Complex and Algebraic Numbers

- polynomials without real roots
- quotients and remainders

Algebraic Numbers

- polynomials without rational roots
- extending the rational numbers with a root
- finite field extensions

MCS 320 Lecture 5 Introduction to Symbolic Computation Jan Verschelde, 14 June 2024

Complex and Algebraic Numbers polynomials without real roots

quotients and remainders

Algebraic Numbers

- polynomials without rational roots
- extending the rational numbers with a root
- finite field extensions

Polynomials without Real Roots

- \mathbb{R} is the set of all real numbers.
- $x^2 + 1 \neq 0$ for all $x \in \mathbb{R}$, as we can see:

< 回 ト < 三 ト < 三

Complex and Algebraic Numbers polynomials without real roots quotients and remainders

Algebraic Numbers

- polynomials without rational roots
- extending the rational numbers with a root
- finite field extensions

Complex Numbers

- \mathbb{R} is the set of all real numbers.
- $x^2 + 1 \neq 0$ for all $x \in \mathbb{R}$.
- $\mathbb{R}[x]$ is the set of all polynomials in *x*, with coefficients in \mathbb{R} .

Consider the division of any $p \in \mathbb{R}[x]$ by $x^2 + 1$:

$$p(x) = q(x)(x^2 + 1) + r(x), \quad \deg(r) < 2, \quad r(x) = r_0 + r_1 x,$$

with quotient q and remainder r.

ℝ[x]/(x² + 1) is the set of all remainders after division by x² + 1.
ℂ = { a + b1 | a, b ∈ ℝ }, I = √-1, I is *the imaginary unit*.

 $\mathbb{R}[x]/(x^2+1)$ is isomorphic with \mathbb{C} , the set of all complex numbers:

$$\mathbb{C}\simeq \mathbb{R}[x]/(x^2+1).$$

A D K A B K A B K A B K B B

Complex and Algebraic Numbers

- polynomials without real roots
- quotients and remainders

Algebraic Numbers

polynomials without rational roots

- extending the rational numbers with a root
- finite field extensions

Polynomials without Rational Roots

• \mathbb{Q} is the set of all rational numbers.

• $x^2 - 2 \neq 0$ for all $x \in \mathbb{Q}$, as $\sqrt{2} \neq \mathbb{Q}$, $\sqrt{2}$ is *irrational*.

Intro to Symbolic Computation (MCS 320)

Complex and Algebraic Numbers

Complex and Algebraic Numbers polynomials without real roots

quotients and remainders

Algebraic Numbers

polynomials without rational roots

extending the rational numbers with a root

finite field extensions

extending the rational numbers with a root

- \mathbb{Q} is the set of all rational numbers.
- $x^2 2 \neq 0$ for all $x \in \mathbb{Q}$.
- $\mathbb{Q}[x]$ is the set of all polynomials in *x*, with coefficients in \mathbb{Q} .

Consider the division of any $p \in \mathbb{Q}[x]$ by $x^2 - 2$:

$$p(x) = q(x)(x^2 - 2) + r(x), \quad \deg(r) < 2, \quad r(x) = r_0 + r_1 x,$$

with quotient q and remainder r.

Q[x]/(x² - 2) is the set of all remainders after division by x² - 2.
Q(√2) = { a + b√2 | a, b ∈ Q } is the extension of Q with √2.

$$\mathbb{Q}[x]/(x^2-2)$$
 is isomorphic with $\mathbb{Q}(\sqrt{2})$: $\mathbb{Q}(\sqrt{2}) \simeq \mathbb{Q}[x]/(x^2-2)$
 $a+b\sqrt{2}$ is an *algebraic number*

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Complex and Algebraic Numbers

- polynomials without real roots
- quotients and remainders

Algebraic Numbers

- polynomials without rational roots
- extending the rational numbers with a root
- finite field extensions

12 N A 12

finite field extensions

Over $\mathbb{Z}_2 = \{0, 1\}$, working modulo 2:

$$x^2 + 1 = (x + 1)^2$$

so $x^2 + 1$ factors and is reducible.

The polynomial $x^3 + x + 1 \in \mathbb{Z}_2[x]$ does not factor, it is irreducible.

The extension $\mathbb{Z}_2[x]/(x^3 + x + 1)$ is a field of 8 numbers.

Denote α as a root of $x^3 + x + 1$, then $\alpha^3 = \alpha + 1$.

We can list all 8 elements:

$$\mathbb{Z}_{2}[x]/(x^{3}+x+1) = \{ a+b\alpha+c\alpha^{2} \mid a,b,c \in \mathbb{Z}_{2} \}$$

= $\{0,1,\alpha,1+\alpha,\alpha^{2},1+\alpha^{2},\alpha+\alpha^{2},1+\alpha+\alpha^{2} \}$

and we also compute the multiplication table.