Open book, open notes, open computer, but closed mouth!
Write all answers on these sheets.

<table>
<thead>
<tr>
<th>question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Consider the sum \(\sum_{k \geq 1} \frac{1}{2^k - 1} \).

 Give the Maple command to create a function to compute a numerical approximation of this sum. The function (call it \(sNd \)) must take two arguments:
 - \(N \) : the number of terms in the sum; and
 - \(d \) : the number of digits in the approximation.

 Do \(sNd(20,100) \); and report the last digit you see.

2. Explain what the command \texttt{map} does. Give an example of a good use.
3. The n-th Chebychev polynomial is also often defined as $\cos(n \arccos(x))$.

Give the definition of the procedure C which takes on input x and has index n.
Thus $C[n](x)$ returns $\cos(n \arccos(x))$ while $C[10](0.5)$ returns the value of the 10-th Chebychev polynomial at 0.5. Compare this value with $\text{orthopoly}[T](10,0.5)$.

4. What is the difference between diff and D?

Give an example where diff must be used instead of D:

Give an example where D must be used instead of diff:
5. Let a and b be positive numbers. Consider $f = \frac{x^2}{a} + \frac{y^2}{b}$ and the unit circle $x^2 + y^2 = 1$.

Give all Maple commands . . .

(a) to determine the number of extremal values of f on the unit circle.

(b) to show how to compute one (only one!) such extremal value.
6. Consider the curve $x^4 - 3xy + y^4$. Give all Maple commands

(a) to make a plot for x and y both ranging between -2 and $+2$.

(b) to convert the curve into polar coordinates.

(c) to plot the curve in polar coordinates.

7. The (i, j)-th entry in a Vandermonde matrix is defined as x_i^{j-1}.

Give the Maple command to make a 3-by-3 Vandermonde matrix.