- Numeric Computing in Python
 - NumPy and SciPy in Python
 - the computational ecosystem
- Scientific Computing
 - linear algebra
 - differential equations

MCS 320 Lecture 40 Introduction to Symbolic Computation Jan Verschelde, 26 July 2024

- Numeric Computing in Python
 - NumPy and SciPy in Python
 - the computational ecosystem

- Scientific Computing
 - linear algebra
 - differential equations

NumPy and SciPy in Python

defines vectors and matrices, is a foundational project for the Python scientific computing stack.

provides fundamental algorithms for scientific computing in Python.

https://numfocus.org

- Numeric Computing in Python
 - NumPy and SciPy in Python
 - the computational ecosystem

- Scientific Computing
 - linear algebra
 - differential equations

The Computational Ecosystem

picture from the slides of Jake VanderPlas, 2015

- Numeric Computing in Python
 - NumPy and SciPy in Python
 - the computational ecosystem

- Scientific Computing
 - linear algebra
 - differential equations

Linear Algebra

- NumPy provides vectorized functions, functions that take an entire vector on input and return a vector on output.
 Vectorized code speeds up Python code significantly.
- The backslash operator \ as in x = A\b solves the linear system Ax = b.
 The solvers are implemented in optimized software libraries.
- Arrays are data structures, matrices are arrays with defined linear algebra methods.

- Numeric Computing in Python
 - NumPy and SciPy in Python
 - the computational ecosystem

- Scientific Computing
 - linear algebra
 - differential equations

Differential Equations

a model of a pendulum

$$\frac{d^2}{dt^2}\theta(t) = -\frac{d}{dt}\theta(t) - g\sin(\theta(t)), \quad \theta(0) = \pi/10, \quad \theta'(0) = 0$$

Plotting both displacement θ and velocity θ' gives a phase portrait:

