
Vectorization and Cython

1 Executing a Python Function
a motivating example
timing the execution

2 Speeding Up Python
vectorization
Cython

MCS 320 Lecture 10
Introduction to Symbolic Computation

Jan Verschelde, 21 June 2024

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 1 / 9



Vectorization and Cython

1 Executing a Python Function
a motivating example
timing the execution

2 Speeding Up Python
vectorization
Cython

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 2 / 9



Approximating π

One way to approximate π is
to compute the area of the unit circle via numerical integration.

π

4
=

∫ 1

0

√
1− x2 ≈ 1

n

n∑
k=1

√
1−

(
k
n

)2

This way is certainly not the best way to approximate π.

But the formulas are simple and computationally intensive,
which serves as a good motivating example to speedup code.

The n is the parameter to control the cost of this computation.

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 3 / 9



Vectorization and Cython

1 Executing a Python Function
a motivating example
timing the execution

2 Speeding Up Python
vectorization
Cython

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 4 / 9



Timing the Execution

We distinguish between small and large computations.

For small computations, in the order of milliseconds,
the timings should execute a loop of several runs.

For large computations:
1 mark the start of the computations,
2 do the computation, and
3 compute the elapsed CPU time.

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 5 / 9



Vectorization and Cython

1 Executing a Python Function
a motivating example
timing the execution

2 Speeding Up Python
vectorization
Cython

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 6 / 9



Vectorization

Lists are versatile data structures, but arrays (vectors)
1 allow for compact storage, as each item is of the same type,
2 can be accessed with fast index arithmetic.

Vectorization replaces arithmetical operations on vectors
with functions that take vectors as arguments.

Applied to
n∑

k=1

√
1−

(
k
n

)2

we do the following:

1 Make a vector x of equidistant points in [0,1].
2 Apply the function

√
to the entire vector x .

3 Apply the function sum to
√

x .

The functions on vectors are optimized and compiled.

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 7 / 9



Vectorization and Cython

1 Executing a Python Function
a motivating example
timing the execution

2 Speeding Up Python
vectorization
Cython

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 8 / 9



Cython

Cython is a variant of Python:
1 It adds type declarations.
2 Calls functions directly from the C standard library.
3 Is compiled.

Compared to vectorization,
cythonizing code leaves the original control structure intact,
while vectorizing often requires a significant reformulation.

Intro to Symbolic Computation (MCS 320) Vectorization and Cython L-10 21 June 2024 9 / 9


	Executing a Python Function
	a motivating example
	timing the execution

	Speeding Up Python
	vectorization
	Cython


