Evaluation

- finite number fields
- addition and multiplication tables

Execution

- binary expression trees
- the stack to evaluate an expression

MCS 320 Lecture 8 Introduction to Symbolic Computation Jan Verschelde, 17 June 2024

Evaluation

finite number fields

addition and multiplication tables

- binary expression trees
- the stack to evaluate an expression

Making a Field of Four Elements

If we work modulo 4, then $(2 \times 2) \mod 4 = 0$.

Therefore, we prefer not to work with the modulo 4 numbers.

We extend \mathbb{Z}_2 with a root of an irreducible polynomial:

- Consider polynomials in x over Z₂ = {0,1}, we denote this set of polynomials by Z₂[x].
- 2 In $\mathbb{Z}_2[x]$, the polynomial $q = x^2 + x + 1$ does not factor.

Solution Construct
$$\mathbb{Z}_2(\alpha) = \mathbb{Z}_2[x]/(x^2 + x + 1)$$
 as

$$\mathbb{Z}_{2}(\alpha) = \{ a + b\alpha \mid a, b \in \mathbb{Z}_{2} \}, \quad \alpha^{2} = \alpha + 1.$$

The four elements in $\mathbb{Z}_2(\alpha)$ are 0, 1, α , and $\alpha + 1$.

Evaluation

finite number fields

addition and multiplication tables

- binary expression trees
- the stack to evaluate an expression

Addition and Multiplication Tables

In a finite set of numbers,

we can tabulate the outcomes of all additions and multiplications.

The addition table of $\mathbb{Z}_2(\alpha) = \mathbb{Z}_2[x]/(x^2 + x + 1)$:

0	1	α	$\alpha + 1$
1	0	$\alpha + 1$	α
α	$\alpha + 1$	0	1
$\alpha + 1$	α	1	0

The multiplication table of $\mathbb{Z}_2(\alpha) = \mathbb{Z}_2[x]/(x^2 + x + 1)$:

0	0	0	0
0	1	α	$\alpha + 1$
0	α	$\alpha + 1$	1
0	$\alpha + 1$	1	α

4 3 5 4 3 5 1 3

Evaluation

- finite number fields
- addition and multiplication tables

- binary expression trees
- the stack to evaluate an expression

Binary Expression Trees

For fast evaluation, consider a binary expression tree:

- The leaves of the tree are either constants or the operands.
- 2 The nodes of the tree are the arithmetical operators.

For example,

consider the binary expression tree for $x^3 + 4xy^2$ below:

Evaluation

- finite number fields
- addition and multiplication tables

- binary expression trees
- the stack to evaluate an expression

Infix, Prefix, and Postfix Tree Traversals

The expression tree for $x^3 + 4xy^2$ is drawn below.

Tree traversals lead to infix, prefix, and postfix notations.

• infix:
$$(x^3) + ((4 \star x) \star (y^3))$$

• postfix: x, 3, ^, 4, x, *, y, 3, ^, *, +