The Pendulum

- a first mathematical model
- solving with Laplace transforms
- the slope field

2 The Pendulum with Damping

a second mathematical model

MCS 320 Lecture 31 Introduction to Symbolic Computation Jan Verschelde, 17 July 2024

The Pendulum

- a first mathematical model
- solving with Laplace transforms
- the slope field

The Pendulum with Damping a second mathematical mode

The Pendulum

An ordinary differential equation with initial conditions, e.g.:

$$L\frac{d^2}{dt^2}\theta(t) = -g\theta(t),$$

$$\theta(0) = \pi/10, \quad \theta'(0) = 0,$$

is an *initial value problem*.

In the model of the pendulum, $\theta(t)$ is the angle of deviation from the equilibrium position, as a function of time *t*.

- A - TH

The Pendulum

- a first mathematical model
- solving with Laplace transforms
- the slope field

The Pendulum with Damping a second mathematical mode

Laplace Transforms

The Laplace transform of
$$L \frac{d^2}{dt^2} \theta(t) = -g \theta(t)$$

is
 $\left(\Theta(s)s^2 - \theta(0)s - \theta'(0)\right) L = -g\Theta(s), \quad \Theta(s) = \mathcal{L}(\theta(t)).$

The transformed equation is linear in $\Theta(s)$, its solution is

$$\Theta(s) = rac{Ls heta(0) + L heta'(0)}{Ls^2 + g}$$

Substituting $\theta(0) = \pi/10$ and $\theta'(0) = 0$ gives $\pi/10Ls/(Ls^2 + g)$. The inverse Laplace transform of $\Theta(s)$ is

$$\theta(t) = \frac{\pi}{10} \cos\left(\frac{t}{L}\sqrt{Lg}\right).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Pendulum

- a first mathematical model
- solving with Laplace transforms
- the slope field

The Pendulum with Damping a second mathematical mode

The Slope Field for g = 10 and L = 1

Intro to Symbolic Computation (MCS 320)

2

* 王

The Pendulum

- a first mathematical model
- solving with Laplace transforms
- the slope field

The Pendulum with Damping a second mathematical model

The Pendulum with Damping

A second model of the pendulum includes damping, and $sin(\theta(t))$:

$$Lrac{d^2}{dt^2} heta(t) = -Arac{d}{dt} heta(t) - g\sin(heta(t)),$$

 $heta(0) = \pi/10, \quad heta'(0) = 0.$

Damping is proportional to the velocity.

In the model of the pendulum, $\theta(t)$ is the angle of deviation from the equilibrium position, as a function of time *t*.