Recursive Images

A Simple GUI
a regular n-gon
recursive images

The Cantor Set
recursive definition
recursive drawing algorithm

The Koch Curve and Flake
recursive definition
recursive drawing algorithm
GUI for a Koch flake

MCS 275 Lecture 7
Programming Tools and File Management
Jan Verschelde, 30 January 2008

MCS 275 L-7

30 January 2008



Recursive Images

A Simple GUI
a regular n-gon

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definitior

recursive drawing algorithr

recursive definitior

recursive

GUI for a Koch flal



A Regul

ar n-Gon

alala regular n-gon
10

12345678 91011121314151617181920 )

MCS 275 L-7

30 January 2008

aregular n-gon
recursive images

recursive definition

recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI for a Koch flake



The Class MultiGon

from Tkinter inmport *
i nport nath

class Multi Gon():

GU to draw a regul ar n-gon on canvas.

def __init_ (self,wdw:
"determ nes the | ayout of the GU "

def DrawCon(self,v):
"Draws a regul ar n-gon"

MCS 275 L-7

30 January 2008

aregular n-gon



The Class MultiGon

from Tkinter inmport *
i nport nath

class Multi Gon():

GU to draw a regul ar n-gon on canvas.

def __init_ (self,wdw:
"determ nes the | ayout of the GU "

def DrawCon(self,v):
"Draws a regul ar n-gon"

def main():
top = Tk()
show = Mul ti Gon(top)
t op. mai nl oop()

if name =" _min__":

mai n()

MCS 275 L-7

30 January 2008

aregular n-gon



The Layout of the GUI MCS 275 L7

P 30 January 2008
the constructor _Init__

aregular n-gon

def __init__ (self,wdw):
"determi nes the | ayout of the GU "
wdw. title(’ regular n-gon’)
self.d = 400 # di mensi on of canvas
self.n = 1IntVar() # nunber of points



The Layout of the GUI MCS 275 L7

P 30 January 2008
the constructor _Init__

aregular n-gon

def __init__ (self,wdw):

"determi nes the | ayout of the GU "

wdw. title(’ regular n-gon’)

self.d = 400 # di mensi on of canvas

self.n = 1IntVar() # nunber of points

sel f.sn = Scal e(wdw, ori ent =" hori zontal’,\
from=1,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
command=sel f. Dr awGon)

sel f.sn. grid(row=0, col utm=0)

sel f.sn. set(10)



The Layout of the GUI MCS 275 L7

P 30 January 2008
the constructor _Init__

aregular n-gon

def __init__ (self,wdw):

"determi nes the | ayout of the GU "

wdw. title(’ regular n-gon’)

self.d = 400 # di mensi on of canvas

self.n = 1IntVar() # nunber of points

sel f.sn = Scal e(wdw, ori ent =" hori zontal’,\
from=1,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
command=sel f. Dr awGon)

sel f.sn. grid(row=0, col utm=0)

sel f.sn. set(10)

self.c = Canvas(wdw, wi dt h=sel f. d,\
hei ght =sel f.d, bg = white’)

sel f.c.grid(row=1, col um=0)



The Function DrawGon() MCS 275 L7

30 January 2008

The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.



The Function DrawGon() MCS 275 L7

30 January 2008

The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.

The second argument v is the value for n
passed to DrawGon() via the Scale.

def DrawGon(self,v):
"Draws a regular n-gon"
cx = self.d/2
cy = self.d/2
radius = 0.4*self.d



The Function DrawGon() MCS 275 L7

30 January 2008

The Scale triggers the command Dr awGon( )
and determines the data attribute n of a MultiGon object.

The second argument v is the value for n
passed to DrawGon() via the Scale.

def DrawGon(self,v):
"Draws a regular n-gon"
cx = self.d/2
cy = self.d/2
radius = 0.4*self.d
sel f.c.del ete(ALL)
self.c.create_text(cx,cy,text=v,tags="text")
n=int(v)

The value v is passed as a string,
to use it as an integer n we convert it with i nt () .



The Function DrawGon() continued MES 275 L7

30 January 2008

All n points lie on a circle, R
equispaced using angle 27/n.



MCS 275 L-7

The Function DrawGon() continued

30 January 2008

All n points lie on a circle, R
equispaced using angle 27/n.

L =[]
for i in range(0,n):
vX = cX + radius*math. cos(2*i *nmat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
sel f.c.create_oval (vx-6, vy-6, vx+6, vy+6, wi dt h=1, \
outline="black’,fill=" SkyBlue2',tags="dot")
L. append((vx, vy))



MCS 275 L-7

The Function DrawGon() continued

30 January 2008

All n points lie on a circle, R
equispaced using angle 27/n.

L =[]
for i in range(0,n):
vX = cX + radius*math. cos(2*i *nmat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
sel f.c.create_oval (vx-6, vy-6, vx+6, vy+6, wi dt h=1, \
outline="black’,fill=" SkyBlue2',tags="dot")
L. append((vx, vy))
for i in range(0,n-1):
self.c.create_line(L[i][O],L[i][1],\
L[i+1][0],L[i+1][1], w dth=2)
self.c.create line(L[n-1][0],L[n-1]]1],\
L[O][O],L[O][1],w dth=2)



Recursive Images

A Simple GUI

recursive images

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definitior

recursive drawing algorithr

recursive definitior

recursive

ving algorithr
GUI for a Koch flake



A Cantor Set

a cantor

set

MCS 275 L-7

30 January 2008

aregular n-gon
recursive images

recursive definition

recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI for a Koch flake



A Koch Curve MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

= recursive definition
(&) (&) a Koch curve
recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI fora flake




A Koch Flake

66

0y N

a regular n Koch fake
3

.1 4 5 67 8 91011121314151617 181920

MCS 275 L-7

30 January 2008

aregular n-gon
recursive images

recursive definition

recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI for a Koch flake



A Sierpinski Gasket MCS 275 L7

30 January 2008

recursive images

V'V EDAR V'V AL

AW SO WA W W WA




MCS 275 L-7

Recursive Images
30 January 2008

aregular n-gon

recursive images

recursive definition

recursive drawing algorithr

recursive definitior

recursive drawing algorithr

The Cantor Set b
recursive definition



The Cantor Set MCS 275 L7

30 January 2008

The Cantor Set is defined by three rules rocursiv dofion
1. take the interval [O, 1]



The Cantor Set MCS 27517

30 January 2008

The Cantor Set is defined by three rules recursive defion
1. take the interval [O, 1]
2. remove the middle part third of the interval



The Cantor Set MCS 27517

30 January 2008

The Cantor Set is defined by three rules rocursiv dofion
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part



The Cantor Set

The Cantor Set is defined by three rules
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part

The Cantor set is infinite, to visualize at level n:
» n=0: start at [0, 1]

MCS 275 L-7

30 January 2008

recursive definition



The Cantor Set

The Cantor Set is defined by three rules
1. take the interval [O, 1]
2. remove the middle part third of the interval
3. repeat rule 2 on the first and third part

The Cantor set is infinite, to visualize at level n:

» n=0: start at [0, 1]
» n > 0: apply rule 2 n times

MCS 275 L-7

30 January 2008

recursive definition



GUI for a Cantor Set

a cantor

set

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definition
recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI for a Koch flake



the Class CantorSet

from Tkinter inmport *
i mport math

class CantorSet():

GQJ to draw a Cantor set on canvas.

def __init_ (self,wdw N):
"a Cantor set with N | evels"

def DrawSet(self,v):
"Draws a Cantor set"

def O ear Canvas(sel f):
"Clears the entire canvas"

MCS 275 L-7

30 January 2008

recursive definition



The Layout of the GUI MCS 275 L7

30 January 2008

def __init_ (self,wdw, N):
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
Sel f ) d = 3** N+20 recursive definition
self.n = IntVar()



The Layout of the GUI MCS 275 L7

30 January 2008
def __init_ (self,wdw, N):
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen
self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \
from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )
sel f.sn. grid(row=0, col utm=0)
sel f.sn.set(0)



The Layout of the GUI MCS 275 L7

30 January 2008

def __init__ (self,wdw, N)
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen

self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \

from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )

sel f.sn. grid(row=0, col utm=0)

sel f.sn.set(0)
sel f.c = Canvas(wdw, wi dt h=sel f. d, \

hei ght =sel f.d/ 3, bg =" white’)
sel f.c.grid(row=l, col um=0)



The Layout of the GUI MCS 275 L7

30 January 2008

def __init__ (self,wdw, N)
"a Cantor set with N |evels"
wdw. title(’ a cantor set’)
self.d = 3**N+20 e denen

self.n = IntVar()
sel f.sn = Scal e(wdw, ori ent =" horizontal ', \

from=0,to=N,tickinterval =1,\
| engt h=sel f.d, vari abl e=sel f.n,\
command=sel f. Dr awSet )

sel f.sn. grid(row=0, col utm=0)

sel f.sn.set(0)

sel f.c = Canvas(wdw, wi dt h=sel f. d, \
hei ght =sel f. d/ 3, bg =" white’)

sel f.c.grid(row=l, col um=0)

self.b = Button(wdw, t ext ="cl ear canvas",\
command=sel f. Cl ear Canvas)

sel f.b.grid(row=2, col um=0)



MethOdS Cl ear Canvas and Dr awSet MCS 275 L-7

30 January 2008

The method C ear Canvas() is triggered by a Button.

def C ear Canvas(self): recursve definton
"Clears the entire canvas"
self.c. del et e( ALL)



Methods Cl ear Canvas and Dr awSet

The method C ear Canvas() is triggered by a Button.

def C earCanvas(self):
"Clears the entire canvas"
self.c. del et e( ALL)

The method Dr awSet () is triggered by a Scale.

def DrawSet (self,v):
"Draws a Cantor set"
n =int(v)
sel f.cantor (10, sel f.d-10, 30, v, n)

The method cant or is recursive.

MCS 275 L-7

30 January 2008

recursive definition



Recursive Images

The Cantor Set

recursive drawing algorithm

MCS 275 L-7

30 January 2008

1 regular n-gos

recursive images

recursive definitior

recursive drawing algorithm

recursive definitior
recursive drawing algorit

GUI for a Koch flake



Parameters of a Recursive Function NS 275 L7

30 January 2008

def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)



MCS 275 L-7

Parameters of a Recursive Function

30 January 2008
def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

The parameters A, B, and z define
the line segment from (A,z) to (B,z).



Parameters of a Recursive Function NS 275 L7

30 January 2008

def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z DU
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

The parameters A, B, and z define
the line segment from (A,z) to (B,z).

The parameter t is the value passed via the Scale,
as text string, t is also put on Canvas.



Parameters of a Recursive Function NS 275 L7

30 January 2008

def cantor(self,A B, z,t,k):
draws a line fromA to B, at height z
t is astring, int(t) equals the nunber
of times the mddle third nust be renopved
k is level of recursion, start at k = int(t)

recursive drawing algorithm

The parameters A, B, and z define
the line segment from (A,z) to (B,z).

The parameter t is the value passed via the Scale,
as text string, t is also put on Canvas.

Initially: k = int(t).

With every recursive call, k is decremented by 1.



Recursive Drawing Algorithm MCS 275 L7

30 January 2008

Thek incantor (sel f, A B, z,t, k)
controls the recursion.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7

30 January 2008

Thek incantor (sel f, A B, z,t, k)
controls the recursion.

Atk = 0, the line segment from (A, z) to (B, z) is drawn. .



Recursive Drawing Algorithm MCS 275 L7

30 January 2008
Thek incantor (sel f, A B, z,t, k)
controls the recursion.
Atk = 0, the line segment from (A, z) to (B, z) is drawn. recushe drawing dlgrim

For k > 0, we compute left and right limit of the middle
third of [A, B], respectively denoted by L and Ras

L=A+(B—A)/3=(2A+B)/3
R=B=(B—A)/3=(A+2B)/3



Recursive Drawing Algorithm MCS 275 L7

30 January 2008
Thek incantor (sel f, A B, z,t, k)
controls the recursion.
Atk = 0, the line segment from (A, z) to (B, z) is drawn. recushe drawing dlgrim

For k > 0, we compute left and right limit of the middle
third of [A, B], respectively denoted by L and Ras

L=A+(B—-A)/3=(2A+B)/3
R=B=(B-A)/3=(A+2B)/3
Then we make two recursive calls:

sel f.cantor (A, L, z+30,t,k-1)
self.cantor(R B, z+30,t, k-1)



COde for cant or MCS 275 L-7

30 January 2008

def cantor(self,A B, z,t,k):
i f(k==0): # draw | i ne segnent
self.c.create_line(A z,B, z, w dt h=2)

recursive drawing algorithm



COde for cant or MCS 275 L-7

30 January 2008

def cantor(self,A B, z,t,k):

1] "

i f(k==0): # draw | i ne segnent
self.c.create_line(A z, B, z, w dt h=2) e e e
el se:
L = (2*A+B)/ 3
R = (A+2*B)/ 3

self.cantor (AL, z+30,t, k-1)
sel f.cantor(R B, z+30,t, k-1)



COde for cant or MCS 275 L-7

30 January 2008

def cantor(self,A B, z,t,k):

1] "

i f(k==0): # draw | i ne segnent
self.c.create_line(A z, B, z, w dt h=2) e e e
el se:
L = (2*A+B)/ 3
R = (A+2*B)/ 3

self.cantor (AL, z+30,t, k-1)
sel f.cantor(R B, z+30,t, k-1)

if(k==int(t)): # put text string t
cx = self.d/2;
if(t =="0"):
self.c.create_text(cx,z-10, text=t)
el se:

self.c.create_text(cx,z+k*30, text =t)



Recursive Images

The Koch Curve and Flake
recursive definition

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definitior

recursive drawing algorithr

recursive definition
recursive drawing algorithr

GUI for a Koch flake



The Koch Curve e

30 January 2008

The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

recursive definition



The Koch Curve e

30 January 2008

The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton



The Koch Curve MCS 275 L7

30 January 2008

The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.



The Koch Curve MCS 275 L7

30 January 2008

The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.

To visualize a Koch curve at level n:
» n=0: startat [0, 1]



The Koch Curve MCS 275 L7

30 January 2008

The Koch Curve is a Cantor Set where the removed
middle third of the interval is replaced by a wedge.

The top of the wedge is above the midpoint of the
removed middle interval. recursive defriton

The slopes of the wedge make an angle of 60 degrees
with respect to the rest of the line segment.

To visualize a Koch curve at level n:

» n=0: startat [0, 1]
» n > 0: make wedges n times.



GUI for a Koch Curve

aoOn a Koch cw

ve

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definition

recursive drawing algorithm

recursive definition

recursiv ng algorithm




The Class KochCurve

from Tkinter inmport *
i mport math

cl ass KochCurve():

GJ to draw a Koch curve on canvas.

def __init_ (self,wdw N):
"a Koch curve with N | evel s"

def DrawCurve(self,v):
"Draws a regul ar n-gon”

def C ear Canvas(sel f):
"Clears the entire canvas"

MCS 275 L-7

30 January 2008



The Layout of the GUI MCS 275 L7

30 January 2008
def __init__ (self,wdw, N):

"a Koch curve with N |evels"

wdw. title(’a Koch curve’)

self.d = 3**N+20

self.n = IntVar()

sel f.sn = Scal e(wdw, ori ent="hori zontal’,\
from=0,to=N,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\
conmand=sel f. Dr awCur ve)

sel f.sn. grid(row=0, col um=0)

sel f.sn.set(0)

self.c = Canvas(wdw, wi dt h=sel f. d,\
hei ght =sel f.d/3,bg =" white’)

sel f.c.grid(row=1, col um=0)

sel f.b = Button(wdw, t ext="cl ear canvas",\
command=sel f. C ear Canvas)

sel f.b.grid(row=2, col um=0)



Method Cl ear Canvas and Dr awCur ve mes 275 L1

30 January 2008

The method Cl ear Canvas() is triggered by a Button.

def O ear Canvas(sel f):
"Clears the entire canvas"
self.c. del et e( ALL)

recursive definition



Method Cl ear Canvas and Dr awCur ve

The method Cl ear Canvas() is triggered by a Button.

def O ear Canvas(sel f):
"Clears the entire canvas"
self.c. del et e( ALL)

The method Dr awCur ve() is activated by a Scale.

def DrawCurve(self,v):
"Draws a regular n-gon"

n =int(v)
A = (10, sel f.d/ 3-20)
B = (self.d-10,sel f.d/3-20)

sel f. koch(A, B, n)

The method koch() is recursive,
to draw a Koch curve of n levels from Ato B.

MCS 275 L-7

30 January 2008



Recursive Images

The Koch Curve and Flake

recursive drawing algorithm

MCS 275 L-7

30 January 2008

1 regular n-gos

recursive images

recursive definitior

recursive drawing algorithr

recursive definitior
recursive drawing algorithm

GUI for a Koch flake



Recursive Drawing Algorithm MCS 275 L7

30 January 2008

The n in koch( A, B, n) controls the recursion.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7

30 January 2008
The n in koch( A, B, n) controls the recursion.

Forn = 0, the line segment from Ato B is drawn.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7

30 January 2008

The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

recursive drawing algorithm



Recursive Drawing Algorithm MCS 275 L7

30 January 2008
The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

Angle of 60 degrees: sin(3) = @ is height, reushe daving agrim
multiplied with %th of length of segment.



Recursive Drawing Algorithm MCS 275 L7

30 January 2008
The n in koch( A, B, n) controls the recursion.
Forn = 0, the line segment from Ato B is drawn.

Forn > 0, we compute left L, right R,
and midpoint Mof the middle third of line segment.

Angle of 60 degrees: sin(3) = @ is height, rcursve daving agrim
multiplied with %th of length of segment.

The the peak P of the wedge is relative to the size of the
interval and the position of the midpoint M

= (M2(A[1] - B[1]), *2(B[0] — A[0])),

= (MO] — T[], M1] - T[1])

Recall that on Canvas: (0,0) is at topmost left corner.



COde for kOCh MCS 275 L-7

30 January 2008

def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):
self.c.create_line(A0],A[1],B[0],B[1],\
wi dt h=2)

recursive drawing algorithm



COde for kOCh MCS 275 L-7

30 January 2008

def koch(self, A B, k):
a Koch curve fromAto Bwith k | evels

i f(k==0):
self.c.create_line(A0],A[1],B[0],B[1],\
wi dt h=2)
el se:
L
R

recursive drawing algorithm

((2*A[ 0] +B[0]) /3.0, (2*A[ 1] +B[ 1])/ 3. 0)
((A[ 0] +2*B[0])/ 3.0, (A[ 1] +2*B[ 1] )/ 3. 0)
((A[ 0] +B[ 0] )/ 2.0, (Al 1] +B[ 1] )/ 2. 0)

<



COde for kOCh MCS 275 L-7

30 January 2008

def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):

self.c.create_line(A0],A[1],B[0],B[1],\

\M dt h = 2) recursive drawing algorithm

el se:

L = ((2*A[0]+B[0])/3.0,(2*A[1]+B[1])/3.0)

R=((A0]+2*B[0])/3.0, (A[ 1] +2*B[1])/3.0)

M= ((Al0]+B[0])/2.0,(A[1]+B[1])/2.0)

s = math.sqrt(3)/6

T =(s*(Al1]-B[1]),s*(B[0]-A[0]))

P=(MO]-T[O], M1]-T[1])



COde for kOCh MCS 275 L-7

30 January 2008

def koch(self, A B, k):

a Koch curve fromAto Bwith k | evels

i f(k==0):

self.c.create_line(A0],A[1],B[0],B[1],\

\M dt h:2) recursive drawing algorithm

el se:

L = ((2*A[0]+B[0])/3.0,(2*A[1]+B[1])/3.0)

R=((A0]+2*B[0])/3.0, (A[ 1] +2*B[1])/3.0)

M= ((Al0]+B[0])/2.0,(A[1]+B[1])/2.0)

s = math.sqrt(3)/6

T =(s*(Al1]-B[1]),s*(B[0]-A[0]))

P=(MO]-T[O], M1]-T[1])

sel f. koch(A L, k-1)
sel f. koch(L, P, k-1)
sel f. koch(P, R, k-1)
sel f. koch(R, B, k-1)



MCS 275 L-7

Recursive Images

30 January 2008
egul:
ursi
defini
recursive drawing algorithr
ursive definitior
recursive drawing algorithr

GUI for a Koch flake

The Koch Curve and Flake

GUI for a Koch flake



GUI for a Koch flake

66

Y

a regular n Koch flake
3

3 4S5 67 8 951011121314151617 181920

MCS 275 L-7

30 January 2008

aregular n-gon

recursive images

recursive definition

recursive drawing algorithm

recursive definition
recursive drawing algorithm
GUI for a Koch flake



The CIaSS KOChFIake MCS 275 L-7

30 January 2008

from Tkinter inmport *
i mport math

cl ass KochFl ake():

nnn
GUI for a Koch flake

QJ to draw a Koch fl ake canvas.

def __init__ (self,wdw):
"determ nes the layout of the GU"

def DrawFl ake(self,v):
"Draws a regul ar Koch fl ake"



The Scalesin__init__ MeS 27517

30 January 2008

def __init__(self,wdw):

self.n I nt Var ()

sel f. k I nt Var ()

sel f.sn = Scal e(wdw, ori ent =" horizontal ", \
from =3,t0=20,tickinterval =1,\
| engt h=sel f. d, vari abl e=sel f.n,\ GUIfora Koch ake
conmand=sel f . Dr awFl ake)

sel f.sn.grid(row=0, col um=1)

sel f.sn.set(10)

sel f.sk = Scal e(wdw, orient="vertical’,k\
from=0,to0=6,tickinterval =1, \
| engt h=sel f. d, vari abl e=sel f. k, \
conmand=sel f . Dr awFl ake)

sel f.sk.grid(row=1, col um=0)

sel f.sk. set(0)



Code for Dr awFl ake() MCS 275 L-7

30 January 2008

def DrawFl ake(self,v):

"Draws a regul ar Koch fl ake"

cx = self.d/2

cy = self.d/2

radius = 0.4*self.d

sel f.c. del ete(ALL)

n = self.n.get()

k = self.k.get() eutora oeh e

t ='( + str(n) + ', + str(k) + ")’

self.c.create_text(cx,cy,text=t,tags="text")

L =[]

for i in range(0,n):

vX = cX + radius*math. cos(2*i *mat h. pi / n)
vy = cy + radius*math. sin(2*i *mat h. pi / n)
L. append((vx, vy))

for i in range(0,n-1):
sel f. koch(L[i],L[i+1],k)

sel f. koch(L[n-1], L[ O], k)



Exercises MCS 275 L7

30 January 2008
1. Make a GUI to visualize the Sierpinski gasket.

2. Avariant of the Sierpinski gasket starts with a square
and removes a smaller square at the center of the
first square. This removal is repeated to the 8
remaining squares. Design a GUI for this Sierpinski
carpet. Define the recursive drawing algorithm.

3. Make a GUI to visualize a Brownian bridge between Gulfor och e
two points. The rule is to replace a line segment from
Ato B by the segments [A,M] and [M, B], where M
is calculated as (A + B)/2 with random noise added
to it. Repeat the rule to the new segments, etc.

4. Design a recursive algorithm to draw a tree, starting
with a trunk and 3 branches. Put at the top of each
branch again a trunk and 3 branches, and then
again... What are the parameters of the recursive
function to define the rule to generate the tree?



Summary and Assignments MCS 275 L7

30 January 2008

We recalled elements of GUIs, see
» Chapter 15 of Making Use of Python
» www. pyt hon. or g has plenty of documentation

GUI for a Koch flake

Homework will be collected on Friday 1 February
(bring your answers to class):

» exercise 5 of Lecture 5;
» exercises 1 and 4 of Lecture 6;
» exercises 1 and 3 of Lecture 7.



