Recursive Functions and Memoization

0 Recursive Functions
@ computing Fibonacci numbers
@ an exponential number of function calls

e Memoization
@ storing results of function calls
@ using a dictionary

MCS 320 Lecture 20
Introduction to Symbolic Computation
Jan Verschelde, 3 July 2024

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024 1/9



Recursive Functions and Memoization

0 Recursive Functions
@ computing Fibonacci numbers

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization



computing Fibonacci numbers

The Fibonacci numbers F(n) are defined as

F(0)=0, F(1)=1, n>1:F(n)=F(n—1)+F(n-2).

This definition leads to a natural recursive function:

def F(n):
if n ==
return O
elif n == 1:
return 1
else
return F(n-1) + F(n-2)

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024



Recursive Functions and Memoization

0 Recursive Functions

@ an exponential number of function calls

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024 4/9



an exponential number of function calls

F(4)
\
\ |
F(3) F(2)
F(2) F (1) F (1) F(0)
F (1) F(0)

Let ¢, be the number of calls to compute F(n).

@ Consider some base cases: ¢, =2, c3 =4 =22, ¢, = 8 = 23,
@ Recursion: ¢chp=¢Cp_1 +Ch2+2="---is O(2").

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024



Recursive Functions and Memoization

9 Memoization
@ storing results of function calls

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization



storing results of function calls

Definition (memoization)

Memoization is a technique to improve the performance of programs
by storing the results of function calls.

Applied to the Fibonacci numbers, the list
L=1(0,1, 1, 2, 3, 5, 8, 13, 21, 34]

stores the first 10 Fibonacci numbers, F(n) = L[n].

Two steps in a memoized computation of the n-th Fibonacci number:
@ Before computing F(n), return L[n] if it exists.
© After computing a new F(n), store F(n)as L[n].

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024 719



Recursive Functions and Memoization

9 Memoization

@ using a dictionary

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization



using a dictionary

def memoizedF (n, D={}):

All calls made to memoizedF are stored in D.
nun
if n in D: # dictionary lookup
return D[n]
else:
if n == 0:
result = 0
elif n == 1:
result =1
else:
result = memoizedF (n-1) + memoizedF (n-2)
D[n] = result # store the result in D
return result

Intro to Symbolic Computation (MCS 320) Recursive Functions and Memoization L-20 3 July 2024 9/9



	Recursive Functions
	computing Fibonacci numbers
	an exponential number of function calls

	Memoization
	storing results of function calls
	using a dictionary


