
MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 Lecture 8
Programming Tools and File Management

Jan Verschelde, 1 February 2008

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Towers of Hanoi
an ancient mathematical puzzle

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

A B C

�

A B C

Task: move the disks from the first pile to the
second, obeying the following rules:
1. move one disk at a time,
2. never place a larger disk on a smaller one,
you may use the third pile as buffer.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Towers of Hanoi
an ancient mathematical puzzle

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

A B C

�

A B C

Task: move the disks from the first pile to the
second, obeying the following rules:
1. move one disk at a time,
2. never place a larger disk on a smaller one,
you may use the third pile as buffer.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Towers of Hanoi
an ancient mathematical puzzle

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

A B C

�

A B C

Task: move the disks from the first pile to the
second, obeying the following rules:
1. move one disk at a time,
2. never place a larger disk on a smaller one,
you may use the third pile as buffer.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Towers of Hanoi
an ancient mathematical puzzle

Input: disks on a pile, all of varying size,
no larger disk sits above a smaller disk,
and two other empty piles.

A B C

�

A B C

Task: move the disks from the first pile to the
second, obeying the following rules:
1. move one disk at a time,
2. never place a larger disk on a smaller one,
you may use the third pile as buffer.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Solution

Assume we know how to move a stack with one disk less.

A B C

�

A B C

�

A B C

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Solution

Assume we know how to move a stack with one disk less.

A B C

�

A B C

�

A B C

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Solution

Assume we know how to move a stack with one disk less.

A B C

�

A B C

�

A B C

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Solution

Assume we know how to move a stack with one disk less.

A B C

�

A B C

�

A B C

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Solution

Assume we know how to move a stack with one disk less.

A B C

�

A B C

�

A B C

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Algorithm

Base case: move one disk from A to B.
To move n disks from A to B:

Move n � 1 disks from A to C
using B as auxiliary pile

�

A B C

Move n-th disk from A to B�

A B C

Move n � 1 disks from C to B
using A as auxiliary pile

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Algorithm

Base case: move one disk from A to B.
To move n disks from A to B:

Move n � 1 disks from A to C
using B as auxiliary pile

�

A B C

Move n-th disk from A to B�

A B C

Move n � 1 disks from C to B
using A as auxiliary pile

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Algorithm

Base case: move one disk from A to B.
To move n disks from A to B:

Move n � 1 disks from A to C
using B as auxiliary pile

�

A B C

Move n-th disk from A to B�

A B C

Move n � 1 disks from C to B
using A as auxiliary pile

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Algorithm

Base case: move one disk from A to B.
To move n disks from A to B:

Move n � 1 disks from A to C
using B as auxiliary pile

�

A B C

Move n-th disk from A to B�

A B C

Move n � 1 disks from C to B
using A as auxiliary pile

�

A B C

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Lists as Stacks
In a stack, we remove only the top element (pop),
and add only at the top (push).

A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A.pop(0)
1
>>> A
[2, 3, 4]

To put an element on top:

>>> A.insert(0,1)
[1, 2, 3, 4]

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Lists as Stacks
In a stack, we remove only the top element (pop),
and add only at the top (push).

A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A.pop(0)
1
>>> A
[2, 3, 4]

To put an element on top:

>>> A.insert(0,1)
[1, 2, 3, 4]

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Lists as Stacks
In a stack, we remove only the top element (pop),
and add only at the top (push).

A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A.pop(0)
1
>>> A
[2, 3, 4]

To put an element on top:

>>> A.insert(0,1)
[1, 2, 3, 4]

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Lists as Stacks
In a stack, we remove only the top element (pop),
and add only at the top (push).

A pile of 4 disks of decreasing size:

>>> A = range(1,5)
>>> A
[1, 2, 3, 4]

To remove the top element:

>>> A.pop(0)
1
>>> A
[2, 3, 4]

To put an element on top:

>>> A.insert(0,1)
[1, 2, 3, 4]

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Python Function

def Hanoi(n,A,B,C):
"""
moves n disks from A to B, C is auxiliary
returns the tuple (A,B,C)
"""

if n == 1:
move disk from A to B
B.insert(0,A.pop(0))

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B) = Hanoi(n-1,A,C,B)

move n-th disk from A to B
B.insert(0,A.pop(0))

move n-1 disks from C to B, A is auxiliary
(C,B,A) = Hanoi(n-1,C,B,A)

return (A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Python Function

def Hanoi(n,A,B,C):
"""
moves n disks from A to B, C is auxiliary
returns the tuple (A,B,C)
"""

if n == 1:
move disk from A to B
B.insert(0,A.pop(0))

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B) = Hanoi(n-1,A,C,B)

move n-th disk from A to B
B.insert(0,A.pop(0))

move n-1 disks from C to B, A is auxiliary
(C,B,A) = Hanoi(n-1,C,B,A)

return (A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Python Function

def Hanoi(n,A,B,C):
"""
moves n disks from A to B, C is auxiliary
returns the tuple (A,B,C)
"""

if n == 1:
move disk from A to B
B.insert(0,A.pop(0))

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B) = Hanoi(n-1,A,C,B)

move n-th disk from A to B
B.insert(0,A.pop(0))

move n-1 disks from C to B, A is auxiliary
(C,B,A) = Hanoi(n-1,C,B,A)

return (A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Python Function

def Hanoi(n,A,B,C):
"""
moves n disks from A to B, C is auxiliary
returns the tuple (A,B,C)
"""

if n == 1:
move disk from A to B
B.insert(0,A.pop(0))

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B) = Hanoi(n-1,A,C,B)

move n-th disk from A to B
B.insert(0,A.pop(0))

move n-1 disks from C to B, A is auxiliary
(C,B,A) = Hanoi(n-1,C,B,A)

return (A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

A recursive Python Function

def Hanoi(n,A,B,C):
"""
moves n disks from A to B, C is auxiliary
returns the tuple (A,B,C)
"""

if n == 1:
move disk from A to B
B.insert(0,A.pop(0))

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B) = Hanoi(n-1,A,C,B)

move n-th disk from A to B
B.insert(0,A.pop(0))

move n-1 disks from C to B, A is auxiliary
(C,B,A) = Hanoi(n-1,C,B,A)

return (A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

$ python hanoi.py
Give number of disks : 4
at start : A = [1, 2, 3, 4] B = [] C = []

move 1, n = 1 : A = [2, 3, 4] C = [1] B = []
move 2, n = 2 : A = [3, 4] B = [2] C = [1]
move 3, n = 1 : C = [] B = [1, 2] A = [3, 4]

move 4, n = 3 : A = [4] C = [3] B = [1, 2]
move 5, n = 1 : B = [2] A = [1, 4] C = [3]

move 6, n = 2 : B = [] C = [2, 3] A = [1, 4]
move 7, n = 1 : A = [4] C = [1, 2, 3] B = []

move 8, n = 4 : A = [] B = [4] C = [1, 2, 3]
move 9, n = 1 : C = [2, 3] B = [1, 4] A = []

move 10, n = 2 : C = [3] A = [2] B = [1, 4]
move 11, n = 1 : B = [4] A = [1, 2] C = [3]

move 12, n = 3 : C = [] B = [3, 4] A = [1, 2]
move 13, n = 1 : A = [2] C = [1] B = [3, 4]

move 14, n = 2 : A = [] B = [2, 3, 4] C = [1]
move 15, n = 1 : C = [] B = [1, 2, 3, 4] A = []

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Extra Code for Tracing
recursion level, count #moves

def Hanoi(n,A,B,C,k,m):
"""
moves n disks from A to B, C is auxiliary
k is recursion level, m counts # moves
writes status of piles after each move
returns the tuple (A,B,C,m)
"""

in main():

n = input(’Give number of disks : ’)
A = (’A’,range(1,n+1))
B = (’B’,[])
C = (’C’,[])
(A,B,C,m) = Hanoi(n,A,B,C,0,0)

As the roles of the piles shift, we need to maintain their
names when printing their contents.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Extra Code for Tracing
recursion level, count #moves

def Hanoi(n,A,B,C,k,m):
"""
moves n disks from A to B, C is auxiliary
k is recursion level, m counts # moves
writes status of piles after each move
returns the tuple (A,B,C,m)
"""

in main():

n = input(’Give number of disks : ’)
A = (’A’,range(1,n+1))
B = (’B’,[])
C = (’C’,[])
(A,B,C,m) = Hanoi(n,A,B,C,0,0)

As the roles of the piles shift, we need to maintain their
names when printing their contents.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Extended Function Hanoi

def Hanoi(n,A,B,C,k,m):
"..."
if n == 1:

move disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B,m) = Hanoi(n-1,A,C,B,k+1,m)
move n-th disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)
move n-1 disks from C to B, A is auxiliary
(C,B,A,m) = Hanoi(n-1,C,B,A,k+1,m)

return (A,B,C,m)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Extended Function Hanoi

def Hanoi(n,A,B,C,k,m):
"..."
if n == 1:

move disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B,m) = Hanoi(n-1,A,C,B,k+1,m)
move n-th disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)
move n-1 disks from C to B, A is auxiliary
(C,B,A,m) = Hanoi(n-1,C,B,A,k+1,m)

return (A,B,C,m)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Extended Function Hanoi

def Hanoi(n,A,B,C,k,m):
"..."
if n == 1:

move disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)

else:
move n-1 disks from A to C, B is auxiliary
(A,C,B,m) = Hanoi(n-1,A,C,B,k+1,m)
move n-th disk from A to B
m = m + 1
B[1].insert(0,A[1].pop(0))
write(k,m,n,A,B,C)
move n-1 disks from C to B, A is auxiliary
(C,B,A,m) = Hanoi(n-1,C,B,A,k+1,m)

return (A,B,C,m)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Writing the States

Pile A is a tuple (A[0],A[1]):
A[0] is name, A[1] is list.

def write_piles(s,A,B,C):
"writes contents of piles, after s"
sA = ’%s = %s’ % (A[0],A[1])
sB = ’%s = %s’ % (B[0],B[1])
sC = ’%s = %s’ % (C[0],C[1])
print s, sA, sB, sC

def write(k,m,n,A,B,C):
"writes contents of piles"
s = k*’ ’
s = s + ’move %d, n = %d :’ % (m,n)
write_piles(s,A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Writing the States

Pile A is a tuple (A[0],A[1]):
A[0] is name, A[1] is list.

def write_piles(s,A,B,C):
"writes contents of piles, after s"
sA = ’%s = %s’ % (A[0],A[1])
sB = ’%s = %s’ % (B[0],B[1])
sC = ’%s = %s’ % (C[0],C[1])
print s, sA, sB, sC

def write(k,m,n,A,B,C):
"writes contents of piles"
s = k*’ ’
s = s + ’move %d, n = %d :’ % (m,n)
write_piles(s,A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Writing the States

Pile A is a tuple (A[0],A[1]):
A[0] is name, A[1] is list.

def write_piles(s,A,B,C):
"writes contents of piles, after s"
sA = ’%s = %s’ % (A[0],A[1])
sB = ’%s = %s’ % (B[0],B[1])
sC = ’%s = %s’ % (C[0],C[1])
print s, sA, sB, sC

def write(k,m,n,A,B,C):
"writes contents of piles"
s = k*’ ’
s = s + ’move %d, n = %d :’ % (m,n)
write_piles(s,A,B,C)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Execution Time

Observe: to move n disks, we need
n � 1 � 1 move n � 2 � 3 moves
n � 3 � 7 moves n � 4 � 15 moves �����
Let T

�
n � count number of moves for n disks:

T
�
1 � � 1 T

�
n � � 2T

�
n � 1 ��� 1 �

Solving the recurrence relation:

T
�
n � � 2T

�
n � 1 ��� 1

� 2
�
2T

�
n � 2 ��� 1 ��� 1

� 2kT
�
n � k ��� 2k 	 1 ��
�
�
�� 2 � 1

� 2n 	 1 � 2n 	 2 ��
�
�
�� 2 � 1
� 2n

� 1

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Execution Time

Observe: to move n disks, we need
n � 1 � 1 move n � 2 � 3 moves
n � 3 � 7 moves n � 4 � 15 moves �����
Let T

�
n � count number of moves for n disks:

T
�
1 � � 1 T

�
n � � 2T

�
n � 1 ��� 1 �

Solving the recurrence relation:

T
�
n � � 2T

�
n � 1 ��� 1

� 2
�
2T

�
n � 2 ��� 1 ��� 1

� 2kT
�
n � k ��� 2k 	 1 ��
�
�
�� 2 � 1

� 2n 	 1 � 2n 	 2 ��
�
�
�� 2 � 1
� 2n

� 1

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Execution Time

Observe: to move n disks, we need
n � 1 � 1 move n � 2 � 3 moves
n � 3 � 7 moves n � 4 � 15 moves �����
Let T

�
n � count number of moves for n disks:

T
�
1 � � 1 T

�
n � � 2T

�
n � 1 ��� 1 �

Solving the recurrence relation:

T
�
n � � 2T

�
n � 1 ��� 1

� 2
�
2T

�
n � 2 ��� 1 ��� 1

� 2kT
�
n � k ��� 2k 	 1 ��
�
�
�� 2 � 1

� 2n 	 1 � 2n 	 2 ��
�
�
�� 2 � 1
� 2n

� 1

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Execution Time

Observe: to move n disks, we need
n � 1 � 1 move n � 2 � 3 moves
n � 3 � 7 moves n � 4 � 15 moves �����
Let T

�
n � count number of moves for n disks:

T
�
1 � � 1 T

�
n � � 2T

�
n � 1 ��� 1 �

Solving the recurrence relation:

T
�
n � � 2T

�
n � 1 ��� 1

� 2
�
2T

�
n � 2 ��� 1 ��� 1

� 2kT
�
n � k ��� 2k 	 1 ��
�
�
�� 2 � 1

� 2n 	 1 � 2n 	 2 ��
�
�
�� 2 � 1
� 2n

� 1

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Fibonacci Numbers

The n-th Fibonacci number Fn is defined as

F0
� 0 � F1

� 1 � n � 1 � Fn
� Fn 	 1 � Fn 	 2 �

def Fibonacci(n):
"""
returns n-th n-th Fibonacci number
"""
if n == 0:

return 0
elif n == 1:

return 1

else:
return Fibonacci(n-1) + Fibonacci(n-2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Fibonacci Numbers

The n-th Fibonacci number Fn is defined as

F0
� 0 � F1

� 1 � n � 1 � Fn
� Fn 	 1 � Fn 	 2 �

def Fibonacci(n):
"""
returns n-th n-th Fibonacci number
"""
if n == 0:

return 0
elif n == 1:

return 1

else:
return Fibonacci(n-1) + Fibonacci(n-2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

The Fibonacci Numbers

The n-th Fibonacci number Fn is defined as

F0
� 0 � F1

� 1 � n � 1 � Fn
� Fn 	 1 � Fn 	 2 �

def Fibonacci(n):
"""
returns n-th n-th Fibonacci number
"""
if n == 0:

return 0
elif n == 1:

return 1

else:
return Fibonacci(n-1) + Fibonacci(n-2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Computing Fibonacci(5)

$ python fibonacci.py
Give n : 5
F(5) = F(4) + F(3)
F(4) = F(3) + F(2)
F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0
F(1) = 1

F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(3) = F(2) + F(1)
F(2) = F(1) + F(0)
F(1) = 1
F(0) = 0

F(1) = 1
F(5) = 5
number of calls : 25

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

def Fibotrace(n,k,c):
"""
returns (f,c) f is the n-th Fibonacci number
and c counts the number of function calls
prints execution trace using control parameter k
"""
s = k*’ ’ + ’F(%d) = ’ % n

if n == 0:
print s + ’0’
return (0,c)

elif n == 1:
print s + ’1’
return (1,c)

else:
print s + ’F(%d) + F(%d)’ % (n-1,n-2)
(f1,c1) = Fibotrace(n-1,k+1,c+1)
(f2,c2) = Fibotrace(n-2,k+1,c+1)
return (f1+f2,c1+c2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

def Fibotrace(n,k,c):
"""
returns (f,c) f is the n-th Fibonacci number
and c counts the number of function calls
prints execution trace using control parameter k
"""
s = k*’ ’ + ’F(%d) = ’ % n

if n == 0:
print s + ’0’
return (0,c)

elif n == 1:
print s + ’1’
return (1,c)

else:
print s + ’F(%d) + F(%d)’ % (n-1,n-2)
(f1,c1) = Fibotrace(n-1,k+1,c+1)
(f2,c2) = Fibotrace(n-2,k+1,c+1)
return (f1+f2,c1+c2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

def Fibotrace(n,k,c):
"""
returns (f,c) f is the n-th Fibonacci number
and c counts the number of function calls
prints execution trace using control parameter k
"""
s = k*’ ’ + ’F(%d) = ’ % n

if n == 0:
print s + ’0’
return (0,c)

elif n == 1:
print s + ’1’
return (1,c)

else:
print s + ’F(%d) + F(%d)’ % (n-1,n-2)
(f1,c1) = Fibotrace(n-1,k+1,c+1)
(f2,c2) = Fibotrace(n-2,k+1,c+1)
return (f1+f2,c1+c2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Tracing the Execution

def Fibotrace(n,k,c):
"""
returns (f,c) f is the n-th Fibonacci number
and c counts the number of function calls
prints execution trace using control parameter k
"""
s = k*’ ’ + ’F(%d) = ’ % n

if n == 0:
print s + ’0’
return (0,c)

elif n == 1:
print s + ’1’
return (1,c)

else:
print s + ’F(%d) + F(%d)’ % (n-1,n-2)
(f1,c1) = Fibotrace(n-1,k+1,c+1)
(f2,c2) = Fibotrace(n-2,k+1,c+1)
return (f1+f2,c1+c2)

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Fibonacci with an iterative Algorithm

def F(n):
"""
iterative way for n-th Fibonacci number
"""
if n == 0:

return 0

else:
a = 0
b = 1
for k in range(2,n+1):

c = a + b
a = b
b = c

return b

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Fibonacci with an iterative Algorithm

def F(n):
"""
iterative way for n-th Fibonacci number
"""
if n == 0:

return 0

else:
a = 0
b = 1
for k in range(2,n+1):

c = a + b
a = b
b = c

return b

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Recursion versus Iteration

The Towers of Hanoi
recursive problem solving
a recursive Python function
tracing: exponential time

The Fibonacci Numbers
a simple recursion
an iterative algorithm

Exponential Complexity and Cost
recursion versus iteration

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exponential Complexity and Cost

The towers of Hanoi problem is hard no matter what
algorithm is used. Its complexity is exponential.

The first recursive computation of the Fibonacci numbers
took longs, its cost is exponential.

If the number of function calls exceeds the size of the
results, we better use an iterative formulation.

Using a stack to store the function calls, every recursive
program can be transformed into an iterative one.

Background material for this lecture:
� Chapter 8 of The Art & Craft of Computing,

in particular: read §8.3 for execution details.

MCS 275 L-8

1 February 2008

The Towers of
Hanoi
recursive problem solving

a recursive Python function

tracing: exponential time

The Fibonacci
Numbers
a simple recursion

an iterative algorithm

Exponential
Complexity and
Cost
recursion versus iteration

Exercises

1. Write a Python function F(n) which returns a list of
the first n Fibonacci numbers.

2. We define the Harmonic numbers Hn as H1
� 1 and

Hn
� Hn 	 1 � 1

�
n. Write a recursive function for Hn.

3. Extend the recursive function for Hn (see above) with
a parameter to keep track of the number of function
calls. Write an iterative function for Hn.

4. Write an iterative version for the function
is_palindrome() of Lecture 6.

5. Design a GUI to show the moves to solve the
problem of the towers of Hanoi.

