Game Trees

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 Lecture 39 Programming Tools and File Management Jan Verschelde, 21 April 2008

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

1. for two players

- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value

3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

a board game for two players

Tic tac toe is a game

- 1. for two players
- 2. on a square 3-by-3 board
- 3. each player has 3 pebbles
- 4. goal is to have pebbles lined up

Playing strategy:

- 1. look ahead: enumerate future moves
- 2. evaluate: each board has a value
- 3. optimize: select move with largest value

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

placing pebbles x and o

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

Game Trees

Tic Tac Toe representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

A board is an integer matrix:

- 0: an empty space
- 1: first pebble x
- 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

A board is an integer matrix:

- 0: an empty space
- 1: first pebble x
- 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

A board is an integer matrix:

- 0: an empty space
- 1: first pebble x
- 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

- A board is an integer matrix:
 - 0: an empty space
 - 1: first pebble x
 - 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

- A board is an integer matrix:
 - 0: an empty space
 - 1: first pebble x
 - 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

- A board is an integer matrix:
 - 0: an empty space
 - 1: first pebble x
 - 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation

3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

using numpy arrays

The board is a 3-by-3 matrix \rightarrow numpy double arrays are convenient

- A board is an integer matrix:
 - 0: an empty space
 - 1: first pebble x
 - 2: second pebble o

Defining a class Board:

- 1. constructor: initialize board
- 2. string representation
- 3. parse string into a board

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

Working with Boards

```
>>> from classboard import *
>>> b = Board()
```

```
>>> b.m[1,2] = 1
```

- >>> b.m[0,0] = 2
- >>> b.m[1,1] = 1
- >>> b.m[2,2] = 2
- >>> b

0

XX

0

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

・ロット 御マ キョット 中国 うくのう

Working with Boards

```
>>> from classboard import *
```

```
>>> b = Board()
```

```
>>> b.m[1,2] = 1
```

- >>> b.m[0,0] = 2
- >>> b.m[1,1] = 1

```
>>> b.m[2,2] = 2
```

```
>>> k
```

) XX

0

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

・ロト・西ト・西ト・西・ うくの

Working with Boards

```
>>> from classboard import *
>>> b = Board()
>>> b.m[1,2] = 1
>>> b.m[0,0] = 2
>>> b.m[1,1] = 1
>>> b.m[2,2] = 2
>>> b
0
 XX
  0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

・ロト・日本・日本・日本・日本

```
>>> b
0
 XX
  0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

▲ロト▲母ト▲目ト▲目ト 目 のへの

```
>>> b
0
 XX
  0
>>> s = str(b)
>>> s
'0 \n XX\n O'
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

```
>>> b
0
 XX
  0
>>> s = str(b)
>>> s
'0 \n XX\n O'
>> nb = Board()
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

```
>>> b
0
 XX
  0
>>> s = str(b)
>>> s
'0 \n XX\n O'
>>> nb = Board()
>>> nb.parse(s)
>>> nb
\cap
 XX
  0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Game Trees

Tic Tac Toe representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���
the Class Board

L-39 MCS 275 Mon 21 Apr 2008 : classboard.py

A board of pebbles in a tic tac toe game is # represented by a 3-by-3 matrix. # Its string representation uses X and 0 for # the pebbles 1 and 2 respectively. # The number of adjacent pebbles on a board # determines the value of a board.

from numpy import *

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

the Class Board

L-39 MCS 275 Mon 21 Apr 2008 : classboard.py

A board of pebbles in a tic tac toe game is # represented by a 3-by-3 matrix. # Its string representation uses X and O for # the pebbles 1 and 2 respectively. # The number of adjacent pebbles on a board # determines the value of a board.

from numpy import *

```
class Board():
    """
    Exports a tic tac toe board.
    """
    def __init__(self):
        """
        Returns an empty board.
        """
        self.m = zeros((3,3),int)
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

the Class Board

L-39 MCS 275 Mon 21 Apr 2008 : classboard.py

```
# A board of pebbles in a tic tac toe game is
# represented by a 3-by-3 matrix.
# Its string representation uses X and O for
# the pebbles 1 and 2 respectively.
# The number of adjacent pebbles on a board
# determines the value of a board.
```

from numpy import *

```
class Board():
    """
    Exports a tic tac toe board.
    """
    def __init__(self):
        """
        Returns an empty board.
        """
        self.m = zeros((3,3),int)
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

```
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで
```

Defining the String Representation

```
def str (self):
   .....
   X is 1, 0 is 2,
   the rest is blank
   .....
   s = ''
   for i in range(0,3):
       if i > 0: s = s + ' \setminus n'
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

```
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で
```

Defining the String Representation

```
def str (self):
   .....
   X is 1, 0 is 2,
   the rest is blank
   .....
   s = ''
   for i in range(0,3):
       if i > 0: s = s + ' \setminus n'
      for j in range(0,3):
          if self.m[i,j] == 1:
             s = s + 'X'
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

he value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

```
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
```

Defining the String Representation

```
def str (self):
   .....
   X is 1, 0 is 2,
   the rest is blank
   .....
   s = ''
   for i in range(0,3):
      if i > 0: s = s + ' \setminus n'
      for j in range(0,3):
          if self.m[i,j] == 1:
             s = s + 'X'
          else:
             if self.m[i,j] == 2:
                 s = s + '0'
             else:
                 s = s + ' '
   return s
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

he value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

Parsing Strings into Boards

```
def repr (self):
   .....
   defines the representation of a board
   .....
   return self. str ()
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Parsing Strings into Boards

```
def repr (self):
   ....
                                                      the class Board
   defines the representation of a board
   .....
   return self. str ()
def parse(self,s):
   . . .
   Converts a string into a board.
   .....
   ind = 0
   for i in range(0,3):
      for j in range(0,3):
          if s[ind] == ' \setminus n': ind = ind + 1
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MCS 275 L-39

21 April 2008

Parsing Strings into Boards

```
def repr (self):
   ....
   defines the representation of a board
   .....
   return self. str ()
def parse(self,s):
   . . .
   Converts a string into a board.
   .....
   ind = 0
   for i in range(0,3):
      for j in range(0,3):
         if s[ind] == ' \setminus n': ind = ind + 1
         self.m[i,j] = 0
         if s[ind] == 'X': self.m[i,i] = 1
         if s[ind] == 'O': self.m[i,j] = 2
         ind = ind + 1
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board

the class Board

A Game Tree for

an example of looking ahead

the class BoardTree

```
Calculating Game
Trees
```

```
suggestions for next best move
```

Game Trees

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

The Value of a Board

To compare which move is better, we need to assign a value to a board.

Value of a board for a pebble \rightarrow count the number of pebbles lined up

Formula to evaluate a position: number of own pebbles lined up minus number of opponent pebbles lined up

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

The Value of a Board

To compare which move is better, we need to assign a value to a board.

Value of a board for a pebble \rightarrow count the number of pebbles lined up

Formula to evaluate a position: number of own pebbles lined up minus number of opponent pebbles lined up

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

The Value of a Board

To compare which move is better, we need to assign a value to a board.

Value of a board for a pebble \rightarrow count the number of pebbles lined up

Formula to evaluate a position: number of own pebbles lined up minus number of opponent pebbles lined up

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Functions to Evaluate a Board

```
def Value2(self,T):
```

Returns 1 if the two tuples in T are not adjacent, returns 2 otherwise. T[0] and [1] are in lexicographical order. """

```
def Value3(self,T):
```

II II II

Returns 3 if three adjacent tuples, otherwise returns what the maximum of Value2 applied to all pairs in T. """

```
def Value(self,k):
```

п п п

The value of a board equals how many k's are next to each other.

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

Calculating Game Trees

suggestions for next best move

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Functions to Evaluate a Board

```
def Value2(self,T):
```

Returns 1 if the two tuples in T are not adjacent, returns 2 otherwise. T[0] and [1] are in lexicographical order. """

```
def Value3(self,T):
```

```
. . .
```

Returns 3 if three adjacent tuples, otherwise returns what the maximum of Value2 applied to all pairs in T. """

```
def Value(self,k):
```

H H H

The value of a board equals how many k's are next to each other.

11 11 11

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board

the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

```
Calculating Game
Trees
```

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Functions to Evaluate a Board

```
def Value2(self,T):
   .....
   Returns 1 if the two tuples in T are
                                                   the value of a board
   not adjacent, returns 2 otherwise.
   T[0] and [1] are in lexicographical order.
   .....
def Value3(self,T):
   .....
   Returns 3 if three adjacent tuples,
   otherwise returns what the maximum
   of Value2 applied to all pairs in T.
   .....
def Value(self,k):
   .....
   The value of a board equals how
   many k's are next to each other.
   .....
```

MCS 275 L-39

21 April 2008

Game Trees

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

< ロ > < 母 > < 目 > < 目 > < 日 > < 日 > < 日 > < 0 < 0

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

▲ロト▲母ト▲目ト▲目ト 目 のへの

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

5 possibilities for x, 4 moves for o: 20 leaves

MCS 275 L-39

21 April 2008

Tic Tac To

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

An Example

evaluating the positions

MCS 275 L-39

21 April 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

An Example

first all the leaves

MCS 275 L-39

21 April 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

An Example

looking ahead to compute the next move

MCS 275 L-39

21 April 2008

Tic Tac To

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

▲ロト▲母ト▲目ト▲目ト 目 のへの

Game Trees

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe an example of looking ahead the class BoardTree

Calculating Game Trees

suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

the Class BoardTree

from classboard import *

```
class BoardTree():
    """
    Exports a tree of tic tac toe boards.
    """
    def __init__(self,b):
        """
```

```
Returns a tree with as root the
given board.
"""
self.b = b
self.v = 0
self.c = []
self.best = 0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

```
Calculating Game
Trees
```

String Representations

```
def str (self):
   ....
   Defines the string representation
   of a tree of boards.
   . . .
   s = self.b. str ()
   s = s + ' \ value = %d' \% self.v
                                                        the class BoardTree
                             ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●
```

MCS 275 L-39

21 April 2008

String Representations

```
def str (self):
   . . .
   Defines the string representation
   of a tree of boards.
   . . .
   s = self.b. str ()
   s = s + ' \ value = %d' \% self.v
                                                      the class BoardTree
   if len(self.c) > 0:
       s = s + '\nchildren :\n'
                             ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●
```

MCS 275 L-39

21 April 2008
String Representations

```
def str (self):
   . . .
   Defines the string representation
   of a tree of boards.
   . . .
   s = self.b. str ()
                                                    the class BoardTree
   s = s + ' \ value = %d' \% self.v
   if len(self.c) > 0:
      s = s + ' \ i dren : \ n'
      for i in range(0,len(self.c)):
          s = s + ' n - child %d : n' % i
          s = s + self.c[i]. str ()
   return s
                            ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●
```

MCS 275 L-39

String Representations

```
def str (self):
   . . .
   Defines the string representation
   of a tree of boards.
   . . .
   s = self.b. str ()
   s = s + ' \ value = %d' \% self.v
                                                  the class BoardTree
   if len(self.c) > 0:
      s = s + ' \ i dren : \ n'
      for i in range(0,len(self.c)):
         s = s + ' n - child %d : n' % i
         s = s + self.c[i]. str ()
   return s
def repr (self):
   .....
   Takes the string representation as
   the representation of the tree.
   .....
   return self.__str ()
```

MCS 275 L-39

```
def moves(self,k,n):
   . . .
   Defines the children via all moves
   originating at self.b for pebble k,
   using n stages.
   .....
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

```
def moves(self,k,n):
   . . .
   Defines the children via all moves
   originating at self.b for pebble k,
   using n stages.
   .....
   for i in range(0,3):
      for j in range(0,3):
         if self.b.m[i,j] == 0:
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

```
def moves(self,k,n):
   . . .
   Defines the children via all moves
   originating at self.b for pebble k,
   using n stages.
   .....
   for i in range(0,3):
      for j in range(0,3):
         if self.b.m[i,j] == 0:
            nb = Board()
            nb.copyBoard(self.b.m)
            nt = BoardTree(nb)
            nt.b.m[i,j] = k
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

```
def moves(self,k,n):
   . . .
   Defines the children via all moves
   originating at self.b for pebble k,
   using n stages.
   .....
   for i in range(0,3):
      for j in range(0,3):
         if self.b.m[i,j] == 0:
             nb = Board()
             nb.copyBoard(self.b.m)
            nt = BoardTree(nb)
             nt.b.m[i,j] = k
             if n > 1:
                nk = k \& 2 + 1
                nt.moves(nk,n-1)
             self.c.append(nt)
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

Evaluating the Moves

the base case

The computation starts at the leaves:

```
def values(self,k):
    """
    Assigns values to all the nodes
    in the tree of boards.
    """
    if len(self.c) == 0:
        ck = k % 2 + 1
        self.v = self.b.Value(k) - self.b.Value(ck)
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

Evaluating the Moves continued

```
else:
   for i in range(0,len(self.c)):
       self.c[i].values(k)
   \max = self.c[0].v
   self.best = 0
                                                       the class BoardTree
   if max < 0:
       self.v = max
```

```
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
```

MCS 275 L-39

Evaluating the Moves continued

```
else:
   for i in range(0,len(self.c)):
      self.c[i].values(k)
   \max = self.c[0].v
   self.best = 0
                                                    the class BoardTree
   if max < 0:
      self.v = max
   else:
      for i in range(1,len(self.c)):
          if self.c[i].v < 0:</pre>
             max = self.c[i].v
          if max >= 0 and self.c[i].v > max:
             max = self.c[i].v
             self.best = i
      self.v = max
```

MCS 275 L-39

Game Trees

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead the class BoardTree

Calculating Game Trees suggestions for next best move

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

Calculating Game Trees

running gametree.py

```
$ python gametree.py
give three characters per row
-> either X, O, or a space
give row 1 : X
give row 2 : 0 X
give row 3 : 0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

Calculating Game Trees

running gametree.py

```
$ python gametree.py
give three characters per row
-> either X, O, or a space
give row 1 : X
give row 2 : 0 X
give row 3 : 0
 Χ
0 X
\cap
[[0 \ 1 \ 0]]
 [2 \ 0 \ 1]
 [2 \ 0 \ 0]]
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

Calculating Game Trees

running gametree.py

```
$ python gametree.py
give three characters per row
-> either X, O, or a space
give row 1 : X
give row 2 : 0 X
give row 3 : 0
 Χ
0 X
\cap
[[0 \ 1 \ 0]]
 [2 \ 0 \ 1]
 [2 \ 0 \ 0]]
player ? (1 or 2)
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

he class BoardTree

Calculating Game Trees

suggestions for next best move

continued with the run

```
player ? (1 or 2) 1
 Χ
0 X
Ο
value = -1
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

continued with the run

```
player ? (1 or 2) 1
 Χ
0 X
Ο
value = -1
children :
->child 0 :
XX
ОХ
0
value = 0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

continued with the run

```
player ? (1 or 2) 1
 Χ
0 X
Ο
value = -1
children :
->child 0 :
XX
ОХ
0
value = 0
children :
->child 0 :
XXO
0 X
Ο
value = 0
. . .
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

```
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
```

the end of the run

```
. . .
->child 2 :
 Х
00X
0 X
value = 0
->child 3 :
 Χ
0 X
00X
value = 0
```

0 Х

0

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

the end of the run

```
. . .
->child 2 :
 Х
00X
0 X
value = 0
->child 3 :
 Χ
0 X
00X
value = 0
recommended move :
XX
ΟХ
0
```

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees

suggestions for next best move

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary + Assignments

We considered an example of trees. Assignments:

- 1. Develop a GUI for tic tac toe.
- 2. Use sockets for two players on remote computers.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

3. Consider four in a row.

MCS 275 L-39

21 April 2008

Tic Tac Toe

representing pebbles on a board the class Board the value of a board

A Game Tree for Tic Tac Toe

an example of looking ahead

the class BoardTree

Calculating Game Trees