Maple Lecture 16. Maple Procedures and Recursion

Maple procedures can take procedures as input and give procedures on return. We will also see how to work with indexed procedures. With a remember table we can make recursive procedures to run efficiently.

The material in this lecture in inspired on [2, Section 8.4]. The first example below is taken from [3, pages 75-77], see also [1, Section 3.5] for recursion and remember tables. The most recent information can be found in the Maple 9 manuals [4] and [5].

16.1 Procedures returning Procedures

Newton’s method is one of the most fundamental algorithms for approximating solutions of \(f(x) = 0 \), where the approximations are generated as follows:

\[
 x(k + 1) = x(k) - \frac{f(x(k))}{f'(x(k))}, \quad \text{for } k = 0, 1, \ldots
\]

where \(f'(x) \) is the derivative of the function \(f \).

We will make a procedure that returns the right hand side of the iteration above. First of all, we must note the difference between \(x \) and \(x \rightarrow x \): the first \(x \) is just the name \(x \), while \(x \rightarrow x \) is the function \(x \).

```maple
> newtonstep := proc(f::procedure)
>     description `returns one step with Newton's method on f`:
>     local ix:
>     ix := x -> x: # identity function
>     ix - eval(f)/D(eval(f)); # implicit return
> end proc;
```

Note that we use the \texttt{eval} in the procedure to force Maple to evaluate, because for efficiency, Maple would otherwise delay the evaluation. Let us apply this to approximate a root of \(\cos(x) = 1/2 \). First we must make a function \(g(x) = \cos(x) - 1/2 \).

\[
> g := x -> \cos(x) - 1/2; # compute root of g(x) = 0
> gstep := newtonstep(g); # create a procedure
> gstep(a); # symbolic execution
> gstep(1.4); # numerical execution
> y := 0.4: # starting value
> Digits := 32: # working precision
> for i from 1 to 7 do
> y := gstep(y);
> end do;
\]

We know that \(\cos(\pi/3) = 1/2 \), let us thus check how accurate our result is:

\[
> \text{evalf}(y - \text{Pi}/3);
\]

16.2 Indexed Procedures

An example of an indexed procedure is the logarithm, where the base can be given as an index.

\[
> \text{interface(verbatimproc=3);}
> \text{print(log)};
\]

By default, we get the natural logarithm:

\[
> \text{log(10.0); log(exp(1));}
\]
To get the decimal logarithm, we need to provide the base 10 of the logarithm as index to the function call:

```maple
> log[10](10.0);
```

An index is just like an index in an array:

```maple
> a := A[3];
> type(a, 'indexed');
> op(a);
```

We see that we can check on whether a name is indexed or not via type and get access to the index with op.

As example, suppose \(f(t) = b + (70 - b) \cdot \exp(-0.2 \cdot t) \) models temperature in function of time with \(b \) as index. Initially, at \(t = 0 \), the temperature is 70. As \(t \) goes to infinity, the final temperature is \(b \). If \(b \) is not provided as index, take \(b = 32 \) as default.

```maple
> cool := proc(t)
> description `model of cooling temperature with index`:
> local b:
> if type(procname, 'indexed') # test if procedure has an index
> then b := op(procname): # take index as base
> else b := 32: # default value of base
> end if:
> return b + (70-b)*\exp(-0.2*t): # the general formula
> end proc;
> cool[20](1.4); cool(1.4); # test for different values of base
> cool[20](0); cool(0); # initially we are inside
> cool[20](100); cool(100); # close to outside temperature
```

We use indexed procedures to implement functions with parameters for which good default values are known. The default values may correspond to cases for which a very efficient implementation exists, whereas for other values, a general recipe needs to be applied.

16.3 Recursive Procedure Definitions

Many functions are defined recursively. We see how Maple has a nice mechanism to avoid superfluous recursive calls. One classical example of a recursive sequence are the Fibonacci numbers:

\[
F(0) = 0, \quad F(1) = 1, \quad \text{and} \quad F(n) = F(n-2) + F(n-1), \quad \text{for } n \geq 2.
\]

The direct way to implement this goes as follows:

```maple
> fib := proc(n::nonnegint)
> description `returns the nth Fibonacci number`:
> if n = 0 then
> return 0:
> elif n = 1 then
> return 1:
> else
> return fib(n-2)+fib(n-1):
> end if:
> end proc;
> for i from 1 to 10 do # first ten Fibonacci numbers
> fib(i);
> end do;
```

This is a very expensive way to compute the Fibonacci numbers, because of too many repetitive calls.
In Figure 1 we see the tree of procedure calls to compute $F(4)$. In general, to compute the nth Fibonacci number, 2^n calls are needed.

We will slightly modify the definition of the procedure to compute the Fibonacci numbers:

```maple
definedfib := proc(n::nonnegint)
    description 'Fibonacci with remember table':
    option remember:
    if n = 0 then
        return 0;
    elif n = 1 then
        return 1;
    else
        return definedfib(n-2) + definedfib(n-1);
    end if:
end proc;
definedfib(20);
definedfib(21);
definedfib := 1;  # introduce error in the table
end proc;
```

With the option remember, Maple has built a “remember table” for the procedure. This remember table stores the results of all calls of the procedure. Here is how we can consult this table:

```maple
eval(definedfib);
T := op(4,eval(definedfib));
eval(definedfib);
eval(T);
```

If you are curious about the “4”, do `?proc` to see where the other operands are used for. With calls to definedfib for higher numbers, we add values to the table:

```maple
definedfib(21);
eval(T);
```

Once we selected the remember table and assigned it to a variable, we can modify the table:

```maple
definedfib(20) := 1;  # introduce error in the table
eval(T);
```

We can also unassign values in the table:

```maple
eval(definedfib);
eval(T);
```
As the computation of the the 22nd Fibonacci number required the 20th, the 20th element has been recomputed and stored in the remember table:

As the computation of the the 22nd Fibonacci number required the 20th, the 20th element has been recomputed and stored in the remember table:

The command forget is used to clear the remember table of a Maple procedure. For example:

16.4 Assignments

1. Write a procedure fractional_power which returns $x^{1/n}$ for one argument x and index n. If the index is omitted, fractional_power(x) = \sqrt{x}.

2. Indices can be sequences. Write a procedure line which has one argument x and up to two indices. The output of line is as follows: line[$a; b$](x) = $a + bx$, line[a](x) = $a_1 + a_2x$, and line(x) = x.

3. The secant method to find a solution of $f(x) = 0$ is defined by

$$x_n = x_{n-1} - \frac{x_{n-1} - x_{n-2}}{f(x_{n-1}) - f(x_{n-2})} f(x_{n-1}), \quad \text{for } n \geq 2.$$

While the secant method requires no derivatives, we need two points (x_0 and x_1) to start the iteration. For simplicity we will take for x_0 and x_1 a random float generated by evalf(rand()/10^12).

(a) Write a Maple procedure to implement the formula above, to execute one step of the secant method. Use the following prototype:

```
secantstep := proc(f::procedure,x0::float,x1::float);
```

Test your implementation on $f(x) = \cos(x) - 1/2 = 0$.

(b) Use secantstep to define the Maple procedure with prototype

```
secant1 := proc(f::procedure,n::nonnegint);
```

which returns x_n, starting from random values for x_0 and x_1.

Also here, test your implementation on $f(x) = \cos(x) - 1/2 = 0$.

(c) Write a recursive implementation for the secant method, using the prototype

```
secant2 := proc(f::procedure,n::nonnegint);
```

which also returns x_n, starting from random values for x_0 and x_1.

Make sure this recursive implementation is as efficient as the iterative version.

4. Execute diff(sin(x),x); and change the remember table of diff so that next time we execute diff(sin(x),x); we get sin(x) on return.

5. The Bell numbers $B(n)$ are defined by $B(0) = 1$ and $B(n) = \sum_{i=0}^{n-1} \binom{n-1}{i} B(i)$, for $n > 0$. They count the number of partitions of a set of n elements.

Write a recursive procedure to compute the Bell numbers. The binomial coefficient $\binom{n-1}{i}$ is computed by binomial(n-1,i). Make sure your procedure is efficient enough to compute $B(50)$.
6. The \(n \)-th Chebychev polynomial is also often defined as \(\cos(n \arccos(x)) \).

Give the definition of the procedure \(C \) which takes on input \(x \) and has index \(n \).

Thus \(C[n](x) \) returns \(\cos(n \arccos(x)) \) while \(C[10](0.5) \) returns the value of the 10-th Chebychev polynomial at 0.5. Compare this value with \(\text{orthopoly}[T](10, 0.5) \).

7. Let \(L[n](x) \) denote a special kind of the Laguerre polynomial of degree \(n \) in the variable \(x \).

We define \(L[n](x) \) by \(L[0](x) = 1, L[1](x) = x \), and

for any degree \(n > 1 \) : \(n*L[n](x) = (2*n-1-x)*L[n-1](x) - (n-1)*L[n-2](x) \).

Write a Maple procedure \(\text{Laguerre} \) that returns \(L[n](x) \).

Use an index for the degree \(n \) and take \(x \) as parameter in the procedure.

Make sure your procedure can compute the 50-th Laguerre polynomial.

References

