
MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 Lecture 31
Programming Tools and File Management

Jan Verschelde, 2 April 2008

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients
alternatives to web browsers

Recall testing ourwebserver.py last lecture.
� the client is a browser, e.g.: Netscape, Firefox, ...

But we can browse the web using scripts.

Why do we want to do this?

1. more efficient: no overhead from GUI

2. in control: request only what we need
� update most recent information

3. crawl the web: request recursively
� operate like a search engine

How?
use urllib and urlparse modules

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Copying a Web Page to a File
using the urllib module

Syntax:
urllib.retrieve(< URL >, < file name >)

Example:

from urllib import retrieve
retrieve(’http://www.python.org’,’wpt.html’)

Opening a web page with urllib.urlopen:

from urllib import urlopen
< object like file > = urlopen(< URL >)

data = < object like file >.read(< size >)

< object like file >.close()

� process web pages like we handle files

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Copying a Web Page to a File
using the urllib module

Syntax:
urllib.retrieve(< URL >, < file name >)

Example:

from urllib import retrieve
retrieve(’http://www.python.org’,’wpt.html’)

Opening a web page with urllib.urlopen:

from urllib import urlopen
< object like file > = urlopen(< URL >)

data = < object like file >.read(< size >)

< object like file >.close()

� process web pages like we handle files

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Copying a Web Page to a File
using the urllib module

Syntax:
urllib.retrieve(< URL >, < file name >)

Example:

from urllib import retrieve
retrieve(’http://www.python.org’,’wpt.html’)

Opening a web page with urllib.urlopen:

from urllib import urlopen
< object like file > = urlopen(< URL >)

data = < object like file >.read(< size >)

< object like file >.close()

� process web pages like we handle files

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Copying a Web Page to a File
using the urllib module

Syntax:
urllib.retrieve(< URL >, < file name >)

Example:

from urllib import retrieve
retrieve(’http://www.python.org’,’wpt.html’)

Opening a web page with urllib.urlopen:

from urllib import urlopen
< object like file > = urlopen(< URL >)

data = < object like file >.read(< size >)

< object like file >.close()

� process web pages like we handle files

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Copying a Web Page to a File
using the urllib module

Syntax:
urllib.retrieve(< URL >, < file name >)

Example:

from urllib import retrieve
retrieve(’http://www.python.org’,’wpt.html’)

Opening a web page with urllib.urlopen:

from urllib import urlopen
< object like file > = urlopen(< URL >)

data = < object like file >.read(< size >)

< object like file >.close()

� process web pages like we handle files

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Function to copy a Web Page to a File

def copypage(url,file):
"""
Given the URL for the web page,
a copy of its contents is written to file.
Both url and file are strings.
"""

import urllib
copyfile = open(file,’w’)
f = urllib.urlopen(url)

while True:
data = f.read(80)

if data == ’’: break
copyfile.write(data)

f.close()
copyfile.close()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Function to copy a Web Page to a File

def copypage(url,file):
"""
Given the URL for the web page,
a copy of its contents is written to file.
Both url and file are strings.
"""

import urllib
copyfile = open(file,’w’)
f = urllib.urlopen(url)

while True:
data = f.read(80)

if data == ’’: break
copyfile.write(data)

f.close()
copyfile.close()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Function to copy a Web Page to a File

def copypage(url,file):
"""
Given the URL for the web page,
a copy of its contents is written to file.
Both url and file are strings.
"""

import urllib
copyfile = open(file,’w’)
f = urllib.urlopen(url)

while True:
data = f.read(80)

if data == ’’: break
copyfile.write(data)

f.close()
copyfile.close()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Function to copy a Web Page to a File

def copypage(url,file):
"""
Given the URL for the web page,
a copy of its contents is written to file.
Both url and file are strings.
"""

import urllib
copyfile = open(file,’w’)
f = urllib.urlopen(url)

while True:
data = f.read(80)

if data == ’’: break
copyfile.write(data)

f.close()
copyfile.close()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Function to copy a Web Page to a File

def copypage(url,file):
"""
Given the URL for the web page,
a copy of its contents is written to file.
Both url and file are strings.
"""

import urllib
copyfile = open(file,’w’)
f = urllib.urlopen(url)

while True:
data = f.read(80)

if data == ’’: break
copyfile.write(data)

f.close()
copyfile.close()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML Files

Applications to scan an HTML file:

1. search for particular information,

2. navigate to where the page refers to.

Example (1): download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

Example (2): retrieve all URLs the page
http://www.python.org refers to.

What is common between these two examples:

.py files and URLs appear between " and "

� scan for all strings between double quotes

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML Files

Applications to scan an HTML file:

1. search for particular information,

2. navigate to where the page refers to.

Example (1): download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

Example (2): retrieve all URLs the page
http://www.python.org refers to.

What is common between these two examples:

.py files and URLs appear between " and "

� scan for all strings between double quotes

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML Files

Applications to scan an HTML file:

1. search for particular information,

2. navigate to where the page refers to.

Example (1): download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

Example (2): retrieve all URLs the page
http://www.python.org refers to.

What is common between these two examples:

.py files and URLs appear between " and "

� scan for all strings between double quotes

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML Files

Applications to scan an HTML file:

1. search for particular information,

2. navigate to where the page refers to.

Example (1): download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

Example (2): retrieve all URLs the page
http://www.python.org refers to.

What is common between these two examples:

.py files and URLs appear between " and "

� scan for all strings between double quotes

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML Files

Applications to scan an HTML file:

1. search for particular information,

2. navigate to where the page refers to.

Example (1): download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

Example (2): retrieve all URLs the page
http://www.python.org refers to.

What is common between these two examples:

.py files and URLs appear between " and "

� scan for all strings between double quotes

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Problem Statement
scanning for double quoted strings

Input: a file, or object like a file.
Output: list of all strings between double quotes.

Recall that we read files with fixed size buffer:

..."... .".."."".."." .."....

For double quoted strings which run across two buffers
we need another buffer.

Two buffers: one for reading strings from file,
one for buffering double quoted string.

� Two functions:

1. read buffered data from file,

2. scan the data buffer for double quoted strings.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Reading Strings from File

def QuotedStrings(file):
"""
Given a file object, this function scans
the file and returns a list of all strings
on the file enclosed between double quotes.
"""

L = []
buffer = ’’

while True:
data = file.read(80)
if data == ’’: break

(L,buffer) = UpdateQstrings(L,buffer,data)
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Reading Strings from File

def QuotedStrings(file):
"""
Given a file object, this function scans
the file and returns a list of all strings
on the file enclosed between double quotes.
"""

L = []
buffer = ’’

while True:
data = file.read(80)
if data == ’’: break

(L,buffer) = UpdateQstrings(L,buffer,data)
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Reading Strings from File

def QuotedStrings(file):
"""
Given a file object, this function scans
the file and returns a list of all strings
on the file enclosed between double quotes.
"""

L = []
buffer = ’’

while True:
data = file.read(80)
if data == ’’: break

(L,buffer) = UpdateQstrings(L,buffer,data)
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Reading Strings from File

def QuotedStrings(file):
"""
Given a file object, this function scans
the file and returns a list of all strings
on the file enclosed between double quotes.
"""

L = []
buffer = ’’

while True:
data = file.read(80)
if data == ’’: break

(L,buffer) = UpdateQstrings(L,buffer,data)
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Processing the Buffers
In L we store the double quoted strings.
In b we buffer the double quoted strings.

..."... L = [], b = ’"...’

.".."." L = [’....’,’.’], b = ”

....... L = [’....’,’.’], b = ”

.".."." L = [’....’,’.’,’..’], b = ’"’

..".... L = [’....’,’.’,’..’,’..’], b = ”

def UpdateQstrings(L,b,s):
"""
L is a list of double quoted strings,
b buffers a double quoted string, and
s is the data string to be processed.
Returns an update of (L,b).
"""

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for UpdateQstrings

def UpdateQstrings(L,b,s):
".."
nb = b
for i in range(0,len(s)):

if nb == ’’:
if s[i] == ’\"’:

nb = ’o’ # ’o’ is for ’opened’
else:

if s[i] != ’\"’:
nb += s[i]

else: # do not store ’o’
L.append(nb[1:len(nb)])
nb = ’’

return (L,nb)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for UpdateQstrings

def UpdateQstrings(L,b,s):
".."
nb = b
for i in range(0,len(s)):

if nb == ’’:
if s[i] == ’\"’:

nb = ’o’ # ’o’ is for ’opened’
else:

if s[i] != ’\"’:
nb += s[i]

else: # do not store ’o’
L.append(nb[1:len(nb)])
nb = ’’

return (L,nb)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for UpdateQstrings

def UpdateQstrings(L,b,s):
".."
nb = b
for i in range(0,len(s)):

if nb == ’’:
if s[i] == ’\"’:

nb = ’o’ # ’o’ is for ’opened’
else:

if s[i] != ’\"’:
nb += s[i]

else: # do not store ’o’
L.append(nb[1:len(nb)])
nb = ’’

return (L,nb)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for UpdateQstrings

def UpdateQstrings(L,b,s):
".."
nb = b
for i in range(0,len(s)):

if nb == ’’:
if s[i] == ’\"’:

nb = ’o’ # ’o’ is for ’opened’
else:

if s[i] != ’\"’:
nb += s[i]

else: # do not store ’o’
L.append(nb[1:len(nb)])
nb = ’’

return (L,nb)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for UpdateQstrings

def UpdateQstrings(L,b,s):
".."
nb = b
for i in range(0,len(s)):

if nb == ’’:
if s[i] == ’\"’:

nb = ’o’ # ’o’ is for ’opened’
else:

if s[i] != ’\"’:
nb += s[i]

else: # do not store ’o’
L.append(nb[1:len(nb)])
nb = ’’

return (L,nb)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

The Function main()

def main():
"""
Prompts the user for a file name and
scans the file for double quoted strings.
"""
print ’getting double quoted strings’
name = raw_input(’Give file name : ’)

file = open(name,’r’)
L = QuotedStrings(file)
print L
file.close()

if __name__=="__main__": main()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

The Function main()

def main():
"""
Prompts the user for a file name and
scans the file for double quoted strings.
"""
print ’getting double quoted strings’
name = raw_input(’Give file name : ’)

file = open(name,’r’)
L = QuotedStrings(file)
print L
file.close()

if __name__=="__main__": main()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning Web Pages for URLs

Recall the second example application:
list all URLs referred to at http://www.python.org

def main():
"""
Prompts the user for a web page,
and prints all URLs this page refers to.
"""

print ’listing reachable locations’
page = raw_input(’Give URL : ’)
L = HTTPlinks(page)
print ’found %d HTTP links’ % len(L)
ShowLocations(L)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning Web Pages for URLs

Recall the second example application:
list all URLs referred to at http://www.python.org

def main():
"""
Prompts the user for a web page,
and prints all URLs this page refers to.
"""

print ’listing reachable locations’
page = raw_input(’Give URL : ’)
L = HTTPlinks(page)
print ’found %d HTTP links’ % len(L)
ShowLocations(L)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning Web Pages for URLs

Recall the second example application:
list all URLs referred to at http://www.python.org

def main():
"""
Prompts the user for a web page,
and prints all URLs this page refers to.
"""

print ’listing reachable locations’
page = raw_input(’Give URL : ’)
L = HTTPlinks(page)
print ’found %d HTTP links’ % len(L)
ShowLocations(L)

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Filtering double quoted String

from scanquotes import UpdateQstrings

def HTTPfilter(L):
"""
Returns from the list L only those strings
which begin with http.
"""

H = []
for s in L:

if len(s) > 4:
if s[0:4] == ’http’: H.append(s)

return H

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Filtering double quoted String

from scanquotes import UpdateQstrings

def HTTPfilter(L):
"""
Returns from the list L only those strings
which begin with http.
"""

H = []
for s in L:

if len(s) > 4:
if s[0:4] == ’http’: H.append(s)

return H

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML File for HTTP Strings

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
f = urllib.urlopen(url)

L = []; b = ’’
while True:

data = f.read(80)
if data == ’’: break

(L,b) = UpdateQstrings(L,b,data)
L = HTTPfilter(L)

f.close()
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML File for HTTP Strings

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
f = urllib.urlopen(url)

L = []; b = ’’
while True:

data = f.read(80)
if data == ’’: break

(L,b) = UpdateQstrings(L,b,data)
L = HTTPfilter(L)

f.close()
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML File for HTTP Strings

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
f = urllib.urlopen(url)

L = []; b = ’’
while True:

data = f.read(80)
if data == ’’: break

(L,b) = UpdateQstrings(L,b,data)
L = HTTPfilter(L)

f.close()
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Scanning HTML File for HTTP Strings

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
f = urllib.urlopen(url)

L = []; b = ’’
while True:

data = f.read(80)
if data == ’’: break

(L,b) = UpdateQstrings(L,b,data)
L = HTTPfilter(L)

f.close()
return L

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Showing only Server Locations
using the module urlparse

An URL consists of 6 parts

protocol://location/path:parameters?query#frag

Given URL u, urlparse.urlparse(u) returns 6-tuple.

def ShowLocations(L):
"""
Shows the locations of the URL in L.
"""
from urlparse import urlparse
for h in L:

p = urlparse(h)
print p[1]

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Showing only Server Locations
using the module urlparse

An URL consists of 6 parts

protocol://location/path:parameters?query#frag

Given URL u, urlparse.urlparse(u) returns 6-tuple.

def ShowLocations(L):
"""
Shows the locations of the URL in L.
"""
from urlparse import urlparse
for h in L:

p = urlparse(h)
print p[1]

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Crawlers
making requests recursively

Scanning HTML files and browsing:

1. given a URL, open a web page,

2. compute the list of all URLs in the page,
3. for all URLs in the list do:

3.1 open the web page defined by location of URL,
3.2 compute the list of all URLs on that page.

� continue recursively, crawling the web

Things to consider:

1. remove duplicates from list of URLs,

2. do not turn back to pages visited before,

3. limit the levels of recursion,

4. some links will not work.

Similar to finding a path in a maze, but now we are
interested in all intermediate nodes along the path.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Web Clients and Crawlers

Web Clients
alternatives to web browsers
opening a web page and copying its content

Scanning files
looking for strings between double quotes
parsing URLs for the server location

Web Crawlers
making requests recursively
incremental development, modular design of code

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Modular Design of Web Crawler
use what we have developed so far

L-31 MCS 275 Wed 2 Apr 2008 : webcrawler.py

Prompts the user for a URL and the maximal
depth of the recursion tree.
Lists all locations of web servers that can
reached starting from the user given URL.

from scanquotes import UpdateQstrings
from scanhttplinks import HTTPfilter, HTTPlinks

Still left to write:

1. management of list of server locations,

2. recursive function to crawl the web.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Modular Design of Web Crawler
use what we have developed so far

L-31 MCS 275 Wed 2 Apr 2008 : webcrawler.py

Prompts the user for a URL and the maximal
depth of the recursion tree.
Lists all locations of web servers that can
reached starting from the user given URL.

from scanquotes import UpdateQstrings
from scanhttplinks import HTTPfilter, HTTPlinks

Still left to write:

1. management of list of server locations,

2. recursive function to crawl the web.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Modular Design of Web Crawler
use what we have developed so far

L-31 MCS 275 Wed 2 Apr 2008 : webcrawler.py

Prompts the user for a URL and the maximal
depth of the recursion tree.
Lists all locations of web servers that can
reached starting from the user given URL.

from scanquotes import UpdateQstrings
from scanhttplinks import HTTPfilter, HTTPlinks

Still left to write:

1. management of list of server locations,

2. recursive function to crawl the web.

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Retain only new Locations

def NewLocations(L,V):
"""
Given the list L of new URLs and the
list of already visited locations,
returns the list of new locations,
locations not yet visited earlier.
"""

from urlparse import urlparse
newL = []

for h in L:
p = urlparse(h)
loc = p[1]

if not loc in newL:
if not loc in V:

newL.append(loc)
return newL

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Retain only new Locations

def NewLocations(L,V):
"""
Given the list L of new URLs and the
list of already visited locations,
returns the list of new locations,
locations not yet visited earlier.
"""

from urlparse import urlparse
newL = []

for h in L:
p = urlparse(h)
loc = p[1]

if not loc in newL:
if not loc in V:

newL.append(loc)
return newL

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Retain only new Locations

def NewLocations(L,V):
"""
Given the list L of new URLs and the
list of already visited locations,
returns the list of new locations,
locations not yet visited earlier.
"""

from urlparse import urlparse
newL = []

for h in L:
p = urlparse(h)
loc = p[1]

if not loc in newL:
if not loc in V:

newL.append(loc)
return newL

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Retain only new Locations

def NewLocations(L,V):
"""
Given the list L of new URLs and the
list of already visited locations,
returns the list of new locations,
locations not yet visited earlier.
"""

from urlparse import urlparse
newL = []

for h in L:
p = urlparse(h)
loc = p[1]

if not loc in newL:
if not loc in V:

newL.append(loc)
return newL

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Retain only new Locations

def NewLocations(L,V):
"""
Given the list L of new URLs and the
list of already visited locations,
returns the list of new locations,
locations not yet visited earlier.
"""

from urlparse import urlparse
newL = []

for h in L:
p = urlparse(h)
loc = p[1]

if not loc in newL:
if not loc in V:

newL.append(loc)
return newL

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Some Links will not work...

Add an exception handler:

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
try:

print ’opening ’ + url + ’ ...’
f = urllib.urlopen(url)

except:
print ’opening ’ + url + ’ failed’
return []

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Some Links will not work...

Add an exception handler:

def HTTPlinks(url):
"""
Given the URL for the web page,
returns the list of all HTTP strings.
"""
import urllib
try:

print ’opening ’ + url + ’ ...’
f = urllib.urlopen(url)

except:
print ’opening ’ + url + ’ failed’
return []

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Unparsing URLs
using the urlparse module again

Recall that we only store the server locations.

To open a web page we also need to specify the protocol.

We apply urlparse.urlunparse

>>> from urlparse import urlunparse
>>> urlunparse((’http’,’www.python.org’,
... ’’,’’,’’,’’))
’http://www.python.org’

We must provide a 6-tuple as argument ...

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Unparsing URLs
using the urlparse module again

Recall that we only store the server locations.

To open a web page we also need to specify the protocol.

We apply urlparse.urlunparse

>>> from urlparse import urlunparse
>>> urlunparse((’http’,’www.python.org’,
... ’’,’’,’’,’’))
’http://www.python.org’

We must provide a 6-tuple as argument ...

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Unparsing URLs
using the urlparse module again

Recall that we only store the server locations.

To open a web page we also need to specify the protocol.

We apply urlparse.urlunparse

>>> from urlparse import urlunparse
>>> urlunparse((’http’,’www.python.org’,
... ’’,’’,’’,’’))
’http://www.python.org’

We must provide a 6-tuple as argument ...

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Unparsing URLs
using the urlparse module again

Recall that we only store the server locations.

To open a web page we also need to specify the protocol.

We apply urlparse.urlunparse

>>> from urlparse import urlunparse
>>> urlunparse((’http’,’www.python.org’,
... ’’,’’,’’,’’))
’http://www.python.org’

We must provide a 6-tuple as argument ...

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Running the Crawler

$ python webcrawler.py
crawling the web ...
Give URL : http://www.uic.edu
give maximal depth : 2
opening http://www.uic.edu ...
opening http://www.w3.org ...
opening http://www.csail.mit.edu ...
opening http://www.ercim.org ...
opening http://jigsaw.w3.org ...
opening http://validator.w3.org ...
opening http://www2008.org ...
opening http://www.bicc.com.cn ...
opening http://www.primelife.eu ...

.. it takes a while ..

total #locations : 538

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Running the Crawler

$ python webcrawler.py
crawling the web ...
Give URL : http://www.uic.edu
give maximal depth : 2
opening http://www.uic.edu ...
opening http://www.w3.org ...
opening http://www.csail.mit.edu ...
opening http://www.ercim.org ...
opening http://jigsaw.w3.org ...
opening http://validator.w3.org ...
opening http://www2008.org ...
opening http://www.bicc.com.cn ...
opening http://www.primelife.eu ...

.. it takes a while ..

total #locations : 538

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Running the Crawler

$ python webcrawler.py
crawling the web ...
Give URL : http://www.uic.edu
give maximal depth : 2
opening http://www.uic.edu ...
opening http://www.w3.org ...
opening http://www.csail.mit.edu ...
opening http://www.ercim.org ...
opening http://jigsaw.w3.org ...
opening http://validator.w3.org ...
opening http://www2008.org ...
opening http://www.bicc.com.cn ...
opening http://www.primelife.eu ...

.. it takes a while ..

total #locations : 538

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

The Function main()

def main():
"""
Prompts the user for a web page,
and prints all URLs this page refers to.
"""
print ’crawling the web ...’
page = raw_input(’Give URL : ’)
k = input(’give maximal depth : ’)

L = crawler(page,k,[])
print ’reachable locations :’, L
print ’total #locations :’, len(L)

if __name__=="__main__": main()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

The Function main()

def main():
"""
Prompts the user for a web page,
and prints all URLs this page refers to.
"""
print ’crawling the web ...’
page = raw_input(’Give URL : ’)
k = input(’give maximal depth : ’)

L = crawler(page,k,[])
print ’reachable locations :’, L
print ’total #locations :’, len(L)

if __name__=="__main__": main()

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for the Crawler

def crawler(url,k,V):
"""
Returns the list V updated with the
list of locations reachable from the
given url using k steps.
"""
from urlparse import urlunparse
L = HTTPlinks(url)
newL = NewLocations(L,V)
newV = V + newL
if k == 0:

return newV
else:

for loc in newL:
u = urlunparse((’http’,loc,’’,’’,’’,’’))
newV = crawler(u,k-1,newV)

return newV

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for the Crawler

def crawler(url,k,V):
"""
Returns the list V updated with the
list of locations reachable from the
given url using k steps.
"""
from urlparse import urlunparse
L = HTTPlinks(url)
newL = NewLocations(L,V)
newV = V + newL
if k == 0:

return newV
else:

for loc in newL:
u = urlunparse((’http’,loc,’’,’’,’’,’’))
newV = crawler(u,k-1,newV)

return newV

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for the Crawler

def crawler(url,k,V):
"""
Returns the list V updated with the
list of locations reachable from the
given url using k steps.
"""
from urlparse import urlunparse
L = HTTPlinks(url)
newL = NewLocations(L,V)
newV = V + newL
if k == 0:

return newV
else:

for loc in newL:
u = urlunparse((’http’,loc,’’,’’,’’,’’))
newV = crawler(u,k-1,newV)

return newV

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Code for the Crawler

def crawler(url,k,V):
"""
Returns the list V updated with the
list of locations reachable from the
given url using k steps.
"""
from urlparse import urlunparse
L = HTTPlinks(url)
newL = NewLocations(L,V)
newV = V + newL
if k == 0:

return newV
else:

for loc in newL:
u = urlunparse((’http’,loc,’’,’’,’’,’’))
newV = crawler(u,k-1,newV)

return newV

MCS 275 L-31

2 April 2008

Web Clients
alternatives to web
browsers

opening a web page and
copying its content

Scanning files
looking for strings between
double quotes

parsing URLs for the server
location

Web Crawlers
making requests recursively

incremental development,
modular design of code

Summary + Assignments

We covered more of chapter 14 in Making Use of Python.

Assignments:

1. Write script to download all .py files from
http://www.math.uic.edu/ � jan/mcs275/main.html

2. Limit the search of the crawler so that it only opens
pages within the same domain. For example, if we
start at a location ending with edu, we only open
pages with locations ending with edu.

3. Adjust webcrawler.py to search for a path
between two locations. The user is prompted for two
URLs. Crawling stops if a path has been found.

Assignments collected on Friday 4 April:
#1 of L-26, #2 of L-27, #4 of L-28, #1 of L-29, #2 of L-30.

