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Tic tac toe is a game
1. for two players
2. on a square 3-by-3 board
3. each player has 3 pebbles
4. goal is to have pebbles lined up

Playing strategy:
1. look ahead: enumerate future moves
2. evaluate: each board has a value
3. optimize: select move with largest value
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placing pebbles x and o
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using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x
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The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:
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» 1: first pebble x
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Pebbles on a Board

using numpy arrays

The board is a 3-by-3 matrix
— nunpy double arrays are convenient
A board is an integer matrix:

» 0: an empty space

» 1: first pebble x

» 2: second pebble o

Defining a class Boar d:
1. constructor: initialize board
2. string representation
3. parse string into a board
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representing pebbles on a
board

>>> from cl assboard i nport *
>>> b = Board()

>>> b.ni1, 2]
>>> pb. nf 0, O]
>>> b.ni1, 1]
>>> b. nf 2, 2]

NEFEDNPRE
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>>> from cl assboard i nport *
>>> b = Board()

>>> b.n{1,2] =1

>>> b.n0,0] =2

>>> b.n{1,1] =1

>>> b.nf2,2] =2

>>> b

o§o
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Representing Boards

>>> b
O
XX
O
>>> s = str(b)
>>> 5
O \n XX\n O
>>> nb = Board()
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Representing Boards

>>> p
O

XX

O
>>> s = str(b)
>>> S
O \n XXA\n O
>>> nb = Board()
>>> nb. parse(s)
>>> nb
O

XX

O
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# L-39 MCS 275 Mon 21 Apr 2008 : cl assboard. py
# A board of pebbles in atic tac toe gane is

# represented by a 3-by-3 matrix.

# Its string representation uses X and O for

#

#

#

the class Board

the pebbles 1 and 2 respectively.
The nunber of adjacent pebbles on a board
determ nes the val ue of a board.

from nunpy inport *

cl ass Board():
Exports a tic tac toe board.
def __init__(self):

Returns an enpty board.

self.m= zeros((3,3),int)
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Defining the String Representation

def _ str__ (self):

Xis 1, Ois 2,
the rest is blank
s ="
for i in range(0,3):
ifi >0 s=s+"'\n’
for j in range(0,3):
if self.nfi,j] == 1
s =s +'X
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Defining the String Representation

def _ str__ (self):

Xis 1l Ois 2,
the rest is blank

s =7

for i in range(0,3):
ifi >0 s=s+"'\n’
for j in range(0,3):

if self.nfi,j] ==
s =s +'X
el se:
if self.ni,j] ==
s =s+'0
el se:
s =s +" "

return s

MCS 275 L-39
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def _ _repr__ (self):

the class Board

defines the representation of a board

return self. str__ ()

def parse(self,s):

Converts a string into a board.

ind =0
for i in range(0, 3):
for j in range(0, 3):
if s[ind] =='\n": ind =ind + 1
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def _ _repr__ (self):

the class Board

defines the representation of a board

return self. str__ ()

def parse(self,s):

Converts a string into a board.

ind =0
for i in range(0, 3):
for j in range(0, 3):

if s[ind] =='\n": ind =ind + 1
self.mi,j] =0

if s[ind] == "X : self.ni,j] =1
if s[ind] =="0: self.nfi,j] =2

ind =ind + 1
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the value of a board

To compare which move is better,
we need to assign a value to a board.

Value of a board for a pebble
— count the number of pebbles lined up

Formula to evaluate a position:
number of own pebbles lined up
minus number of opponent pebbles lined up
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Functions to Evaluate a Board vCs 275 L-39

21 April 2008

def Value2(self,T):
Returns 1 if the two tuples in T are
not adjacent, returns 2 otherw se.
T[O] and [1] are in |exicographical order.

def Val ue3(self,T):

the value of a board

Returns 3 if three adjacent tuples,
ot herwi se returns what the maxi num
of Value2 applied to all pairs in T.

def Val ue(self, k):
The val ue of a board equal s how
many k’s are next to each other.
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An Example

generating all moves

0 X
(0]
| |
XX XX
0 X 00X
0] (0]
| |
| | | | | |
XX0 XX XX XX OXX
0 X 00X 0 X 0 X
(0] [0} (0] 0] (O]

XX XX XX
0 X 00X 0 X X
0 0 00
5 possibilities for x, 4 moves for o: 20 leaves

(e]e)
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0 X move
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generating all moves

XX0 XX XX
0 X 00X 0
(0] (0] (o]¢}

XX
00X
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generating all moves

X
0 X
0 an example of looking
ead
| |
XX XX
0 X 00X
o 0o
| |
| | | | | |
XX0 XX XX XX oXX XX
0 X 00X 0 X O0X 0 X 00X
0o 0] 00 0o 0o 0o
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X
0 X
0 an example of looking
ahead
| |
XX XX
X 00X
(0] [0}
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X
0 [0} (0] 0] (O 0] (0] 0 00
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generating all moves

XX0 XX XX
0 X 00X 0
(0] (0] (o]¢}
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00X
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|
| | | |
OXX XX XX
0'X 00X 0 X o0
0 0 00" 0
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generating all moves

X
0 X
0 an example of looking
ahead
| |
XX XX
0 X 00X
(0] [0}
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X 0 X
0 [0} (0] 0] (O 0] (0] 0 00 00

5 possibilities for x, 4 moves for o: 20 leaves
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evaluating the positions

X
0 X
0
an example of looking
ahead
| |
XX XX
0" x 00X
0 0
| |
| | | | | | | |
XX0 XX XX_ XX OXX XX XX XX
0'X 00X 0 Xx 0 X 0'X 00X 0 X o0
0 0 0 00 0 0 00" 0

(0]
0 0 0 0
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first all the leaves

X
0 X
0
an example of looking
ahead
| |
XX XX
0" x 00X
0 0
| |
| | | | | | | |
XX0 XX XX_ XX OXX XX XX XX
0'X 00X 0 Xx 0 X 0'X 00X 0 X o0
0 0 0 00 0 0 00" 0

(0]
0 0 0 0 -1 0 0 0
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looking ahead to compute the next move o

X
0 X
[0}
-1 anexdample of looking
|
| |
XX XX
0 X 00X
0 [0}
0 -1
| |
| | | | | | | |
XX0 XX XX XX OXX XX XX XX
0 X 00X 0 X 0 X 0 X 00X 0 X 0
0 [0} 0 0oO0 (0] 0 00 (0]

(0]
0 0 0 0 -1 0 0 0
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the class BoardTree
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fromcl assbhoard i nport *

cl ass BoardTree():

Exports a tree of tic tac toe boards.

def __init__(self,b):

nnn

the class BoardTree

Returns a tree with as root the
gi ven board.

nnn

self.b =D
self.v =
self.c =[]
self.best =0
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def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str__()
s =s + '\nvalue = %d’ %self.v the class BoardTree
if len(self.c) > O:

s =s + '"\'nchildren :\n
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def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str_ ()
s =s + '\nvalue = %' %self.v ihe class Boaiee
if len(self.c) > O:
s =s + '\nchildren :\n’
for i in range(0,len(self.c)):
s =s +’'\n->child % :\n" %i
s =s +self.c[i].__str__ ()

return s
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String Representations
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def _ str__(self):

Defines the string representation
of a tree of boards.

s =self.b.__str_ ()
s =s + '\nvalue = %' %self.v ihe class Boaiee
if len(self.c) > O:
s =s + '\nchildren :\n’
for i in range(0,len(self.c)):
s =s +’'\n->child % :\n" %i
s =s +self.c[i].__str__ ()
return s

def __repr_ (self):

Takes the string representation as
the representation of the tree.

return self. str__ ()
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def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.

the class BoardTree
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def noves(sel f,k, n):

Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==
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def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==
nb = Board()
nb. copyBoard(sel f.b. m
nt = BoardTree(nb)
nt.b.ni,j] =Kk
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def noves(sel f,k, n):
Defines the children via all noves
originating at self.b for pebble Kk,
usi ng n stages.
for i in range(0,3):
for j in range(0, 3):
if self.b.nfi,j] ==
nb = Board()
nb. copyBoard(sel f.b. m
nt = BoardTree(nb)
nt.b.nfi,j] =k
if n>1
nk =k %2 + 1
nt . noves( nk, n-1)
sel f.c.append(nt)
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the base case

The computation starts at the leaves:

def val ues(self,k):

the class BoardTree

Assigns values to all the nodes
in the tree of boards.

if len(self.c) ==
ck = k %2 + 1
self.v = self.b.Value(k) - self.b.Value(ck)
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el se:
for i in range(0,len(self.c)):
self.c[i].val ues(k)
max = self.c[0].v
self.best =0
if max < O:
self.v = max

the class BoardTree
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el se:

for i in range(0,len(self.c)):

self.c[i].val ues(k)
max = self.c[0].v
self.best =0 the class BoardTree
if max < O:

self.v = max
el se:

for i in range(l,len(self.c)):

if self.c[i].v < O:
max = self.c[i].v
if max >= 0 and self.c[i].v > nmax:
max = self.c[i].v
sel f.best =i
self.v = max
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running ganet r ee. py

$ python ganetree. py

give three characters per row

-> either X, O or a space

giverowl : X

giverow2 : OX

give row3 : O stggesios o e best



Calculating Game Trees

running gamet r ee. py

$ python ganetree. py

give three characters per row
-> either X, O or a space
giverowl : X
giverow2 : OX
giverow3 : O

X

O X

O

[[010]

[2 0 1]

[2 0 0]]

MCS 275 L-39

21 April 2008

suggestions for next best
move



Calculating Game Trees MCS 275 L-39

running ganet r ee. py gl 2
$ python ganetree. py
give three characters per row
-> either X, O or a space
giverowl : X
giverow2 : OX
giverow3 : O sugestors o et e
X
O X
O
[[010]
[2 0 1]
[2 0 0]]

player ? (1 or 2)
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player ? (1 or 2) 1
X ;‘-"1”7‘-‘\\” ebbles on a
O X S
O the value of a board
value = -1

suggestions for next best



continued with the run

player ? (1 or 2) 1
X

0O X

@]

value = -1

children :

->child O :
XX

O X

0]

value = 0
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continued with the run

player ? (1 or 2) 1
X

0O X

@]

value = -1

children :

->child O :
XX

O X

0]

value = 0

children :

->child O :
XXO

O X

0]

value = 0
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suggestions for next best



the end of the run

->child 2 :
X
00)¢

O X

val ue
->chi |

o 1l
w o

O X
(004
value = 0

MCS 275 L-39

21 April 2008

suggestions for next best
move



the end of the run

->child 2
X

(00).4

O X

val ue =
->child
X

O X
(00).4
value = 0

0
3

recomrended nove :

XX
O X
O
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Summary + Assignments

We considered an example of trees.
Assignments:

1. Develop a GUI for tic tac toe.

2. Use sockets for two players on remote computers.

3. Consider four in a row.

MCS 275 L-39

21 April 2008

suggestions for next best



