Recursion versus Iteration MCS 275 L8

1 February 2008

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 Lecture 8
Programming Tools and File Management
Jan Verschelde, 1 February 2008

Recursion versus Iteration MCS 275 L8

1 February 2008

The Towers of Hanoi
recursive problem solving

MCS 275 L-8

The Towers of Hanoi
. . 1 February 2008
an ancient mathematical puzzle

recursive problem solving

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

MCS 275 L-8

The Towers of Hanoi
. . 1 February 2008
an ancient mathematical puzzle

recursive problem solving

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

A B C

MCS 275 L-8

The Towers of Hanoi
. . 1 February 2008
an ancient mathematical puzzle

recursive problem solving

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

‘ ‘

C

A B C A

(o8]

The Towers of Hanoi

an ancient mathematical puzzle

Input:

MCS 275 L-8

1 February 2008

recursive problem solving

disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

B C A

w
O

: move the disks from the first pile to the

second, obeying the following rules:

1. move one disk at a time,

2. never place a larger disk on a smaller one,
you may use the third pile as buffer.

A recursive Solution MCS 2758

1 February 2008

Assume we know how to move a stack with one disk less.

recursive problem solving

A recursive Solution MCS 275 L8

1 February 2008

Assume we know how to move a stack with one disk less.

recursive problem solving

A B C

A recursive Solution MCS 275 L8

1 February 2008

Assume we know how to move a stack with one disk less.

recursive problem solving

|
]L

A B C A B

@]

A recursive Solution MCS 275 L8

1 February 2008

Assume we know how to move a stack with one disk less.

recursive problem solving

‘

A B C A B

@]

MCS 275 L-8

A recursive Solution

1 February 2008

Assume we know how to move a stack with one disk less.

recursive problem solving

A B C A B

@]

>
(o9)
@]

A recursive Algorithm MCs 275 L8

1 February 2008

Base case: move one disk from A to B.

recursive problem solving

A recursive Algorithm Mes 275 L8

1 February 2008

Base case: move one disk from A to B.
To move n disks from A to B: R

1 Move n — 1 disks from Ato C
—— using B as auxiliary pile

A B C

A recursive Algorithm

MCS 275 L-8

1 February 2008

Base case: move one disk from A to B.
To move n disks from A to B:

@]

@

recursive problem solving

Move n — 1 disks from Ato C
using B as auxiliary pile

Move n-th disk from A to B

A recursive Algorithm MeS 275 -8

1 February 2008

Base case: move one disk from A to B.

To move n disks from A to B: e R T
1 Move n — 1 disks from Ato C
—— using B as auxiliary pile
A B C
- - Move n-th disk from Ato B
A B C

Move n — 1 disks from Cto B
using A as auxiliary pile

>
oy}
@]

Recursion versus lteration

The Towers of Hanoi

a recursive Python function

MCS 275 L-8

1 February 2008

recursive problem solving
a recursive Python function

tracing: exponential time

Lists as Stacks MCS 275 L8

1 February 2008
In a stack, we remove only the top element (pop),
and add only at the top (push).

a recursive Python function

MCS 275 L-8

Lists as Stacks

In a stack, we remove only the top element (pop),
and add only at the top (push).

1 February 2008

a recursive Python function

A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

MCS 275 L-8

Lists as Stacks

In a stack, we remove only the top element (pop),
and add only at the top (push).

1 February 2008

A pile of 4 disks of decreasing size: g ecusve Pyhon fncien

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A pop(0)
1
>>> A

[2, 3, 4]

Lists as Stacks

In a stack, we remove only the top element (pop),

and add only at the top (push).
A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A pop(0)

1
>>> A
[2, 3, 4]

To put an element on top:

>>> Ainsert(0,1)
[1, 2, 3, 4]

MCS 275 L-8

1 February 2008

a recursive Python function

A recursive Python Function MCS 275 L8

1 February 2008
def Hanoi (n, A B, O):

a recursive Python function

moves n disks fromAto B, Cis auxiliary
returns the tuple (A B, Q

A recursive Python Function MCS 275 L8

1 February 2008

def Hanoi (n, A B, O):
nmoves n disks fromA to B, Cis auxiliary =m>m
returns the tuple (A B, Q
if n==1:
nmove disk fromAto B
B.insert (0, A pop(0))

A recursive Python Function MCS 275 L8

1 February 2008
def Hanoi (n, A B, O):
moves n disks fromAto B, Cis auxiliary =2
returns the tuple (A B, Q
if n==1:
nmove disk fromAto B
B.insert (0, A pop(0))
el se:
move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)

A recursive Python Function MCS 275 L8

1 February 2008
def Hanoi (n, A B, O):
moves n disks fromAto B, Cis auxiliary =2
returns the tuple (A B, Q
if n==1:
nmove disk fromAto B
B.insert (0, A pop(0))
el se:
move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)
move n-th disk fromAto B
B.insert (0, A pop(0))

A recursive Python Function MCS 275 L8

1 February 2008
def Hanoi (n, A B, O):

arecursive Python function

moves n disks fromAto B, Cis auxiliary
returns the tuple (A B, Q
if n==1:
nmove disk fromAto B
B.insert (0, A pop(0))
el se:
move n-1 disks fromAto C Bis auxiliary
(A, C B) = Hanoi (n-1, A C B)
move n-th disk fromAto B
B.insert (0, A pop(0))
nove n-1 disks fromCto B, Ais auxiliary
(C, B,A) = Hanoi(n-1,C, B, A
return (A B, O

Recursion versus lteration

The Towers of Hanoi

tracing: exponential time

MCS 275 L-8

1 February 2008

Tracing the Execution MCS 275 L-8
1 February 2008
$ pyt hon hanoi . py

G ve nunber of disks : 4

at start : A=1]1, 2, 3, 4 B=]] C=1]]

tracing: exponential time

Tracing the Execution Hes e

1 February 2008

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1]1, 2, 3, 4 B=]] C=1]] : i
mve 1, n=1: A=1[2, 3, 4 C=1[1] B=7[] e

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1]1, 2, 3, 4 B=]] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
mve 3, n=1: C=[] B=1[1, 2] A =13, 4]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
mve 3, n=1: C=[] B=1[1, 2] A =13, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]

mve 3, n=1: C=[] B=1[1, 2] A=][3 4]
mve 4, n=3: A=[4 C=[3] B=1[1, 2]
mve 5, n=1: B=[2] A=[1, 4] C=[3]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
mve 3, n=1: C=[] B=1[1, 2] A =13, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
mve 5 n=1: B=[2] A=[1, 4] C=[3]
mve 6, n=2: B=[] C=1[2, 3] A=1[1, 4]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
nve 4, n=3: A=[4 C=1[3] B=[1, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
nve 6, n=2: B=[] C=1[2, 3 A=1[1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]

mve 3, n=1: C=[] B=1[1, 2] A=][3 4]
mve 4, n=3: A=[4 C=[3] B=1[1, 2]

mve 5, n=1: B=[2] A=[1, 4] C=[3]
mve 6, n=2: B=[] C=1[2 3] A=][1 4]
mve 7, n=1: A=[4 C=1[1, 2, 3] B =[]

mve 8, n=4: A=[] B=[4] C=11, 2, 3]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=[3, 4]
nove 4, n=3: A=[4 C=1[3] B=[1, 2]
nve 5, n=1: B=[2] A=[1, 4] C = [3]
nve 6, n=2: B=[] C=1[2, 3] A=][1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]

nve 8, n=4: A=[] B=1[4] C=[1, 2, 3]
nmve 9, n=1: C=[2, 3] B=1[1, 4 A =[]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution

$ python hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =[]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nmve 3, n=1: C=[] B=1[1, 2] A=[3, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]

nve 8, n=4: A=[] B=1[4] C=[1, 2, 3]
nmve 9, n=1: C=[2, 3] B=1[1, 4 A =[]
nove 10, n =2 : C=[3] A=[2] B=[1, 4]

MCS 275 L-8

1 February 2008

tracing: exponential time

Tracing the Execution MCS 275 L8
1 February 2008
$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
move 1, n =1: A= [2’ 3, 4] C = [1] B = [] (T e e
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, C=102, 3 B=11, 4 A=1]
nove 10, C=1[3 A=1[2] B=1[1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]

5 O
1 n
N -

Tracing the Execution MCS 275 L8
1 February 2008
$ pyt hon hanoi . py

G ve nunber of disks : 4

at start : A=1[1, 2, 3, 4 B =]

C=]

nove 1, n 1 . A = [2, 3, 4] C = [1] B - [] tracing: exponential time
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]

mve 3, n=1: C=[] B=1[1, 2] A =13, 4]
move 4, n = 3 : A:[4] C:[3] B:[l 2]

mve 5, n=1: B=1[2] A=1[1, 4 C=[3]

mve 6, n=2: B=[] C=1[2, 3] A=11, 4]

mve 7, n=1: A=[4 C=[1 2 3] B=[]

mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, n 1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n 2: C=1[3 A=1[2] B=1]1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]

move 12, n =3 : C=[] B=1[3, 4 A=1[1, 2]

Tracing the Execution MCS 275 L8
1 February 2008
$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
nove 1, n 1: A= [2, 3, 4] C = [1] B = [] tracing: exponential time
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3

mve 9, n=1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n =2 : C=[3] A=1[2] B=1[1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]
move 12, n=3: C=[] B=1[3, 4 A=1[1, 2]
move 13, n =1 : A=[2] C=[1] B =13, 4]

Tracing the Execution MCS 275 L8
1 February 2008
$ pyt hon hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B =[] C=1]]
nove 1, n 1: A=1[2, 3, 4 C=1[1] B =] wacig: exponental e
mve 2, n=2: A=1[3, 4 B=1[2] C=1]1]
mve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
move 4, n = 3 : A:[4] C:[3] B:[l, 2]
mve 5, n=1: B=1[2] A=[1, 4 C=1[3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
move 7, n=1: A=[4 C=1[1, 2, 3] B =]
mve 8, n=4: A=[] B=[4 C=[1, 2 3
nove 9, n 1: C=1[2, 3] B=1[1, 4 A=1]]
move 10, n 2: C=1[3 A=1[2] B=1]1, 4]
move 11, n =1 : B=1[4 A=1][1, 2] C=[3]
move 12, n=3: C=[] B=1[3, 4 A=1[1, 2]
move 13, n =1 : A=[2] C=[1] B =13, 4]
move 14, n =2 : A=][] B=1[2, 3, 4 C=1[1]

Tracing the Execution

$ python hanoi . py
G ve nunber of disks : 4
at start : A=1[1, 2, 3, 4 B=[] C=1]]
mve 1, n=1: A=1[2, 3, 4 C=1[1] B =]
mve 2, n=2: A=1[3, 4 B=1[2] C=[1]
nve 3, n=1: C=[] B=1[1, 2] A=1[3, 4]
mve 4, n =3 : A=1[4 C=1[3] B=11, 2]
nmve 5, n=1: B=[2] A=1[1, 4] C = [3]
mve 6, n=2: B=[] C=1[2, 3] A=1]1, 4]
mve 7, n=1: A=1[4 C=1[1, 2, 3] B=]]
nove 8, n=4: A=[] B=[4] C=1[1, 2, 3]
nve 9, n=1: C=1[2, 3] B=[1, 4] A=][]
nove 10, n =2 : C=[3] A=1[2] B=1[1, 4]
move 11, n =1 : B=[4] A=1[1, 2] C=[3]
nove 12, n =3 : C=[] B=1[3, 4 A=[1, 2]
nove 13, n=1: A=[2] C=[1] B =[3, 4]
nove 14, n =2 : A=[] B=1[2, 3, 4 C=][1]

mve 15, n=1: C=[] B=1[1, 2, 3, 4 A=]]

MCS 275 L-8

1 February 2008

tracing: exponential time

MCS 275 L-8

Extra Code for Tracing

. 1 February 2008
recursion level, count #moves

def Hanoi (n, A B, C k,m:

nonn
tracing: exponential time

noves n disks fromAto B, Cis auxiliary
k is recursion level, mcounts # noves
wites status of piles after each nove
returns the tuple (A B Cnm

Extra Code for Tracing MCS 275 L-8

. 1 February 2008
recursion level, count #moves

def Hanoi (n, A B, C k,m:

tracing: exponential time

noves n disks fromAto B, Cis auxiliary
k is recursion level, mcounts # noves
wites status of piles after each nove
returns the tuple (A B Cnm

inmai n():
n = input(’dve nunber of disks : ")
A= (A ,range(1,n+l))
B=(CB,[])
cC=0C,[

(A,B,C,m = Hanoi(n, A B,C 0,0)

As the roles of the piles shift, we need to maintain their
names when printing their contents.

MCS 275 L-8

Extended Function Hanoi

1 February 2008

def Hanoi (n, A, B, C k,n:

if n == . tracing: exponential time

nmove disk fromAto B
m=m+ 1

B[1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

MCS 275 L-8

Extended Function Hanoi

1 February 2008

def Hanoi (n, A, B, C k,n:

if n == . tracing: exponential time

nmove disk fromAto B
m=m+ 1

B[1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

el se:
nmove n-1 disks fromAto C, Bis auxiliary
(A, C,B,m = Hanoi(n-1,A C B, k+1, m
nmove n-th disk fromAto B
m=m+1
B[1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

Extended Function Hanoi MCS 275 L-8

1 February 2008

def Hanoi (n, A, B, C k,n:

if n==1: tracing: exponential time

nmove disk fromAto B
m=m+ 1

B[1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO

el se:
nmove n-1 disks fromAto C, Bis auxiliary
(A, C,B,m = Hanoi(n-1,A C B, k+1, m
nmove n-th disk fromAto B
m=m+1
B[1] .insert (0, Al 1]. pop(0))
wite(k,mn, A B, QO
nmove n-1 disks fromCto B, Ais auxiliary
(CB,AmM = Hanoi(n-1,C B, A k+1,m

return (A B, Cm

ertlng the States MCS 275 L-8

1 February 2008

Pile Aisatuple (A[0], Al 1]):
Al 0] is name, Al 1] is list.

tracing: exponential time

Writing the States SR
1 February 2008
Pile Aisatuple (A[0], Al 1]):
Al 0] is name, Al 1] is list.
def wite_piles(s,A B O:
"wites contents of piles, after s"
SA =" %’ % (A 0],A1])
sB ='% %’ % (B[0],B[1])
sC="% =% % (CO0],d1])
print s, sA sB, sC

Writing the States

Pile Aisatuple (A[0], Al 1]):
Al 0] is name, Al 1] is list.

def wite_pi

"writes contents of piles,

SA "Us
sB ' Us
sC="Us
print s,

def write(k,

les(s,A B O:

%' % (A[0],A[1])
%’ % (B[0],B[1])
=% %(d0],d1])
sA, sB, sC

mn,A B O:

"wites contents of piles"

s = k*' "’
s =s + '

move %, n = % :’

wite piles(s, A B, Q

after

MCS 275 L-8

1 February 2008

tracing: exponential time

% (mn)

Exponential Execution Time Hes e

1 February 2008
Observe: to move n disks, we need

n=1—1move n =2 — 3 moves

n=3—=>7moves n=4—15moves... wacing: exponential time

Exponential Execution Time MCS 275 L8

1 February 2008

Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:

T(1)=1 T(n)=2T(n—1)+1.

Exponential Execution Time MCS 275 L8

1 February 2008

Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:
T(1)=1 T(n)=2T(n—1)+1.
Solving the recurrence relation:

T(n) = 2T(n-1)+1
= 2(2T(n—-2)+1)+1

Exponential Execution Time MCS 275 L8

1 February 2008

Observe: to move n disks, we need
n=1—1move n =2 — 3 moves
n =3 — 7 moves n=4— 15moves... wacing: exponential time

Let T (n) count number of moves for n disks:
T(1)=1 T(n)=2T(n—1)+1.
Solving the recurrence relation:
T(n) = 2T(n-1)+1
2(2T(n—-2)+1)+1
2T(n—k)+2¢14... 4241

2n71+2n72+____|_2+1
= 21

Recursion versus lteration

The Fibonacci Numbers
a simple recursion

MCS 275 L-8

1 February 2008

recursive problem solving

Python function

ponential time:

a simple recursion

an iterative algorithm

recursion versus iteration

The Fibonacci Numbers MCS 275 L8

1 February 2008
The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

a simple recursion

The Fibonacci Numbers MCS 275 L-8

1 February 2008
The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

def F| bonaCCI (I"I) : asimple recursion

returns n-th n-th Fi bonacci nunber

if n ==
return O

elif n ==
return 1

The Fibonacci Numbers

The n-th Fibonacci number F, is defined as
Fo=0,Fi=1, n>1:Fy=Fy1+Fn_o.

def Fi bonacci (n):

returns n-th n-th Fi bonacci number
if n ==
return O
elif n ==
return 1
el se:

return Fi bonacci (n-1) + Fibonacci(n-2)

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5) e
1 February 2008
$ pyt hon fibonacci . py

Gven: 5

F(5) = F(4) + F(3)

a simple recursion

Computing Fi bonacci (5) ves 275 g
1 February 2008
$ pyt hon fibonacci . py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)

a simple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)

MCS 275 L-8

1 February 2008

a simple recursion

Computing Fi bonacci (5) ves zis L
1 February 2008
$ python fibonacci. py
Gven: 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)

F(3) = F(2) + F(1)

F(2) = F(1) + F(0)

Computing Fi bonacci (5) ves zis L
1 February 2008
$ python fibonacci. py
Gven: 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)

F(3) = F(2) + F(1)

F(2) = F(1) + F(0)

F(1) =1

Computing Fi bonacci (5) ves zis L
1 February 2008
$ python fibonacci. py
Gven: 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

Computing Fi bonacci (5) SR
1 February 2008
$ python fibonacci. py
Gven: 5
F(5) = F(4) + F(3)

F(4) = F(3) + F(2)

F(3) = F(2) + F(1)

F(2) = F(1) + F(0) asimple recursion
F(1) =1
F(0) =0

F(1) =1

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) = 0
F(1) =1

F(2) = F(1) + F(0)

MCS 275 L-8

1 February 2008

a simple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) = 0
F(1) =1

F(2) = F(1) + F(0)
F(1) =1

MCS 275 L-8

1 February 2008

a simple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1

F(0) =0

F(1) =1
F(2) = F(1) + F(0)
F(1) =1

F(0) =0

MCS 275 L-8

1 February 2008

a simple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F0)

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) =1

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) 1
F(0) 0

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) =1
F(0) =0
F(1) =1

MCS 275 L-8

1 February 2008

asimple recursion

Computing Fi bonacci (5)

$ python fibonacci. py

Gven: 5

F(5) = F(4) + F(3)

F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1
F(0) =0
F(1) =1
F(2) = F(1) + F(0)
F(1) =1
F(0) =0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)

F(1) =1

F(0) =0

F(1) =1
F(5) =5

nunber of calls : 25

MCS 275 L-8

1 February 2008

asimple recursion

MCS 275 L-8

Tracing the Execution

1 February 2008

def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k

nnn asimple recursion

s =k '+ F(ud) = %n

Tracing the Execution MCS 275 L8

1 February 2008

def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k
nnn asimple recursion
s =k* ' + "F(%) = %n
if n==
print s +°'0
return (0,c)

Tracing the Execution MCS 275 L8

1 February 2008

def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k
nnn asimple recursion
s =k* ' + "F(%) = %n
if n==
print s +°'0
return (0,c)
elif n ==
print s + 1
return (1,c)

MCS 275 L-8

Tracing the Execution

1 February 2008

def Fibotrace(n,k,c):
returns (f,c) f is the n-th Fibonacci nunber
and c¢ counts the nunmber of function calls
prints execution trace using control paraneter k
s =k* ' + "F(%) = %n
if n==
print s +°'0
return (0,c)
elif n ==
print s + 1
return (1,c)
el se:
print s + F(%) + F(%)’ % (n-1,n-2)
(f1,cl) Fi botrace(n-1, k+1, c+1)
(f2,¢c2) = Fibotrace(n-2, k+1, c+1)
return (f1+f2,cl+c2)

Recursion versus Iteration MCS 275 L8

1 February 2008

The Fibonacci Numbers

an iterative algorithm

Fibonacci with an iterative Algorithm s 275 L8

1 February 2008

def F(n):

iterative way for n-th Fi bonacci nunber

H R . an iterative algorithm
if n ==

return O

Fibonacci with an iterative Algorithm s 275 L8

1 February 2008

def F(n):

iterative way for n-th Fi bonacci nunber

if n==0: TR
return 0
el se:
a=2=>0
b =1
for k in range(2,n+l):
c=a+b
a=m~»os
b =c
return b

Recursion versus lteration

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

recursion versus iteration

Exponential Complexity and Cost mcs 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

Exponential Complexity and Cost mcs 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

recursion versus iteration

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

recursion versus iteration

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Exponential Complexity and Cost MCS 275 L8

1 February 2008

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

recursion versus iteration

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:

» Chapter 8 of The Art & Craft of Computing,
in particular: read §8.3 for execution details.

Exercises MCS 275 L8

1 February 2008

1. Write a Python function F(n) which returns a list of
the first n Fibonacci numbers.

2. We define the Harmonic numbers H, as H; = 1 and
Hn = Hy_1 + 1/n. Write a recursive function for Hy,.
3. Extend the recursive function for H, (see above) with
a parameter to keep track of the number of function
calls. Write an iterative function for H,,.
4. Write an iterative version for the function
i s_palindrome() of Lecture 6.

5. Design a GUI to show the moves to solve the
problem of the towers of Hanoi.

