Game Trees

Tic Tac Toe
representing pebbles on a board
the class Board
the value of a board

A Game Tree for Tic Tac Toe
an example of looking ahead
the class BoardTree

Calculating Game Trees
suggestions for next best move

MCS 275 Lecture 39
Programming Tools and File Management
Jan Verschelde, 21 April 2008

MCS 275 L-39

21 April 2008

MCS 275 L-39

Tic Tac Toe

21 April 2008
a board game for two players

Tic Tac Toe

Tic tac toe is a game
1. for two players

Tic Tac Toe

a board game for two players

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board

MCS 275 L-39

21 April 2008

Tic Tac Toe

Tic Tac Toe

a board game for two players

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles

MCS 275 L-39

21 April 2008

Tic Tac Toe

MCS 275 L-39

Tic Tac Toe

21 April 2008
a board game for two players

Tic Tac Toe

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles
4. goal is to have pebbles lined up

MCS 275 L-39

Tic Tac Toe

21 April 2008
a board game for two players

Tic Tac Toe

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles
4. goal is to have pebbles lined up

Playing strategy:
1. look ahead: enumerate future moves

Tic Tac Toe e

21 April 2008
a board game for two players

Tic Tac Toe

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles
4. goal is to have pebbles lined up

Playing strategy:
1. look ahead: enumerate future moves
2. evaluate: each board has a value

Tic Tac Toe

a board game for two players

Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles
4. goal is to have pebbles lined up

Playing strategy:
1. look ahead: enumerate future moves
2. evaluate: each board has a value
3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

Playing the Game

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a
d

MCS 275 L-39

Playing the Game

. 21 April 2008
placing pebbles x and o

Tic Tac Toe
representing pebbles on a
board
the class Board

O the value of a board

X X

an example of looking
the class BoardTree

suggestions for next best
move

MCS 275 L-39

Playing the Game

. 21 April 2008
placing pebbles x and o

Tic Tac Toe

Playing the Game

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

Playing the Game

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

Playing the Game

placing pebbles x and o

(0]

X X
X (0] X 0]
X | X O|X|X
0) 0)

MCS 275 L-39

21 April 2008

Tic Tac Toe

MCS 275 L-39

Playing the Game

. 21 April 2008
placing pebbles x and o

Tic Tac Toe

(0] X (0] X (0]
X X X X
(0]
X (0] X 0] 0)
X | X O|X|X O X | X

Playing the Game

placing pebbles x and o

(0] 0]
X X X
X (0] X (0] 0) (0]
X | X O|X|X X X
0) 0) (0] X

MCS 275 L-39

21 April 2008

Tic Tac Toe

Playlng the Game MCS 275 L-39
21 April 2008

placing pebbles x and o
Tic Tac Toe

o X 0O X 0
X X X X
(0]
X 0 X 0 0 oo
X | X o x|x o|x|x o] x| x
o (0] X 1|0 X

MCS 275 L-39

Playing the Game

placing pebbles x and o

21 April 2008

Tic Tac Toe

o X o X (0]
X X X X
(0]
X (0] X (0] 0) O|O
X | X O|X|X O X | X O X | X
0) 0) X|10 X
X|0|O X |0
O | X | X O X | X
0]

MCS 275 L-39

Playing the Game

placing pebbles x and o

21 April 2008

Tic Tac Toe

o X o X (0]
X X X X
(0]
X (0] X (0] 0) O|O
X | X O|X|X O X | X O X | X
0) 0) X|10 X
X|0|O X |0 0|0
O | X | X O X | X O| X | X
o X

MCS 275 L-39

Playing the Game

placing pebbles x and o

21 April 2008

Tic Tac Toe

o X o X (0]
X X X X
(0]
X (0] X (0] 0) O|O
X | X O|X|X O X | X O X | X
0) 0) X|10 X
X|0|O X |0 0|0 X|0|O
O | X | X O X | X O| X | X 0| X
o X X

G ame Trees MCS 275 L-39

21 April 2008

representing pebbles on a
board

Tic Tac Toe
representing pebbles on a board

MCS 275 L-39

Pebbles on a Board

. 21 April 2008
using numpy arrays

representing pebbles on a
board

The board is a 3-by-3 matrix
— nunpy double arrays are convenient

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient

A board is an integer matrix:
» 0: an empty space

MCS 275 L-39

21 April 2008

representing pebbles on a
board

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

MCS 275 L-39

21 April 2008

representing pebbles on a
ard

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

» 2: second pebble o

MCS 275 L-39

21 April 2008

representing pebbles on a
ard

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

» 2: second pebble o

Defining a class Boar d:
1. constructor: initialize board

MCS 275 L-39

21 April 2008

representing pebbles on a
ard

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

» 2: second pebble o

Defining a class Boar d:
1. constructor: initialize board
2. string representation

MCS 275 L-39

21 April 2008

representing pebbles on a
ard

Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

» 2: second pebble o

Defining a class Boar d:
1. constructor: initialize board
2. string representation
3. parse string into a board

MCS 275 L-39

21 April 2008

representing pebbles on a
ard

Working with Boards MCS 275 L-39

21 April 2008
representing pebbles on a
ard

>>> from cl assboard i nport *
>>> b = Board()

Working with Boards MCS 275 L-39

21 April 2008

representing pebbles on a
board

>>> from cl assboard i nport *
>>> b = Board()

>>> b.ni1, 2]
>>> pb. nf 0, O]
>>> b.ni1, 1]
>>> b. nf 2, 2]

NEFEDNPRE

Working with Boards MCS 275 L-39

21 April 2008

representing pebbles on a
board

>>> from cl assboard i nport *
>>> b = Board()

>>> b.n{1,2] =1

>>> b.n0,0] =2

>>> b.n{1,1] =1

>>> b.nf2,2] =2

>>> b

o§o

Representing Boards MCS 275 L-39

21 April 2008

representing pebbles on a
board

>>> p
O
XX
O

the value of a board

suggestions for next best

Representing Boards MCS 275 L-39

21 April 2008

representing pebbles on a
board

>>> b

>>> s = str(b)
>>> g
O \n XX\n O

Representing Boards

>>> b
O
XX
O
>>> s = str(b)
>>> 5
O \n XX\n O
>>> nb = Board()

MCS 275 L-39

21 April 2008

representing pebbles on a
board

Representing Boards

>>> p
O

XX

O
>>> s = str(b)
>>> S
O \n XXA\n O
>>> nb = Board()
>>> nb. parse(s)
>>> nb
O

XX

O

MCS 275 L-39

21 April 2008

representing pebbles on a
board

Game Trees

Tic Tac Toe

representing pebbles on a board
the class Board

the value of a board

A Game Tree for Tic Tac Toe
an example of looking ahead
the class BoardTree

Calculating Game Trees

suggestions for next best move

«0O0>» «F»r» « >

«E>»

DA

the Class Board MCS 275 L-39

21 April 2008

L-39 MCS 275 Mon 21 Apr 2008 : cl assboard. py

#
A board of pebbles in atic tac toe gane is e
represented by a 3-by-3 matrix.

Its string representation uses X and O for
the pebbles 1 and 2 respectively.

The nunber of adjacent pebbles on a board
#

determ nes the val ue of a board.

the Class Board MCS 275 L-39

21 April 2008

L-39 MCS 275 Mon 21 Apr 2008 : cl assboard. py

#
A board of pebbles in atic tac toe gane is e
represented by a 3-by-3 matrix.

Its string representation uses X and O for
the pebbles 1 and 2 respectively.

The nunber of adjacent pebbles on a board
#

determ nes the val ue of a board.
from nunpy inport *

cl ass Board():

Exports a tic tac toe board.

the Class Board e
21 April 2008
L-39 MCS 275 Mon 21 Apr 2008 : cl assboard. py
A board of pebbles in atic tac toe gane is

represented by a 3-by-3 matrix.

Its string representation uses X and O for

#

#

#

the class Board

the pebbles 1 and 2 respectively.
The nunber of adjacent pebbles on a board
determ nes the val ue of a board.

from nunpy inport *

cl ass Board():
Exports a tic tac toe board.
def __init__(self):

Returns an enpty board.

self.m= zeros((3,3),int)

Defining the String Representation MeSErlss

21 April 2008

def _ str__(self):
XIS 1’ OIS 2, the class Boart
the rest is blank
s ="
for i in range(0,3):
if i >0 s =s +'\n’

Defining the String Representation

def _ str__ (self):

Xis 1, Ois 2,
the rest is blank
s ="
for i in range(0,3):
ifi >0 s=s+"'\n’
for j in range(0,3):
if self.nfi,j] == 1
s =s +'X

MCS 275 L-39

21 April 2008

the class Board

Defining the String Representation

def _ str__ (self):

Xis 1l Ois 2,
the rest is blank

s =7

for i in range(0,3):
ifi >0 s=s+"'\n’
for j in range(0,3):

if self.nfi,j] ==
s =s +'X
el se:
if self.ni,j] ==
s =s+'0
el se:
s =s +" "

return s

MCS 275 L-39

21 April 2008

the class Board

Parsing Strings into Boards MCs 275 -39

21 April 2008

def _ _repr__ (self):

the class Board

defines the representation of a board

return self.__str__()

Parsing Strings into Boards MCs 275 -39

21 April 2008

def _ _repr__ (self):

the class Board

defines the representation of a board

return self. str__ ()

def parse(self,s):

Converts a string into a board.

ind =0
for i in range(0, 3):
for j in range(0, 3):
if s[ind] =='\n": ind =ind + 1

Parsing Strings into Boards MCs 275 -39

21 April 2008

def _ _repr__ (self):

the class Board

defines the representation of a board

return self. str__ ()

def parse(self,s):

Converts a string into a board.

ind =0
for i in range(0, 3):
for j in range(0, 3):

if s[ind] =='\n": ind =ind + 1
self.mi,j] =0

if s[ind] == "X : self.ni,j] =1
if s[ind] =="0: self.nfi,j] =2

ind =ind + 1

Game Trees

Tic Tac Toe

representing pebbles on a board
the class Board

the value of a board

A Game Tree for Tic Tac Toe
an example of looking ahead
the class BoardTree

Calculating Game Trees

suggestions for next best move

«0O0>» «F»r» « >

«E>»

DA

The Value of a Board MCS 275 L-39

21 April 2008

the value of a board

To compare which move is better,
we need to assign a value to a board.

MCS 275 L-39

The Value of a Board

21 April 2008

the value of a board

To compare which move is better,
we need to assign a value to a board.

Value of a board for a pebble
— count the number of pebbles lined up

The Value of a Board MCS 275 L-39

21 April 2008

the value of a board

To compare which move is better,
we need to assign a value to a board.

Value of a board for a pebble
— count the number of pebbles lined up

Formula to evaluate a position:
number of own pebbles lined up
minus number of opponent pebbles lined up

MCS 275 L-39

Functions to Evaluate a Board

21 April 2008

def Value2(self,T):

Returns 1 if the two tuples in T are ————
not adjacent, returns 2 otherw se.
T[O] and [1] are in |exicographical order.

Functions to Evaluate a Board vCs 275 L-39

21 April 2008

def Value2(self,T):
Returns 1 if the two tuples in T are
not adjacent, returns 2 otherw se.
T[O] and [1] are in |exicographical order.

def Val ue3(self,T):

the value of a board

Returns 3 if three adjacent tuples,
ot herwi se returns what the maxi num
of Value2 applied to all pairs in T.

Functions to Evaluate a Board vCs 275 L-39

21 April 2008

def Value2(self,T):
Returns 1 if the two tuples in T are
not adjacent, returns 2 otherw se.
T[O] and [1] are in |exicographical order.

def Val ue3(self,T):

the value of a board

Returns 3 if three adjacent tuples,
ot herwi se returns what the maxi num
of Value2 applied to all pairs in T.

def Val ue(self, k):
The val ue of a board equal s how
many k’s are next to each other.

G ame Trees MCS 275 L-39

21 April 2008

A Game Tree for Tic Tac Toe
an example of looking ahead

An Example

generating all moves

0 X
(0]
| |
XX XX
0 X 00X
0] (0]
| |
| | | | | |
XX0 XX XX XX OXX
0 X 00X 0 X 0 X
(0] [0} (0] 0] (O]

XX XX XX
0 X 00X 0 X X
0 0 00
5 possibilities for x, 4 moves for o: 20 leaves

(e]e)

«Or «Fr <

v
it

nae

An Exam ple MCS 275 L-39

. 21 April 2008
generating all moves

representing pebbles on a

an example of looking
ahead

the class BoardTree

suggestions for next best

MCS 275 L-39

An Example

. 21 April 2008
generating all moves

representing pebbles on a

an example of looking
ahead

the class BoardTree

XX T suggestions for next best
0 X move
0o

An Example

generating all moves

ooX

XX
00X

MCS 275 L-39

21 April 2008

an example of looking
ead

An Example

generating all moves

X XX

00X

ooX
X0

XX
00X

MCS 275 L-39

21 April 2008

an example of looking
ead

An Example

generating all moves

ooX

X

X0

XX
00X

XX
00X

MCS 275 L-39

21 April 2008

an example of looking
ead

An Example

generating all moves

XX0 XX XX
0 X 00X 0
(0] (0] (o]¢}

XX
00X

MCS 275 L-39

21 April 2008

an example of looking
ead

An Example

generating all moves

XX0 XX XX
0 X 00X 0
(0] (0] (o]¢}

MCS 275 L-39

21 April 2008

an example of looking
ead

MCS 275 L-39

An Example

. 21 April 2008
generating all moves

X
0 X
0 an example of looking
ead
| |
XX XX
0 X 00X
o 0o
| |
| | | | | |
XX0 XX XX XX oXX XX
0 X 00X 0 X O0X 0 X 00X
0o 0] 00 0o 0o 0o

MCS 275 L-39

An Example

. 21 April 2008
generating all moves

X
0 X
0 an example of looking
ahead
| |
XX XX
X 00X
(0] [0}
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X
0 [0} (0] 0] (O 0] (0] 0 00

An Example

generating all moves

XX0 XX XX
0 X 00X 0
(0] (0] (o]¢}

MCS 275 L-39

21 April 2008

an example of looking
ahead

XX
00X
0
|
| | | |
OXX XX XX
0'X 00X 0 X o0
0 0 00" 0

MCS 275 L-39

An Example

. 21 April 2008
generating all moves

X
0 X
0 an example of looking
ahead
| |
XX XX
0 X 00X
(0] [0}
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X 0 X
0 [0} (0] 0] (O 0] (0] 0 00 00

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

An Example

. .- 21 April 2008
evaluating the positions

X
0 X
0
an example of looking
ahead
| |
XX XX
0" x 00X
0 0
| |
| | | | | | | |
XX0 XX XX_ XX OXX XX XX XX
0'X 00X 0 Xx 0 X 0'X 00X 0 X o0
0 0 0 00 0 0 00" 0

(0]
0 0 0 0

MCS 275 L-39

An Example

. 21 April 2008
first all the leaves

X
0 X
0
an example of looking
ahead
| |
XX XX
0" x 00X
0 0
| |
| | | | | | | |
XX0 XX XX_ XX OXX XX XX XX
0'X 00X 0 Xx 0 X 0'X 00X 0 X o0
0 0 0 00 0 0 00" 0

(0]
0 0 0 0 -1 0 0 0

MCS 275 L-39

An Example

. 21 April 2008
looking ahead to compute the next move o

X
0 X
[0}
-1 anexdample of looking
|
| |
XX XX
0 X 00X
0 [0}
0 -1
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X 0
0 [0} 0 0oO0 (0] 0 00 (0]

(0]
0 0 0 0 -1 0 0 0

Game Trees MCS 275 L-39

21 April 2008

an example of looking

the class BoardTree

suggestions for next best
ove

A Game Tree for Tic Tac Toe ;

the class BoardTree

the Class BoardTree MCS 275 L-39

21 April 2008
fromcl assbhoard i nport *

cl ass BoardTree():

Exports a tree of tic tac toe boards.

def __init__(self,b):

nnn

the class BoardTree

Returns a tree with as root the
gi ven board.

nnn

self.b =D
self.v =
self.c =[]
self.best =0

MCS 275 L-39

String Representations

21 April 2008
def _ str__(self):
Defines the string representation
of a tree of boards.
s =self.b.__str__ ()
s =s +’'\nvalue = %' %self.v ihe class Boaiee

String Representations MCS 275 L-39

21 April 2008
def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str__()
s =s + '\nvalue = %d’ %self.v the class BoardTree
if len(self.c) > O:

s =s + '"\'nchildren :\n

MCS 275 L-39

String Representations

21 April 2008

def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str_ ()
s =s + '\nvalue = %' %self.v ihe class Boaiee
if len(self.c) > O:
s =s + '\nchildren :\n’
for i in range(0,len(self.c)):
s =s +’'\n->child % :\n" %i
s =s +self.c[i].__str__ ()

return s

MCS 275 L-39

String Representations

21 April 2008

def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str_ ()
s =s + '\nvalue = %' %self.v ihe class Boaiee
if len(self.c) > O:
s =s + '\nchildren :\n’
for i in range(0,len(self.c)):
s =s +’'\n->child % :\n" %i
s =s +self.c[i].__str__ ()
return s

def __repr_ (self):

Takes the string representation as
the representation of the tree.

return self. str__ ()

Generating the Moves MCS 275 -39

21 April 2008

def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.

the class BoardTree

MCS 275 L-39

Generating the Moves

21 April 2008

def noves(sel f,k, n):

Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==

Generating the Moves vCs 275 39

21 April 2008

def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==
nb = Board()
nb. copyBoard(sel f.b. m
nt = BoardTree(nb)
nt.b.ni,j] =Kk

Generating the Moves vCs 275 39

21 April 2008

def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==
nb = Board()
nb. copyBoard(sel f.b. m
nt = BoardTree(nb)
nt.b.nfi,j] =k
if n>1
nk =k %2 + 1
nt . noves(nk, n-1)
sel f.c.append(nt)

Evaluating the Moves MCS 275 L-39

21 April 2008
the base case

The computation starts at the leaves:

def val ues(self,k):

the class BoardTree

Assigns values to all the nodes
in the tree of boards.

if len(self.c) ==
ck = k %2 + 1
self.v = self.b.Value(k) - self.b.Value(ck)

Evaluating the Moves continued et

21 April 2008

el se:
for i in range(0,len(self.c)):
self.c[i].val ues(k)
max = self.c[0].v
self.best =0
if max < O:
self.v = max

the class BoardTree

MCS 275 L-39

Evaluating the Moves continued

21 April 2008
el se:

for i in range(0,len(self.c)):

self.c[i].val ues(k)
max = self.c[0].v
self.best =0 the class BoardTree
if max < O:

self.v = max
el se:

for i in range(l,len(self.c)):

if self.c[i].v < O:
max = self.c[i].v
if max >= 0 and self.c[i].v > nmax:
max = self.c[i].v
sel f.best =i
self.v = max

Game Trees

Calculating Game Trees
suggestions for next best move

MCS 275 L-39

21 April 2008

suggestions for next best

Calculating Game Trees MCS 275 L-39

i 21 April 2008
running ganet r ee. py

$ python ganetree. py

give three characters per row

-> either X, O or a space

giverowl : X

giverow2 : OX

give row3 : O stggesios o e best

Calculating Game Trees

running gamet r ee. py

$ python ganetree. py

give three characters per row
-> either X, O or a space
giverowl : X
giverow2 : OX
giverow3 : O

X

O X

O

[[010]

[2 0 1]

[2 0 0]]

MCS 275 L-39

21 April 2008

suggestions for next best
move

Calculating Game Trees MCS 275 L-39

running ganet r ee. py gl 2
$ python ganetree. py
give three characters per row
-> either X, O or a space
giverowl : X
giverow2 : OX
giverow3 : O sugestors o et e
X
O X
O
[[010]
[2 0 1]
[2 0 0]]

player ? (1 or 2)

MCS 275 L-39

continued with the run

21 April 2008
player ? (1 or 2) 1
X ;‘-"1”7‘-‘\\” ebbles on a
O X S
O the value of a board
value = -1

suggestions for next best

continued with the run

player ? (1 or 2) 1
X

0O X

@]

value = -1

children :

->child O :
XX

O X

0]

value = 0

MCS 275 L-39

21 April 2008

suggestions for next best

continued with the run

player ? (1 or 2) 1
X

0O X

@]

value = -1

children :

->child O :
XX

O X

0]

value = 0

children :

->child O :
XXO

O X

0]

value = 0

MCS 275 L-39

21 April 2008

suggestions for next best

the end of the run

->child 2 :
X
00)¢

O X

val ue
->chi |

o 1l
w o

O X
(004
value = 0

MCS 275 L-39

21 April 2008

suggestions for next best
move

the end of the run

->child 2
X

(00).4

O X

val ue =
->child
X

O X
(00).4
value = 0

0
3

recomrended nove :

XX
O X
O

MCS 275 L-39

21 April 2008

suggestions for next best
move

Summary + Assignments

We considered an example of trees.
Assignments:

1. Develop a GUI for tic tac toe.

2. Use sockets for two players on remote computers.

3. Consider four in a row.

MCS 275 L-39

21 April 2008

suggestions for next best

