Rational Expressions and Rational Polynomials

- arithmetical expressions and polynomials
- automatic simplification and expression swell

Normal Forms

- evaluate polynomials efficiently with the Horner form
- the partial fraction decomposition for rational polynomials

MCS 320 Lecture 12 Introduction to Symbolic Computation Jan Verschelde, 24 June 2024

Rational Expressions and Rational Polynomials arithmetical expressions and polynomials

automatic simplification and expression swell

2 Normal Forms

• evaluate polynomials efficiently with the Horner form

the partial fraction decomposition for rational polynomials

12 N A 12

Rational Expressions and Rational Polynomials

Consider

$$\frac{x^3-1}{x-1}$$

• As an arithmetical expression, it equals

 $(x^3 - 1) / (x - 1)$

that is: x^3 minus one, divided by x - 1.

As a quotient of two polynomials, it equals

$$x^2 + x + 1$$

that is: the sum of x^2 , x, and 1, a polynomial.

Intro to Symbolic Computation (MCS 320)

Rational Expressions and Rational Polynomials arithmetical expressions and polynomials

automatic simplification and expression swell

2) Normal Forms

- evaluate polynomials efficiently with the Horner form
- the partial fraction decomposition for rational polynomials

12 N A 12

Automatic Simplification and Expression Swell

The automatic simplification of a quotient of two polynomials removes the common factors from numerator and denominator.

But this automatic simplification is not always good, consider:

 $\frac{x^{1000}-1}{x-1}.$

Definition (expression swell)

In an exact calculation, *expression swell* happens when the size of the numbers and/or expressions grow exponentially.

A B F A B F

Rational Expressions and Rational Polynomials
arithmetical expressions and polynomials
automatic simplification and expression swell

2 Normal Forms

evaluate polynomials efficiently with the Horner form

the partial fraction decomposition for rational polynomials

the Horner Form for Efficient Polynomial Evaluation

Every polynomial in one variable of degree d can be evaluated with d multiplications and d additions.

The symbolic justification for the statement is the Horner form. For example:

$$x^{4} + 2x^{3} + 3x^{2} + 4x + 5 = 5 + x(4 + x(3 + x(2 + x)))$$

= (((x + 2)x + 3)x + 4)x + 5)

Definition (the Horner form)

For a polynomial *p* in one variable *x*, *the Horner form* is

● p, if deg(p) < 2,</p>

• $c_0 + x h$, where c_0 is the constant coefficient of p, and h is the Horner form of $(p - c_0)/x$.

Rational Expressions and Rational Polynomials
arithmetical expressions and polynomials
automatic simplification and expression swell

2 Normal Forms

• evaluate polynomials efficiently with the Horner form

the partial fraction decomposition for rational polynomials

12 N A 12

the Partial Fraction Decomposition

for Rational Polynomials

Consider a quotient of two polynomials $\frac{p(x)}{q(x)}$.

• Let
$$q(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

with mutually distinct roots: $\alpha_i \neq \alpha_j$, for all $i \neq j$.

• Let p(x) be any polynomial of degree deg(p) < n.

Then the partial fraction decomposition is

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{n} \frac{p(\alpha_i)}{q'(\alpha_i)} \left(\frac{1}{x-\alpha_i}\right).$$

Observe: $\alpha_i \neq \alpha_j$, for all $i \neq j$ implies $q'(\alpha_i) \neq 0$.