Exact and Floating-Point Numbers

delayed evaluation

Rational Approximations

- approximations with a prescribed accuracy
- continued fractions

MCS 320 Lecture 4 Introduction to Symbolic Computation Jan Verschelde, 12 June 2024

Exact and Floating-Point Numbers delayed evaluation

2 Rational Approximations

- approximations with a prescribed accuracy
- continued fractions

In symbolic computation we compute with symbols and expressions.

- This implies that numerical approximations are delayed.
- Rational approximations allow for exact computations.

In the context of working with approximations for π , consider the difference between symbolic and numerical computing.

- Computing numerically, work with an expansion, e.g.: 3.14.
- Computing symbolically, use a rational approximation, e.g.: 22/7.

In numerical analysis, we worry about error propagation, in symbolic computation, expression swell is a problem.

Exact and Floating-Point Numbers delayed evaluation

approximations with a prescribed accuracy

continued fractions

Approximations with a Prescribed Accuracy

To compute a rational approximation with a prescribed accuracy, execute the following two steps:

- Evaluate a symbol in a number system.
- Onstruct a rational approximation for the evaluation.

Example:

- Evaluate π with five decimal places: 3.1416.
- Provide the approximation of the approximation o

Exact and Floating-Point Numbers delayed evaluation

2 Rational Approximations

- approximations with a prescribed accuracy
- continued fractions

Continued Fractions

Definition (continued fraction) A *continued fraction* is

$$a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{\cdots+\frac{1}{a_n}}}}$$

defined by a list of natural numbers $[a_0; a_1, a_2, ..., a_n]$. The rational numbers defined by the sublists are called *the convergents* of the continued fraction.

Example: The continued fraction of $\sqrt{2}$ is defined by [1; 2, 2, 2, 2, ...].

[1; 2, 2, 2, 2] defines
$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}} = \frac{41}{29}$$

Consecutive Rational Approximations

The convergents of [1; 2, 2, 2, 2] are [1, 3/2, 7/5, 17/12, 41/29].

The first convergents for π give the consecutive rational approximations

3,	22	333	355	$\frac{103993}{33102},$	104348	208341	312689
	7,	106 '	113 '	33102	33215	66317	99532