Taylor Series

- expanding a function at a point
- power series arithmetic

Approximations

- truncated power series
- Padé approximations

MCS 320 Lecture 24 Introduction to Symbolic Computation Jan Verschelde, 8 July 2024

1/9

Taylor Series

expanding a function at a point

power series arithmetic

Approximations

- truncated power series
- Padé approximations

b 4 Te

Taylor Series

The *Taylor series* of f(x) at x = a is

$$f(a) + f'(a)(x-a) + f''(a)\frac{1}{2}(x-a)^2 + f'''(a)\frac{1}{3!}(x-a)^3 + \cdots$$

or written with the derivative operator D, up to order n

$$\sum_{k=0}^{n-1} \frac{D^k f(a)}{k!} (x-a)^k + O((x-a)^n),$$

where

- $D^k f(a)$ is the value of the *k*-th derivative of f(x) at x = a,
- $O((x a)^n)$ is the *order* of the series.

Application: the tangent line to a curve at a point is the Taylor series truncated after the linear term.

E N 4 E N

Taylor Series

- expanding a function at a point
- power series arithmetic

Approximations

- truncated power series
- Padé approximations

12 N A 12

Power Series Arithmetic

We can multiply polynomials, but we cannot take their inverse.

Series with a nonzero constant term have a multiplicative inverse. Example:

Given is
$$a = a_0 + a_1 x + a_2 x^2 + \cdots$$
,
compute $b = b_0 + b_1 x + b_2 x^2 + \cdots$, so $a \cdot b = 1 + O(x^3)$.

This is equivalent to solving a linear system in b_0 , b_1 , b_2 :

$$\begin{array}{rcl} a_0b_0 & = & 1, \\ a_0b_1 + a_1b_0 & = & 0, \\ a_0b_2 + a_1b_1 + a_2b_0 & = & 0. \end{array}$$

If $a_0 \neq 0$, then $b_0 = 1/a_0$ and the system has a unique solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Taylor Series

- expanding a function at a point
- power series arithmetic

Approximations

- truncated power series
- Padé approximations

b 4 Te

Truncated Power Series

Using a truncated power series to approximate sin(x):

Power series are good locally, but diverge globally.

Taylor Series

- expanding a function at a point
- power series arithmetic

Approximations

- truncated power series
- Padé approximations

b 4 Te

Padé Approximations

Using a rational approximation to approximate sin(x):

Rational approximations can achieve a global, uniform convergence.