{VERSION 5 0 "IBM INTEL LINUX" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal " -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "Quiz 7 MCS 320 Friday 7 Ma rch 2003" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 85 "1. Give the Maple command to compute a third order Taylor series of tan(x) at x = 1." } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 101 " Give th e first three decimal places of a floating-point approximation of this series at x = 1.1." }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 256 "" 0 "" {TEXT -1 8 "ANSWER :" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "ts := taylor(tan(x),x=1,3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#tsG++,&%\"xG\"\"\"F(!\"\"-%$tanG6#F(\"\"!,&F(F(*$)F* \"\"#F(F(F(*&F*F(F.F(F1-%\"OGF,\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "order(ts);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "evalf(subs(x=1.1,convert( ts,polynom)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+-*3L&>!\"*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "%-tan(1.1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$!)b2X6!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 57 "Up to a factor, the Legendre polynomial can be defined by" } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 50 " \+ k" }}{PARA 0 "" 0 "" {TEXT -1 74 " k! d 2 \+ k" }}{PARA 0 "" 0 "" {TEXT -1 61 " p (x) = --------- \+ -------- ( x - 1 )" }}{PARA 0 "" 0 "" {TEXT -1 46 " \+ k (2k)! k" }}{PARA 0 "" 0 "" {TEXT -1 48 " dx" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 150 "Give the Maple command to define the function p(k ,x) which takes on input the degree k and the variable x. On return i s the polynomial defined above." }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 117 "Compare the result of p(5,x) with the result of \+ orthopoly[P](5,x). What is the factor of difference between the two? " }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 256 7 "ANSWER:" } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "p := (k ,x) -> (k!/((2*k)!))*diff((x^2-1)^k,x$k);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"pGf*6$%\"kG%\"xG6\"6$%)operatorG%&arrowGF)*(-%*fact orialG6#9$\"\"\"-F/6#,$F1\"\"#!\"\"-%%diffG6$),&*$)9%F6F2F2F2F7F1-%\"$ G6$F?F1F2F)F)F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "p5 := ex pand(p(5,x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p5G,(*$)%\"xG\"\"& \"\"\"F**&#\"#5\"\"*F**$)F(\"\"$F*F*!\"\"*&#F)\"#@F*F(F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "l5 := orthopoly[P](5,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#l5G,(*$)%\"xG\"\"&\"\"\"#\"#j\"\")*&#\"#N \"\"%F**$)F(\"\"$F*F*!\"\"*&#\"#:F-F*F(F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "coeff(l5,x,5)*p5;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$)%\"xG\"\"&\"\"\"#\"#j\"\")*&#\"#N\"\"%F(*$)F&\"\"$F(F(!\"\"*&# \"#:F+F(F&F(F(" }}}}{MARK "2 0 1" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }