Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree

MCS 360 Lecture 33
Introduction to Data Structures
Jan Verschelde, 13 November 2017
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
Binary Search Trees

Consider 4, 5, 2, 3, 8, 1, 7 (recall lecture 24).
Insert the numbers in a tree:

```
  4
 / \
2   5
|   |
1   3
  \   
    8
     |
      7
```

Rules to insert x at node N:

- if N is empty, then put x in N
- if $x < N$, insert x to the left of N
- if $x \geq N$, insert x to the right of N

Recursive printing: left, node, right sorts the sequence.
an unbalanced tree

Inserting 0, 1, 2, …, 9.

depth of tree : 9

```
0
  1
    2
      3
        4
          5
            6
              7
                8
                  9
```
To make a binary search tree with given shape:

```
  20
 /   \
10   40
 /   / \
5   15  \
1  7
```

Insert numbers in a particular order: 20, 40, 10, 5, 15, 1, 7.

The tree is unbalanced because the depth of the left tree is two, while the depth of the right tree is zero.
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
Right Rotation

To balance the binary search tree tree, we do a right rotate around the root:

```
  20
 /   \
10   40
   /   \
  15  51
     /   \
    17
```

Observe the effects of a right rotation:

- left tree has become the new root;
- old root is now at the right of new root;
- left tree of old root is now the right tree of the left tree of old root.
Right Rotation in 3 Steps

Tree with root node T:

1. Label left of T with L.
2. New tree N has right of T as right and as left the right of L.
3. Result R has L as root, the tree N as right, and the left of L as left.
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
a node struct

```
struct Node
{
    int data;       // numbers stored at node in tree
    Node *left;     // pointer to left branch of tree
    Node *right;    // pointer to right branch of tree

    Node(const int& item, Node* left_ptr = NULL, Node* right_ptr = NULL) :
        data(item),
        left(left_ptr), right(right_ptr) {}
};
```
a class Tree

#include "mcs360_integer_tree_node.h"

namespace mcs360_integer_tree
{
 class Tree
 {
 private:
 Node *root; // data member

 public:
 Tree(const int& item,
 const Tree& left = Tree(),
 const Tree& right = Tree()) :
 root(new Node(item, left.root, right.root)) {}
 Tree get_left() const;
 Tree get_right() const;
 void insert(int item);
 }
}
function rotate_right

Prototype of function in client of class Tree:

Tree rotate_right (Tree t);

// Returns the tree rotated to the right
// around its root.

// Precondition: left of t is not null.
Tree rotate_right (Tree t)
{
 Tree left = t.get_left();

 Tree new_t = Tree(t.get_data(),
 left.get_right(),t.get_right());

 Tree R = Tree(left.get_data(),
 left.get_left(),new_t);

 return R;
}
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
AVL Trees

Define the balance of a tree as

\[\text{balance} = \text{depth(right tree)} - \text{depth(left tree)}. \]

Note: depth (chapter 8) = height (chapter 11).

G.M. Adel’son-Vel’skiî and E.M Landis published in 1962 an algorithm to maintain the balance of a binary search tree.

If balance gets out of range \(-1 \ldots +1\), the subtree is rotated to bring into balance.

Their approach is known as AVL trees.
a Class Hierarchy

Binary Tree Node

Binary Search Tree

Binary Search Tree with Rotation

AVL Tree
computing the balance

Recall the definition:

\[\text{balance} = \text{depth(right tree)} - \text{depth(left tree)}. \]

At every node we compute the balance, displayed as subscript:
balancing a left-left tree

The tree below is *left heavy* as the balance is \(-2\).
We also say that this is a *left-left tree*.

\[
\begin{array}{c}
20_{-2} \\
10_{-1} \\
5_0 \\
\end{array}
\quad \begin{array}{c}
10_0 \\
5_0 \\
20_0 \\
\end{array}
\]

Executing a right rotation balances the tree.
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. Code for rotation
 - from left-right to left-left tree
critically unbalanced trees

A tree is *critically unbalanced* if its balance is -2 or $+2$.

Left-left tree

```
  20 -2
 /    \
10 -1  50
```

Left-right tree

```
  20 -2
 /    \
 5 +1 10 0
```

Right-right tree

```
  5 +2
 /    \
10 +1  20 0
```

Right-left tree

```
  5 +2
 /    \
20 -1 10 0
```
balancing trees of mixed kind

A right rotation balances a left-left tree and a left rotation balances a right-right tree.

Balancing a left-right tree happens in two stages:

1. rotate left-right tree to left-left tree:

 \[
 \begin{array}{c}
 20_
 \end{array}
 \]
 \[
 \begin{array}{c}
 5_+1
 \end{array}
 \]
 \[
 \begin{array}{c}
 10_0
 \end{array}
 \]

2. apply right rotation to left-left tree:

 \[
 \begin{array}{c}
 20_
 \end{array}
 \]
 \[
 \begin{array}{c}
 10_1
 \end{array}
 \]
 \[
 \begin{array}{c}
 5_0
 \end{array}
 \]

 \[
 \begin{array}{c}
 20_
 \end{array}
 \]
 \[
 \begin{array}{c}
 10_1
 \end{array}
 \]
 \[
 \begin{array}{c}
 5_0
 \end{array}
 \]
 \[
 \begin{array}{c}
 20_0
 \end{array}
 \]
rotating a left-right tree

We rotate the left-right tree to a left-left tree:

Observe the effects of the rotation:
- the data at the left node of the new tree (10) is swapped with the data of the left of the old tree (5);
- the right of the left of the new tree (12) is the right of the right of the left of the old tree;
- the right of the left of the left of the new tree (7) is the left of the right of the left of the old tree.
rotating to left-left tree in 4 steps

Tree with root node T:

1. Label left of T with L and right of L with R.
2. Tree N has as its left the left of L, as its right the left of R.
3. Tree M has as its left N, as its right the right of R.
4. Return the tree with its left M and its right the right of T.
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
insert numbers

Insert the numbers 50, 68, 98, 25, 15, 43, 47, 45 into an AVL tree.

After inserting 50, 68, and 98, we get a right-right tree:

50_0 50_{+1} 50_{+2}
 \ \
 68_0 68_{+1} 98_0

We rotate the right-right tree:

50_{+2} 68_0
 \
 68_{+1} 50_0 98_0
insert 25, 15

We insert 25 and 15 into

\[
\begin{array}{c}
68_0 \\
/ \ \\
50_0 \ 98_0 \\
/ \\
25_0 \ 50_1 \\
/ \\
15_0
\end{array}
\]

and we get a left-left tree in the middle:

\[
\begin{array}{c}
68_{-1} \\
/ \ \\
50_{-1} \ 98_0 \\
/ \\
25_0 \\
/ \\
15_0
\end{array}
\]

\[
\begin{array}{c}
68_{-2} \\
/ \ \\
50_{-2} \ 98_0 \\
/ \\
25_{-1}
\end{array}
\]

\[
\begin{array}{c}
50_0 \\
/ \ \\
25_{-1} \ 68_{+1} \\
/ \\
15_0 \ 98_0
\end{array}
\]

and the left-left tree in the middle is rotated.
insert 43 and 47
The right-left tree is first rotated to a right-right tree. Then the right-right tree is rotated.
Balancing Search Trees

1. Tree Balance and Rotation
 - binary search trees
 - right rotation of a tree around a node
 - code for right rotation

2. AVL Trees
 - self-balancing search trees
 - four kinds of critically unbalanced trees
 - insert a sequence of numbers into an AVL tree

3. code for rotation
 - from left-right to left-left tree
Tree rotate_to_left_left (Tree t);

// Returns the tree rotated to a left-left tree.

// Preconditions:
// (1) left of t is not null; and
// (2) right of left of t is not null.

Test: insert 20, 5, 1, 10, 7, 12 to binary search tree.
definition of the function

Tree rotate_to_left_left (Tree t)
{
 Tree left = t.get_left();
 Tree right = left.get_right();

 Tree new_left = Tree(left.get_data(),
 left.get_left(),right.get_left());

 Tree new_right = Tree(right.get_data(),
 new_left,right.get_right());

 Tree R = Tree(t.get_data(),
 new_right,t.get_right());

 return R;
}
rebalancing search trees

After each insert (or removal):

- check the balance of the tree,
- and if critically unbalanced, rebalance.

Performance of the AVL tree:

- worst case: \(1.44 \times \log_2(n)\),
- on average: \(\log_2(n) + 0.25\) comparisons needed.

\(\rightarrow\) close to complete binary search tree.
Summary + Exercises

Started chapter 11 on balancing binary search trees.

Exercises:

1. Formulate the algorithm for left rotation and illustrate with an example.
2. Write code for left rotation around the root and give the output of a test to show that it works.
3. Formulate the algorithm to rotate a right-left tree to a right-right tree and illustrate with an example.
4. Write code for the rotation of the previous exercise and give the output of a test to show that it works.