Review of the first two parts of the course

In the first two parts of the course we learned about Maple’s advanced number system and about its favorite objects: polynomials and rational expressions.

As the final exam happens in a computer lab, all worksheets and lecture notes will still be available to you via the course web site. However, as there is always a slim chance that the network or web server fails, it is strongly recommended to have a well organized folder with lecture notes.

Below is a first, preliminary list of fresh questions to review. Consider also the review questions for the midterms, the quizzes, midterms, and homework assignments.

Review of Part One: First Steps with Maple

1. Explain the difference between \texttt{evalhf(1.0+10^{-10})} and \texttt{evalhf(1+10^{-10})}.

 The machine precision of a floating-point number system is defined as the smallest number you can add to one and obtain a result that is still larger than one. Give the Maple command(s) to get the magnitude of the machine precision.

2. Consider \(\mathbb{Z}_{31} = \{0, 1, 2, \ldots, 31\} \) and answer the following questions:
 (a) What is the multiplicative inverse of 7 in \(\mathbb{Z}_{31} \)?
 (b) Show that \(p = 15x^5 + 4x^4 + 23x^3 + 26x^2 + 6x + 1 \) is irreducible over \(\mathbb{Z}_{31} \).
 (c) Declare \(\alpha \) as a formal root of \(p \). How many elements has \(\mathbb{Z}_{31}(\alpha) \)? Justify your answer.
 (d) Compute the value \(\alpha^{21} \) as an element in \(\mathbb{Z}_{31}(\alpha) \).

3. Give all Maple commands to write \(e^{i \frac{2 \pi}{15}} \) as \(\cos(2 \frac{\pi}{15}) + i \sin(2 \frac{\pi}{15}) \).

4. The sequence \texttt{restart; s := a+b: a := x+y: b := u+v: s;} shows \(x+y+u+v \).
 (a) Give the Maple command to show that Maple still knows that \(s = a + b \).
 (b) Give one single Maple command to change \(s \) so that typing \(s \) shows \(x + y + u + v + c \).

5. Illustrate a good use of the \texttt{assign} command.
 Give an example of a Maple session in which the outcomes of \texttt{assign(x,5)} and \(x := 5 \) are different.

6. Consider the expression \(q = \cos(x^3 - 1) + 3 \sin(y) - z^7 \). Draw the expression tree for \(q \) and give all Maple commands you used to make the drawing.

7. How do we bring a matrix of floating-point numbers from file into a Maple session? Illustrate with a good example.

8. Generate optimized code to evaluate \(p = 79x^{298} + 56x^{205} + 49x^{164} + 63x^{121} + 57x^{119} - 59x^{42} \).
 How many arithmetical operations are needed to evaluate \(p \)? Compare with the cost of a direct evaluation of \(p \).
Review of Part Two: Polynomials and Rational Expressions

9. Draw the internal representation of \(p := xy(x - y) \). Give also the Maple command(s) (but not the output!) used to obtain your drawing. Explain why \(\text{subs}(1=-1,p) \) returns \(\frac{1}{xy(1 - y)} \).

10. Consider the polynomial \(p = x^3 - x - 2 \) and give all Maple commands following questions:
 (a) to write \(p \) as an **exact** product of linear factors, with **exact** complex numbers;
 (b) to compute a **numerical** factorization of \(p \) over the complex numbers;
 (c) to define a **symbolic** (i.e.: formal) factorization of \(p \), declaring sufficiently many roots.

11. Give all Maple commands to transform \((x - y)(x + y)\) into \((x + y)x - (x + y)y\).

12. Consider the rational expression \(r = \frac{79x^5 + 56x^4 + 49x^3 + 63x^2 + 57x - 59}{45x^5 - 82x^4 - 93x^3 + 43x - 62} \).
 Convert \(r \) into a form which is more efficient to evaluate. Compare the number of arithmetical operations needed to evaluate \(r \) in this more efficient form with the number of arithmetical operations needed to evaluate \(r \) in its given form.

13. Explain why normal forms are so important to symbolic computation.
 What can we do if a normal form is too expensive to compute? Illustrate with a good example.

FINAL EXAM is in CCC 408 on Tuesday 4 May 2004
from 1:00 till 3:00PM if your last name begins with A to K; and
from 3:00 till 5:00PM if your last name begins with L to Z.

In case of a scheduling conflict with another final exam, please let me know as soon as possible so we can schedule a makeup.

Observe the university rules concerning incompletes. An incomplete can only be granted if all of the following conditions are satisfied:

1. The student is in good standing and needs only a final exam to complete the course. In particular, this means that no midterms are skipped, attendance to the discussion sessions was documented by quiz scores, and all projects received a satisfactory grade.

2. Some event (for which adequate documentation can be provided) prevented the student from doing a makeup final exam.

Note that these rules are from the university, and that the administration needs to approve incompletes.