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computing Fibonacci numbers

The Fibonacci numbers F(n) are defined as

F(0)=0, F(1)=1, n>1:F(n)=F(n—1)+F(n-2).

This definition leads to a natural recursive function:

def F(n):
if n ==
return O
elif n == 1:
return 1
else
return F(n-1) + F(n-2)
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an exponential number of function calls
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Let ¢, be the number of calls to compute F(n).

@ Consider some base cases: ¢, =2, c3 =4 =22, ¢, = 8 = 23,
@ Recursion: ¢chp=¢Cp_1 +Ch2+2="---is O(2").
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storing results of function calls

Definition (memoization)

Memoization is a technique to improve the performance of programs
by storing the results of function calls.

Applied to the Fibonacci numbers, the list
L=1(0,1, 1, 2, 3, 5, 8, 13, 21, 34]

stores the first 10 Fibonacci numbers, F(n) = L[n].

Two steps in a memoized computation of the n-th Fibonacci number:
@ Before computing F(n), return L[n] if it exists.
© After computing a new F(n), store F(n)as L[n].
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using a dictionary

def memoizedF (n, D={}):

All calls made to memoizedF are stored in D.
nun
if n in D: # dictionary lookup
return D[n]
else:
if n == 0:
result = 0
elif n == 1:
result =1
else:
result = memoizedF (n-1) + memoizedF (n-2)
D[n] = result # store the result in D
return result
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