
Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

MCS 360 Lecture 33
Introduction to Data Structures
Jan Verschelde, 13 April 2020

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 1 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 2 / 30

Binary Search Trees

Consider 4, 5, 2, 3, 8, 1, 7 (recall lecture 24).
Insert the numbers in a tree:

4
PPP

5
���

2
H
H

3

H
H

8

�
�

1
�

7

Rules to insert x at node N:
if N is empty, then put x in N
if x < N, insert x to the left of N
if x ≥ N, insert x to the right of N

Recursive printing: left, node, right sorts the sequence.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 3 / 30

an unbalanced tree

Inserting 0,1,2, . . . ,9.

depth of tree : 9
0
1
2
3
4

5
6

7
8

9

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 4 / 30

shaping binary search trees

To make a binary search tree with given shape:
20
� @

10 40
� @

5 15
� @
1 7

20
10

5
1
7

15
40

Insert numbers in a particular order: 20, 40, 10, 5, 15, 1, 7.

depth(T) = 0, if T is empty,
= 1 + max(depth(left(T)), depth(right(T))), otherwise.

The tree is unbalanced because the depth of the left tree is two,
while the depth of the right tree is zero.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 5 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 6 / 30

Right Rotation

To balance the binary search tree,
we do a right rotate around the root:

20
� @

10 40
� @

5 15
� @
1 7

10
�� HH

5
� @
1 7

20
� @

15 40

Observe the effects of a right rotation:
left tree has become the new root;
old root is now at the right of new root;
left tree of old root is now the right tree
of the left tree of old root.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 7 / 30

Right Rotation in 3 Steps

Tree with root node T:

T - 20
� @

L - 10 40
� @

5 15
� @
1 7

N - 20
� @

15 40

R - 10
�
�

H
H

5
� @
1 7

20
� @

15 40

1 Label left of T with L.
2 New tree N has right of T as right

and as left the right of L.
3 Result R has L as root, the tree N as right,

and the left of L as left.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 8 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 9 / 30

a node struct

Node

data

lefts� right s -

struct Node
{

int data; // numbers stored at node in tree
Node *left; // pointer to left branch of tree
Node *right; // pointer to right branch of tree

Node(const int& item, Node* left_ptr = NULL,
Node* right_ptr = NULL) :

data(item),
left(left_ptr), right(right_ptr) {}

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 10 / 30

a class Tree

#include "mcs360_integer_tree_node.h"

namespace mcs360_integer_tree
{
class Tree
{

private:
Node *root; // data member

public:
Tree(const int& item,

const Tree& left = Tree(),
const Tree& right = Tree()) :

root(new Node(item,left.root,right.root)) {}
Tree get_left() const;
Tree get_right() const;
void insert(int item);

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 11 / 30

function rotate_right

Prototype of function in client of class Tree:

Tree rotate_right (Tree t);

// Returns the tree rotated to the right
// around its root.

// Precondition: left of t is not null.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 12 / 30

definition of rotate_right

Tree rotate_right (Tree t)
{

Tree left = t.get_left();

Tree new_t = Tree(t.get_data(),
left.get_right(),t.get_right());

Tree R = Tree(left.get_data(),
left.get_left(),new_t);

return R;
}

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 13 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 14 / 30

AVL Trees

Define the balance of a tree as

balance = depth(right tree) − depth(left tree).

G.M. Adel’son-Vel’skiî and E.M Landis published in 1962 an algorithm
to maintain the balance of a binary search tree.

If balance gets out of range −1 . . .+ 1,
the subtree is rotated to bring into balance.

Their approach is known as AVL trees.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 15 / 30

a Class Hierarchy

Binary Tree Node

6

Binary Search Tree

6

Binary Search Tree with Rotation

6

AVL Tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 16 / 30

computing the balance

Recall the definition:

balance = depth(right tree) − depth(left tree).

At every node we compute the balance,
displayed as subscript:

20−2
� @

10−1 400
� @

50 150
� @
10 70

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 17 / 30

balancing a left-left tree

The tree below is left heavy as the balance is −2.

We also say that this is a left-left tree.

20−2
�

10−1
�

50

100
� @
50 200

Executing a right rotation balances the tree.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 18 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 19 / 30

critically unbalanced trees

A tree is critically unbalanced if its balance is −2 or +2.
20−2
�

10−1
�

50

a left-left tree

20−2
�

5+1
@
100

a left-right tree

5+2
@
10+1
@
200

a right-right tree

5+2
@
20−1
�

100

a right-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 20 / 30

balancing trees of mixed kind

A right rotation balances a left-left tree
and a left rotation balances a right-right tree.

Balancing a left-right tree happens in two stages:
1 rotate left-right tree to left-left tree:

20−2
�

5+1
@
100

20−2
�

10−1
�

50

2 apply right rotation to left-left tree:
20−2
�

10−1
�

50

100
� @

50 200

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 21 / 30

rotating a left-right tree
We rotate the left-right tree to a left-left tree:

20−2
� @

5+1 400
� @

10010
� @

70 120

20−2
� @

10−1 400
� @

50 120
� @

10 70

Observe the effects of the rotation:
the data at the left node of the new tree (10)
is swapped with the data of the left of the old tree (5);
the right of the left of the new tree (12)
is the right of the right of the left of the old tree;
the right of the left of the left of the new tree (7)
is the left of the right of the left of the old tree.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 22 / 30

rotating to left-left tree in 4 steps

Tree with root node T:
T -

L -

20−2
� @

5+1 400
� @

� R10010
� @

70 120

N - 50
� @

10 70

M - 10−1
� @

N0 120

T - 20−2
� @

M−1 400

1 Label left of T with L and right of L with R.
2 Tree N has as its left the left of L, as its right the left of R.
3 Tree M has as its left N, as its right the right of R.
4 Return the tree with its left M and its right the right of T.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 23 / 30

a function to rotate a tree

Tree balance_by_rotation (Tree t)
{

if(is_left_left(t))
return rotate_right(t);

else if(is_right_right(t))
return rotate_left(t);

else if(is_left_right(t))
{

Tree R = rotate_to_left_left(t);
return rotate_right(R);

}
else if(is_right_left(t))
{

Tree R = rotate_to_right_right(t);
return rotate_left(R);

}

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 24 / 30

the recursive calls

else
{

Tree L,R;
if(!t.is_left_null())

L = balance_by_rotation(t.get_left());
if(!t.is_right_null())

R = balance_by_rotation(t.get_right());
return Tree(t.get_data(),L,R);

}
}

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 25 / 30

Balancing Search Trees

1 Tree Balance and Rotation
binary search trees
right rotation of a tree around a node
code for right rotation

2 AVL Trees
self-balancing search trees
four kinds of critically unbalanced trees

3 code for rotation
from left-right to left-left tree

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 26 / 30

prototype of the function

Tree rotate_to_left_left (Tree t);

// Returns the tree rotated to a left-left tree.

// Preconditions:
// (1) left of t is not null; and
// (2) right of left of t is not null.

Test: insert 20, 5, 1, 10, 7, 12 to binary search tree.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 27 / 30

definition of the function

Tree rotate_to_left_left (Tree t)
{

Tree left = t.get_left();
Tree right = left.get_right();

Tree new_left = Tree(left.get_data(),
left.get_left(),right.get_left());

Tree new_right = Tree(right.get_data(),
new_left,right.get_right());

Tree R = Tree(t.get_data(),
new_right,t.get_right());

return R;
}

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 28 / 30

rebalancing search trees

After each insert (or removal):

check the balance of the tree,

and if critically unbalanced, rebalance.

Performance of the AVL tree:

worst case: 1.44× log2(n),

on average: log2(n) + 0.25 comparisons needed.

→ close to complete binary search tree.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 29 / 30

Summary + Exercises

Started chapter 11 on balancing binary search trees.

Exercises:
1 Take a numerical example to left rotate a binary search tree with

integer values. Formulate carefully each step in the left rotation.
Justify the correctness of the algorithm.

2 Formulate the algorithm to rotate a right-left tree to a right-right
tree and illustrate with an example.

3 The posted code provides functions to make an AVL tree.
Design a class to represent an AVL tree.

4 Take your design of the previous exercise and define the methods
of the class to represent an AVL tree.

Introduction to Data Structures (MCS 360) Balancing Search Trees L-33 13 April 2020 30 / 30

	Tree Balance and Rotation
	binary search trees
	right rotation of a tree around a node
	code for right rotation

	AVL Trees
	self-balancing search trees
	four kinds of critically unbalanced trees

	code for rotation
	from left-right to left-left tree

