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Approximating π

One way to approximate π is
to compute the area of the unit circle via numerical integration.
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This way is certainly not the best way to approximate π.

But the formulas are simple and computationally intensive,
which serves as a good motivating example to speedup code.

The n is the parameter to control the cost of this computation.
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Timing the Execution

We distinguish between small and large computations.

For small computations, in the order of milliseconds,
the timings should execute a loop of several runs.

For large computations:
1 mark the start of the computations,
2 do the computation, and
3 compute the elapsed CPU time.
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Vectorization

Lists are versatile data structures, but arrays (vectors)
1 allow for compact storage, as each item is of the same type,
2 can be accessed with fast index arithmetic.

Vectorization replaces arithmetical operations on vectors
with functions that take vectors as arguments.
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we do the following:

1 Make a vector x of equidistant points in [0,1].
2 Apply the function

√
to the entire vector x .

3 Apply the function sum to
√

x .

The functions on vectors are optimized and compiled.
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Cython

Cython is a variant of Python:
1 It adds type declarations.
2 Calls functions directly from the C standard library.
3 Is compiled.

Compared to vectorization,
cythonizing code leaves the original control structure intact,
while vectorizing often requires a significant reformulation.
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