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Exact and Floating-Point Numbers

In symbolic computation we compute with symbols and expressions.

1 This implies that numerical approximations are delayed.

2 Rational approximations allow for exact computations.

In the context of working with approximations for π,
consider the difference between symbolic and numerical computing.

1 Computing numerically, work with an expansion, e.g.: 3.14.

2 Computing symbolically, use a rational approximation, e.g.: 22/7.

In numerical analysis, we worry about error propagation,
in symbolic computation, expression swell is a problem.
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Approximations with a Prescribed Accuracy

To compute a rational approximation with a prescribed accuracy,
execute the following two steps:

1 Evaluate a symbol in a number system.

2 Construct a rational approximation for the evaluation.

Example:

1 Evaluate π with five decimal places: 3.1416.

2 The rational approximation is then 355/113.
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Continued Fractions

Definition (continued fraction)
A continued fraction is

a0 +
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a1 +
1

a2+
1

...+ 1
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.

defined by a list of natural numbers [a0;a1,a2, . . . ,an].
The rational numbers defined by the sublists are
called the convergents of the continued fraction.

Example: The continued fraction of
√

2 is defined by [1;2,2,2,2, . . .].

[1;2,2,2,2] defines 1 +
1
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=
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Consecutive Rational Approximations

The convergents of [1;2,2,2,2] are [1,3/2,7/5,17/12,41/29].

The first convergents for π give the consecutive rational approximations
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