar()
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def __init_ (self,wdw, N):
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen
self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \
from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )
sel f.sn. grid(row=0, col utm=0)
sel f.sn.set(0)
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def __init__ (self,wdw, N)
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen

self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \

from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )

sel f.sn. grid(row=0, col utm=0)

sel f.sn.set(0)
sel f.c = Canvas(wdw, wi dt h=sel f. d, \

hei ght =sel f.d/ 3, bg =" white’)
sel f.c.grid(row=l, col um=0)
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def __init__ (self,wdw, N)
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen

self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \

from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )

sel f.sn. grid(row=0, col utm=0)

sel f.sn.set(0)

sel f.c = Canvas(wdw, wi dt h=sel f. d, \
hei ght =sel f. d/ 3, bg =" white’)

sel f.c.grid(row=l, col um=0)

self.b = Button(wdw, t ext ="cl ear canvas",\
command=sel f. Cl ear Canvas)

sel f.b.grid(row=2, col um=0)
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The method C ear Canvas() is triggered by a Button.

def C ear Canvas(self): recursve definton
"Clears the entire canvas"
self.c. del et e( ALL)



Methods Cl ear Canvas and Dr awSet

The method C ear Canvas() is triggered by a Button.

def C earCanvas(self):
"Clears the entire canvas"
self.c. del et e( ALL)

The method Dr awSet () is triggered by a Scale.

def DrawSet (self,v):
"Draws a Cantor set"
n =int(v)
sel f.cantor (10, sel f.d-10, 30, v, n)

The method cant or is recursive.
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def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)
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Parameters of a Recursive Function
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def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

The parameters A, B, and z define
the line segment from (A,z) to (B,z).
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def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

The parameters A, B, and z define
the line segment from (A,z) to (B,z).

The parameter t is the value passed via the Scale,
as text string, t is also put on Canvas.



Parameters of a Recursive Function NS 275 L7
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def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

recursive drawing algorithm

The parameters A, B, and z define
the line segment from (A,z) to (B,z).

The parameter t is the value passed via the Scale,
as text string, t is also put on Canvas.

Initially: k = int(t).

With every recursive call, k is decremented by 1.
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Thek incantor (sel f, A B, z,t, k)
controls the recursion.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7
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Thek incantor (sel f, A B, z,t, k)
controls the recursion.

Atk = 0, the line segment from (A, z) to (B, z) is drawn. .



Recursive Drawing Algorithm MCS 275 L7
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Thek incantor (sel f, A B, z,t, k)
controls the recursion.
Atk = 0, the line segment from (A, z) to (B, z) is drawn. recushe drawing dlgrim

For k > 0, we compute left and right limit of the middle
third of [A, B], respectively denoted by L and Ras

L=A+(B—A)/3=(2A+B)/3
R=B=(B—A)/3=(A+2B)/3



Recursive Drawing Algorithm MCS 275 L7
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Thek incantor (sel f, A B, z,t, k)
controls the recursion.
Atk = 0, the line segment from (A, z) to (B, z) is drawn. recushe drawing dlgrim

For k > 0, we compute left and right limit of the middle
third of [A, B], respectively denoted by L and Ras

L=A+(B—-A)/3=(2A+B)/3
R=B=(B-A)/3=(A+2B)/3
Then we make two recursive calls:

sel f.cantor (A, L, z+30,t,k-1)
self.cantor(R B, z+30,t, k-1)
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30 January 2008

def cantor(self,A B, z,t,k):
i f(k==0): # draw | i ne segnent
self.c.create_line(A z,B, z, w dt h=2)

recursive drawing algorithm
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def cantor(self,A B, z,t,k):

1] "

i f(k==0): # draw | i ne segnent
self.c.create_line(A z, B, z, w dt h=2) e e e
el se:
L = (2*A+B)/ 3
R = (A+2*B)/ 3

self.cantor (AL, z+30,t, k-1)
sel f.cantor(R B, z+30,t, k-1)
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def cantor(self,A B, z,t,k):

1] "

i f(k==0): # draw | i ne segnent
self.c.create_line(A z, B, z, w dt h=2) e e e
el se:
L = (2*A+B)/ 3
R = (A+2*B)/ 3

self.cantor (AL, z+30,t, k-1)
sel f.cantor(R B, z+30,t, k-1)

if(k==int(t)): # put text string t
cx = self.d/2;
if(t =="0"):
self.c.create_text(cx,z-10, text=t)
el se:

self.c.create_text(cx,z+k*30, text =t)
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The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

recursive definition
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The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton



The Koch Curve MCS 275 L7
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The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.
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The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.

To visualize a Koch curve at level n:
» n=0: startat [0, 1]



The Koch Curve MCS 275 L7
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The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.

To visualize a Koch curve at level n:

» n=0: startat [0, 1]
» n > 0: make wedges n times.
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The Class KochCurve

from Tkinter inmport *
i mport math

cl ass KochCurve():

GJ to draw a Koch curve on canvas.

def __init_ (self,wdw N):
"a Koch curve with N | evel s"

def DrawCurve(self,v):
"Draws a regul ar n-gon”

def C ear Canvas(sel f):
"Clears the entire canvas"

MCS 275 L-7
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def __init__ (self,wdw, N):

"a Koch curve with N |evels"

wdw. title(’a Koch curve’)

self.d = 3**N+20

self.n = IntVar()

sel f.sn = Scal e(wdw, ori ent="hori zontal’,\
from=0,to=N,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
conmand=sel f. Dr awCur ve)

sel f.sn. grid(row=0, col um=0)

sel f.sn.set(0)

self.c = Canvas(wdw, wi dt h=sel f. d,\
hei ght =sel f.d/3,bg =" white’)

sel f.c.grid(row=1, col um=0)

sel f.b = Button(wdw, t ext="cl ear canvas",\
command=sel f. C ear Canvas)

sel f.b.grid(row=2, col um=0)



Method Cl ear Canvas and Dr awCur ve mes 275 L1
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The method Cl ear Canvas() is triggered by a Button.

def O ear Canvas(sel f):
"Clears the entire canvas"
self.c. del et e( ALL)

recursive definition



Method Cl ear Canvas and Dr awCur ve

The method Cl ear Canvas() is triggered by a Button.

def O ear Canvas(sel f):
"Clears the entire canvas"
self.c. del et e( ALL)

The method Dr awCur ve() is activated by a Scale.

def DrawCurve(self,v):
"Draws a regular n-gon"

n =int(v)
A = (10, sel f.d/ 3-20)
B = (self.d-10,sel f.d/3-20)

sel f. koch(A, B, n)

The method koch() is recursive,
to draw a Koch curve of n levels from Ato B.

MCS 275 L-7
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Recursive Images

The Koch Curve and Flake

recursive drawing algorithm
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The n in koch( A, B, n) controls the recursion.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7
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The n in koch( A, B, n) controls the recursion.

Forn = 0, the line segment from Ato B is drawn.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7
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The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7
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The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

Angle of 60 degrees: sin(3) = @ is height, reushe daving agrim
multiplied with %th of length of segment.



Recursive Drawing Algorithm MCS 275 L7
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The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

Angle of 60 degrees: sin(3) = @ is height, rcursve daving agrim
multiplied with %th of length of segment.

The the peak P of the wedge is relative to the size of the
interval and the position of the midpoint M

= (M2(A[1] - B[1]), *2(B[0] — A[0])),

= (MO] — T[], M1] - T[1])

Recall that on Canvas: (0,0) is at topmost left corner.
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def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):
self.c.create_line(A0],A[1],B[0],B[1],\
wi dt h=2)

recursive drawing algorithm
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def koch(self, A B, k):
a Koch curve fromAto Bwith k | evels

i f(k==0):
self.c.create_line(A0],A[1],B[0],B[1],\
wi dt h=2)
el se:
L
R

recursive drawing algorithm

((2*A[ 0] +B[0]) /3.0, (2*A[ 1] +B[ 1])/ 3. 0)
((A[ 0] +2*B[0])/ 3.0, (A[ 1] +2*B[ 1] )/ 3. 0)
((A[ 0] +B[ 0] )/ 2.0, (Al 1] +B[ 1] )/ 2. 0)

<
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def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):

self.c.create_line(A0],A[1],B[0],B[1],\

\M dt h = 2) recursive drawing algorithm

el se:

L = ((2*A[0]+B[0])/3.0,(2*A[1]+B[1])/3.0)

R=((A0]+2*B[0])/3.0, (A[ 1] +2*B[1])/3.0)

M= ((Al0]+B[0])/2.0,(A[1]+B[1])/2.0)

s = math.sqrt(3)/6

T =(s*(Al1]-B[1]),s*(B[0]-A[0]))

P=(MO]-T[O], M1]-T[1])
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def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):

self.c.create_line(A0],A[1],B[0],B[1],\

\M dt h:2) recursive drawing algorithm

el se:

L = ((2*A[0]+B[0])/3.0,(2*A[1]+B[1])/3.0)

R=((A0]+2*B[0])/3.0, (A[ 1] +2*B[1])/3.0)

M= ((Al0]+B[0])/2.0,(A[1]+B[1])/2.0)

s = math.sqrt(3)/6

T =(s*(Al1]-B[1]),s*(B[0]-A[0]))

P=(MO]-T[O], M1]-T[1])

sel f. koch(A L, k-1)
sel f. koch(L, P, k-1)
sel f. koch(P, R, k-1)
sel f. koch(R, B, k-1)
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from Tkinter inmport *
i mport math

cl ass KochFl ake():

nnn
GUI for a Koch flake

QJ to draw a Koch fl ake canvas.

def __init__ (self,wdw):
"determ nes the layout of the GU"

def DrawFl ake(self,v):
"Draws a regul ar Koch fl ake"
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def __init__(self,wdw):

self.n I nt Var ()

sel f. k I nt Var ()

sel f.sn = Scal e(wdw, ori ent =" horizontal ", \
from =3,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\ GUIfora Koch ake
conmand=sel f . Dr awFl ake)

sel f.sn.grid(row=0, col um=1)

sel f.sn.set(10)

sel f.sk = Scal e(wdw, orient="vertical’,k\
from=0,to0=6,tickinterval =1, \
| engt h=sel f. d, vari abl e=sel f. k, \
conmand=sel f . Dr awFl ake)

sel f.sk.grid(row=1, col um=0)

sel f.sk. set(0)
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def DrawFl ake(self,v):

"Draws a regul ar Koch fl ake"

cx = self.d/2

cy = self.d/2

radius = 0.4*self.d

sel f.c. del ete(ALL)

n = self.n.get()

k = self.k.get() eutora oeh e

t ='( + str(n) + ', + str(k) + ")’

self.c.create_text(cx,cy,text=t,tags="text")

L =[]

for i in range(0,n):

vX = cX + radius*math. cos(2*i *mat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
L. append((vx, vy))

for i in range(0,n-1):
sel f. koch(L[i],L[i+1],k)

sel f. koch(L[n-1], L[ O], k)
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1. Make a GUI to visualize the Sierpinski gasket.

2. Avariant of the Sierpinski gasket starts with a square
and removes a smaller square at the center of the
first square. This removal is repeated to the 8
remaining squares. Design a GUI for this Sierpinski
carpet. Define the recursive drawing algorithm.

3. Make a GUI to visualize a Brownian bridge between Gulfor och e
two points. The rule is to replace a line segment from
Ato B by the segments [A,M] and [M, B], where M
is calculated as (A + B)/2 with random noise added
to it. Repeat the rule to the new segments, etc.

4. Design a recursive algorithm to draw a tree, starting
with a trunk and 3 branches. Put at the top of each
branch again a trunk and 3 branches, and then
again... What are the parameters of the recursive
function to define the rule to generate the tree?
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We recalled elements of GUIs, see
» Chapter 15 of Making Use of Python
» www. pyt hon. or g has plenty of documentation

GUI for a Koch flake

Homework will be collected on Friday 1 February
(bring your answers to class):

» exercise 5 of Lecture 5;
» exercises 1 and 4 of Lecture 6;
» exercises 1 and 3 of Lecture 7.



