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The Towers of Hanoi

an ancient mathematical puzzle

Input:
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recursive problem solving

disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

B C A

w
O

: move the disks from the first pile to the

second, obeying the following rules:

1. move one disk at a time,

2. never place a larger disk on a smaller one,
you may use the third pile as buffer.
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1 Move n — 1 disks from Ato C
—— using B as auxiliary pile
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A recursive Algorithm
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Base case: move one disk from A to B.
To move n disks from A to B:

@]

@

recursive problem solving

Move n — 1 disks from Ato C
using B as auxiliary pile

Move n-th disk from A to B
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Base case: move one disk from A to B.

To move n disks from A to B: e R T
1 Move n — 1 disks from Ato C
—— using B as auxiliary pile
A B C
- - Move n-th disk from Ato B
A B C

Move n — 1 disks from Cto B
using A as auxiliary pile
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a recursive Python function

tracing: exponential time
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>>> A = range(1,5)
>>> A
[1, 2, 3, 4]
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In a stack, we remove only the top element (pop),
and add only at the top (push).
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A pile of 4 disks of decreasing size: g ecusve Pyhon fncien

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A pop(0)
1
>>> A

[2, 3, 4]



Lists as Stacks

In a stack, we remove only the top element (pop),

and add only at the top (push).
A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A pop(0)

1
>>> A
[2, 3, 4]

To put an element on top:

>>> Ainsert(0,1)
[1, 2, 3, 4]
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a recursive Python function
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returns the tuple (A B, Q
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def Hanoi (n, A B, O):
nmoves n disks fromA to B, Cis auxiliary =m>m
returns the tuple (A B, Q
if n==1:
# nmove disk fromAto B
B.insert (0, A pop(0))



A recursive Python Function MCS 275 L8

1 February 2008
def Hanoi (n, A B, O):
moves n disks fromAto B, Cis auxiliary =2
returns the tuple (A B, Q
if n==1:
# nmove disk fromAto B
B.insert (0, A pop(0))
el se:
# move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)
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def Hanoi (n, A B, O):
moves n disks fromAto B, Cis auxiliary =2
returns the tuple (A B, Q
if n==1:
# nmove disk fromAto B
B.insert (0, A pop(0))
el se:
# move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)
# move n-th disk fromAto B
B.insert (0, A pop(0))
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def Hanoi (n, A B, O):

arecursive Python function

moves n disks fromAto B, Cis auxiliary
returns the tuple (A B, Q
if n==1:
# nmove disk fromAto B
B.insert (0, A pop(0))
el se:
# move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)
# move n-th disk fromAto B
B.insert (0, A pop(0))
# nove n-1 disks fromCto B, Ais auxiliary
(C, B,A) = Hanoi(n-1,C, B, A
return (A B, O
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at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]

mve 3, n=1: C=[] B=1[1, 2] A=][3 4]
mve 4, n=3: A=[4 C=[3] B=1[1, 2]
mve 5, n=1: B=[2] A=[1, 4] C=[3]
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Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
mve 3, n=1: C=[] B=1[1, 2] A =13, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
mve 5 n=1: B=[2] A=[1, 4] C=[3]
mve 6, n=2: B=[] C=1[2, 3] A=1[1, 4]
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$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
nve 4, n=3: A=[4 C=1[3] B=[1, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
nve 6, n=2: B=[] C=1[2, 3 A=1[1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]
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Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]

mve 3, n=1: C=[] B=1[1, 2] A=][3 4]
mve 4, n=3: A=[4 C=[3] B=1[1, 2]

mve 5, n=1: B=[2] A=[1, 4] C=[3]
mve 6, n=2: B=[] C=1[2 3] A=][1 4]
mve 7, n=1: A=[4 C=1[1, 2, 3] B =[]

mve 8, n=4: A=[] B=[4] C=11, 2, 3]
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Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=[3, 4]
nove 4, n=3: A=[4 C=1[3] B=[1, 2]
nve 5, n=1: B=[2] A=[1, 4] C = [3]
nve 6, n=2: B=[] C=1[2, 3] A=][1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]

nve 8, n=4: A=[] B=1[4] C=[1, 2, 3]
nmve 9, n=1: C=[2, 3] B=1[1, 4 A =[]
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Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=[3, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]

nve 8, n=4: A=[] B=1[4] C=[1, 2, 3]
nmve 9, n=1: C=[2, 3] B=1[1, 4 A =[]
nove 10, n =2 : C=[3] A=[2] B=[1, 4]
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$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
move 1, n =1: A= [2’ 3, 4] C = [1] B = [] (T e e
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, C=102, 3 B=11, 4 A=1]
nove 10, C=1[3 A=1[2] B=1[1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]

5 O
1 n
N -
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$ pyt hon hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B =]

C=]

nove 1, n 1 . A = [2, 3, 4] C = [1] B - [] tracing: exponential time
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]

mve 3, n=1: C=[] B=1[1, 2] A =13, 4]
move 4, n = 3 : A:[4] C:[3] B:[l 2]

mve 5, n=1: B=1[2] A=1[1, 4 C=[3]

mve 6, n=2: B=[] C=1[2, 3] A=11, 4]

mve 7, n=1: A=[4 C=[1 2 3] B=[]

mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, n 1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n 2: C=1[3 A=1[2] B=1]1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]

move 12, n =3 : C=[] B=1[3, 4 A=1[1, 2]
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$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
nove 1, n 1: A= [2, 3, 4] C = [1] B = [] tracing: exponential time
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3

mve 9, n=1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n =2 : C=[3] A=1[2] B=1[1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]
move 12, n=3: C=[] B=1[3, 4 A=1[1, 2]
move 13, n =1 : A=[2] C=[1] B =13, 4]



Tracing the Execution MCS 275 L8
1 February 2008
$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
nove 1, n 1: A=1[2, 3, 4 C=1[1] B =] wacig: exponental e
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, n 1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n 2: C=1[3 A=1[2] B=1]1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]
move 12, n=3: C=[] B=1[3, 4 A=1[1, 2]
move 13, n =1 : A=[2] C=[1] B =13, 4]
move 14, n =2 : A=][] B=1[2, 3, 4 C=1[1]



Tracing the Execution

$ python hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]
nove 8, n=4: A=[] B=[4] C=1[1, 2, 3]
nve 9, n=1: C=1[2, 3] B=[1, 4] A=][]
nove 10, n =2 : C=[3] A=1[2] B=1[1, 4]
move 11, n =1 : B=[4] A=1[1, 2] C=[3]
nove 12, n =3 : C=[] B=1[3, 4 A=[1, 2]
nove 13, n=1: A=[2] C=[1] B =[3, 4]
nove 14, n =2 : A=[] B=1[2, 3, 4 C=][1]

mve 15, n=1: C=[] B=1[1, 2, 3, 4 A=]]
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tracing: exponential time
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nonn
tracing: exponential time

noves n disks fromAto B, Cis auxiliary
k is recursion level, mcounts # noves
wites status of piles after each nove
returns the tuple (A B Cnm



Extra Code for Tracing MCS 275 L-8

. 1 February 2008
recursion level, count #moves

def Hanoi (n, A B, C k,m:

tracing: exponential time

noves n disks fromAto B, Cis auxiliary
k is recursion level, mcounts # noves
wites status of piles after each nove
returns the tuple (A B Cnm

inmai n():
n = input(’dve nunber of disks : ")
A= (A ,range(1,n+l))
B=(CB,[])
cC=0C,[

(A,B,C,m = Hanoi(n, A B,C 0,0)

As the roles of the piles shift, we need to maintain their
names when printing their contents.
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def Hanoi (n, A, B, C k,n:

if n == . tracing: exponential time

# nmove disk fromAto B
m=m+ 1

B[ 1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO
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Extended Function Hanoi
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def Hanoi (n, A, B, C k,n:

if n == . tracing: exponential time

# nmove disk fromAto B
m=m+ 1

B[ 1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

el se:
# nmove n-1 disks fromAto C, Bis auxiliary
(A, C,B,m = Hanoi(n-1,A C B, k+1, m
# nmove n-th disk fromAto B
m=m+1
B[ 1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO



Extended Function Hanoi MCS 275 L-8

1 February 2008

def Hanoi (n, A, B, C k,n:

if n==1: tracing: exponential time

# nmove disk fromAto B
m=m+ 1

B[ 1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

el se:
# nmove n-1 disks fromAto C, Bis auxiliary
(A, C,B,m = Hanoi(n-1,A C B, k+1, m
# nmove n-th disk fromAto B
m=m+1
B[ 1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO
# nmove n-1 disks fromCto B, Ais auxiliary
(CB,AmM = Hanoi(n-1,C B, A k+1,m

return (A B, Cm
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Pile Aisatuple (A[ 0], Al 1] ):
Al 0] is name, Al 1] is list.

tracing: exponential time



Writing the States SR
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Pile Aisatuple (A[ 0], Al 1] ):
Al 0] is name, Al 1] is list.
def wite_piles(s,A B O:
"wites contents of piles, after s"
SA =" %’ % (A 0],A1])
sB ='% %’ % (B[0],B[1])
sC="% =% % (CO0],d1])
print s, sA sB, sC



Writing the States

Pile Aisatuple (A[ 0], Al 1] ):
Al 0] is name, Al 1] is list.

def wite_pi

"writes contents of piles,

SA "Us
sB ' Us
sC="Us
print s,

def write(k,

les(s,A B O:

%' % (A[0],A[1])
%’ % (B[0],B[1])
=% %(d0],d1])
sA, sB, sC

mn,A B O:

"wites contents of piles"

s = k*' "’
s =s + '

move %, n = % :’

wite piles(s, A B, Q

after

MCS 275 L-8

1 February 2008

tracing: exponential time

% (mn)
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Observe: to move n disks, we need

n=1—1move n =2 — 3 moves

n=3—=>7moves n=4—15moves... wacing: exponential time
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Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:

T(1)=1 T(n)=2T(n—1)+1.



Exponential Execution Time MCS 275 L8

1 February 2008

Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:
T(1)=1 T(n)=2T(n—1)+1.
Solving the recurrence relation:

T(n) = 2T(n-1)+1
= 2(2T(n—-2)+1)+1



Exponential Execution Time MCS 275 L8

1 February 2008

Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:
T(1)=1 T(n)=2T(n—1)+1.
Solving the recurrence relation:
T(n) = 2T(n-1)+1
2(2T(n—-2)+1)+1
2T(n—k)+2¢14... 4241

2n71+2n72+____|_2+1
= 21



Recursion versus lteration

The Fibonacci Numbers
a simple recursion

MCS 275 L-8

1 February 2008

recursive problem solving

Python function

ponential time:

a simple recursion

an iterative algorithm

recursion versus iteration
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The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

a simple recursion



The Fibonacci Numbers MCS 275 L-8

1 February 2008
The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

def F| bonaCCI (I"I) : asimple recursion
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The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

def Fi bonacci (n):

returns n-th n-th Fi bonacci number
if n ==
return O
elif n ==
return 1
el se:

return Fi bonacci (n-1) + Fibonacci(n-2)
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F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
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F(1) =1
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F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1

F(0) =0

F(1) =1
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F(1) =1
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F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0
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F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0
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$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1

F(0) =0

F(1) =1
F(5) =5

nunber of calls : 25
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def Fibotrace(n,k,c):
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prints execution trace using control paraneter k
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def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k
nnn asimple recursion
s =k* ' + "F(%) = %n
if n==
print s +°'0
return (0,c)
elif n ==
print s + 1
return (1,c)
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def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k
s =k* ' + "F(%) = %n
if n==
print s +°'0
return (0,c)
elif n ==
print s + 1
return (1,c)
el se:
print s + F(%) + F(%)’ % (n-1,n-2)
(f1,cl) Fi botrace(n-1, k+1, c+1)
(f2,¢c2) = Fibotrace(n-2, k+1, c+1)
return (f1+f2,cl+c2)
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The Fibonacci Numbers

an iterative algorithm
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def F(n):

iterative way for n-th Fi bonacci nunber

H R . an iterative algorithm
if n ==

return O
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def F(n):

iterative way for n-th Fi bonacci nunber

if n==0: TR
return 0
el se:
a=2=>0
b =1
for k in range(2,n+l):
c=a+b
a=m~»os
b =c
return b
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algorithm is used. Its complexity is exponential.
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The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

recursion versus iteration

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:

» Chapter 8 of The Art & Craft of Computing,
in particular: read §8.3 for execution details.
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1. Write a Python function F( n) which returns a list of
the first n Fibonacci numbers.

2. We define the Harmonic numbers H, as H; = 1 and
Hn = Hy_1 + 1/n. Write a recursive function for Hy,.
3. Extend the recursive function for H, (see above) with
a parameter to keep track of the number of function
calls. Write an iterative function for H,,.
4. Write an iterative version for the function
i s_palindrome() of Lecture 6.

5. Design a GUI to show the moves to solve the
problem of the towers of Hanoi.



