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How Much Precision is Needed for Accuracy?

Problem: Evaluate f (x ,y)=

(333.75−x2)y6 +x2(11x2y2 −121y4 −2)+5.5y8 +x/(2y)

at (77617,33096).

An example of Stefano Taschini: Interval Arithmetic: Python
Implementation and Applications. In the Proceedings of the 7th Python
in Science Conference (SciPy 2008).

What are the problems?
What must the precision be for accurate results?
Increasing the precision often gives false confidence.
How to compute bounds on the accuracy of an approximation?

Solution: compute with intervals [a,b].
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A Symbolic-Numeric Factorization

A numeric factorization is over the complex numbers in C.
A symbolic factorization extends Q with algebraic numbers.

A symbolic-numeric factorization of a polynomial p
uses complex interval arithmetic to represent the roots of p.

For example, in 10 bits of precision, p = x3 +x +1 factors as

(x −0.341?−1.17?I)(x −0.341?+1.17?I)(x +0.682?),

where I =p−1 and 0.682? is short for [0.68164,0.68262].
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Constrained Optimization

Find the point (x ,y ,z) on a sphere where f (x ,y ,z) is optimal.

The constraint is the blue sphere, the target f is drawn in red.
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Lagrange Multipliers

Let f (x ,y ,z) be the target, what we want to optimize,
and g(x ,y ,z)= 0 is the constraint.

At an optimal solution:
∇f Ë∇g,

the gradients of f and g are parallel to each other.

The ∇f Ë∇g is expressed via the multiplier λ.

Solve the polynomial system{ ∇f (x ,y ,z)−λ∇g(x ,y ,z) = 0
g(x ,y ,z) = 0.
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