Interval Arithmetic

- deciding the size of the working precision
- symbolic-numeric factorization

Constrained Optimization

- optimize subject to constraints
- Lagrange multipliers

MCS 320 Lecture 25 Introduction to Symbolic Computation Jan Verschelde, 10 July 2024

16 N A 16 N

Interval Arithmetic

- deciding the size of the working precision
- symbolic-numeric factorization

Constrained Optimization

- optimize subject to constraints
- Lagrange multipliers

How Much Precision is Needed for Accuracy?

Problem: Evaluate f(x, y) =

$$(333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + x/(2y)$$

at (77617,33096).

An example of Stefano Taschini: Interval Arithmetic: Python Implementation and Applications. In the *Proceedings of the 7th Python in Science Conference (SciPy 2008).*

What are the problems?

- What must the precision be for accurate results?
- Increasing the precision often gives false confidence.
- How to compute bounds on the accuracy of an approximation?

Solution: compute with intervals [*a*, *b*].

Interval Arithmetic

- deciding the size of the working precision
- symbolic-numeric factorization

Constrained Optimization

- optimize subject to constraints
- Lagrange multipliers

A Symbolic-Numeric Factorization

- A numeric factorization is over the complex numbers in C.
- A symbolic factorization extends Q with algebraic numbers.

A *symbolic-numeric factorization* of a polynomial *p* uses complex interval arithmetic to represent the roots of *p*.

For example, in 10 bits of precision, $p = x^3 + x + 1$ factors as

$$(x-0.341?-1.17?I)(x-0.341?+1.17?I)(x+0.682?),$$

where $I = \sqrt{-1}$ and 0.682? is short for [0.68164, 0.68262].

A THE A THE

Interval Arithmetic

- deciding the size of the working precision
- symbolic-numeric factorization

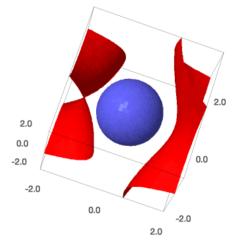
2 Constrained Optimization

optimize subject to constraints

Lagrange multipliers

Constrained Optimization

Find the point (x, y, z) on a sphere where f(x, y, z) is optimal.



The constraint is the blue sphere, the target *f* is drawn in red.

	4		문제 제품 제	= •) ((*
Intro to Symbolic Computation (MCS 320)	Symbolic-Numeric Computing	L-25	10 July 2024	7/9

Interval Arithmetic

- deciding the size of the working precision
- symbolic-numeric factorization

2 Constrained Optimization

- optimize subject to constraints
- Lagrange multipliers

Lagrange Multipliers

Let f(x, y, z) be the target, what we want to optimize, and g(x, y, z) = 0 is the constraint.

At an optimal solution:

 $\nabla f \parallel \nabla g$,

the gradients of f and g are parallel to each other.

The $\nabla f \parallel \nabla g$ is expressed via the multiplier λ .

Solve the polynomial system

$$\begin{cases} \nabla f(x,y,z) - \lambda \nabla g(x,y,z) = 0\\ g(x,y,z) = 0. \end{cases}$$