NAME:

Consider \(n \) jobs \(j = 0, 1, \ldots, n - 1 \) to be assigned to \(n \) people \(i = 0, 1, \ldots, n - 1 \).
The matrix \(Q \) with entries \(Q[i, j] \) indicates the qualification of person \(i \) for job \(j \).
The higher \(Q[i, j] \), the better \(i \) is qualified for job \(j \). For example:

\[
Q = \begin{bmatrix}
7 & 4 & 2 & 4 \\
6 & 8 & 5 & 2 \\
4 & 7 & 1 & 3 \\
6 & 5 & 2 & 1
\end{bmatrix}
\]

Assigning person \(i \) to job \(i, i = 0, 1, 2, 3 \), and summing up their qualifications \(Q[i, i] \) gives 17.
An optimal matching assigns every job to exactly one person and maximizes the sum of their qualifications.

Represent a job assignment by a permutation \(P \) of \([0, 1, \ldots, n - 1]\): person \(i \) does job \(P[i] \).

1. Given an \(n \)-by-\(n \) numpy matrix \(Q \) and a job assignment in a list \(P \), define a Python function \texttt{Value} which returns the sum of the qualifications of the job assignment.

2. Write a Python function \texttt{Match} which takes on input an \(n \)-by-\(n \) numpy matrix \(Q \) and additional parameters to control the backtracking. \texttt{Match} returns a tuple \((P, m)\), where \(P \) is the optimal matching and \(m \) its corresponding value.