1 Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2 Binary Search
 - sorted vectors of numbers
 - fast power function

3 the Fibonacci numbers
 - when not to use recursion
 - memoization

MCS 360 Lecture 22
Introduction to Data Structures
Jan Verschelde, 18 October 2017
Binary Search

1. Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2. Binary Search
 - sorted vectors of numbers
 - fast power function

3. the Fibonacci numbers
 - when not to use recursion
 - memoization
The Towers of Hanoi
an ancient mathematical puzzle

Input: disks on a pile, all of varying size, no larger disk sits above a smaller disk, and two other empty piles.

Task: move the disks from the first pile to the second, obeying the following rules:
1. move one disk at a time,
2. never place a larger disk on a smaller one, you may use the third pile as buffer.
a recursive solution

Assume we know how to move a stack with one disk less.
a recursive algorithm

Base case: move one disk from A to B.
To move n disks from A to B:

- Move $n - 1$ disks from A to C using B as auxiliary pile
- Move n-th disk from A to B
- Move $n - 1$ disks from C to B using A as auxiliary pile
1 Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2 Binary Search
 - sorted vectors of numbers
 - fast power function

3 the Fibonacci numbers
 - when not to use recursion
 - memoization
The main program

```cpp
int main()
{
    cout << "give number of disks : " ;
    int n; cin >> n;

    stack<int> A;
    for(int i=0; i<n; i++) A.push(n-i);
    cout << "stack A : "; write(A);
    cout << endl;

    stack<int> B,C;
    hanoi(n,A,B,C);
    write(A,B,C);

    return 0;
}
```
running the program

give number of disks : 4
stack A : 1 2 3 4
 A : 2 3 4 B : 1 C :
 A : 3 4 B : 2 C : 1
 A : B : 1 2 C : 3 4
 A : 4 B : 3 C : 1 2
 A : 2 B : 1 4 C : 3
 A : B : 2 3 C : 1 4
 A : 4 B : 1 2 3 C :
 A : B : 4 C : 1 2 3
 A : 2 3 B : 1 4 C :
 A : 3 B : 2 C : 1 4
 A : 4 B : 1 2 C : 3
 A : B : 3 4 C : 1 2
 A : 2 B : 1 C : 3 4
 A : B : 2 3 4 C : 1
 A : B : 1 2 3 4 C :
writing stacks

```cpp
void write ( stack<int> s )
{
    stack<int> t;

    for(t=s; !t.empty(); t.pop())
        cout << " " << t.top();
}

void write ( stack<int> A, stack<int> B,
            stack<int> C )
{
    cout << " A : "; write(A);
    cout << " B : "; write(B);
    cout << " C : "; write(C); cout << endl;
}
```
void hanoi (int n, stack<int> &A, stack<int> &B,
 stack<int> &C)
{
 if(n==1) // move disk from A to B
 {
 B.push(A.top()); A.pop(); write(A,B,C);
 }
 else
 {
 // move n-1 disks from A to C, B is auxiliary
 hanoi(n-1,A,C,B);
 // move nth disk from A to B
 B.push(A.top()); A.pop(); write(A,B,C);
 // move n-1 disks from C to B, A is auxiliary
 hanoi(n-1,C,B,A);
 }
}
analysis of the solution

algorithm Do we have an algorithm?

1. termination: n decreases in each call;
2. correctness: proof by induction.

C++ Use of STL stack, call by reference.

cost What is the number of moves?
Binary Search

1. Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2. Binary Search
 - sorted vectors of numbers
 - fast power function

3. the Fibonacci numbers
 - when not to use recursion
 - memoization
an example of binary search

Looking for 70 in *a sorted sequence*

2 3 15 39 42 48 51 58 59 64 69 73 76 81 96 97

59 64 69 73 76 81 96 97

59 64 69

69

70 does not occur

cost = # levels in tree = \(\log_2(n) \) \(\Rightarrow O(\log_2(n)) \)
the main program

int search (vector<int> v, int a, int b, int e);
// returns k, with a <= k <= b if v[k] == e,
// otherwise returns -1

int main()
{
 cout << "give n : ";
 int n; cin >> n;

 vector<int> v = generate(n);
 cout << "v : "; write(v); cout << endl;
 sort(v.begin(),v.end());
 cout << "v : "; write(v); cout << endl;

 cout << "give a number : ";
 int e; cin >> e;
 int k = search(v,0,v.size()-1,e);
}
using STL algorithms

The binary search is available for STL containers:

```cpp
bool answer = binary_search(v.begin(), v.end(), e);
```

The `binary_search` returns true if `e` occurs.

```cpp
vector<int>::iterator i;
i = lower_bound(v.begin(), v.end(), e);
int d = i - v.begin();
if (v[d] == e)
    cout << e << " occurs at v[" << d << "]\n";
```

The index returned by `lower_bound` is the spot where `e` can be inserted while preserving the order.
int search (vector<int> v, int a, int b, int e)
{
 if(a == b)
 return (v[a] == e) ? a : -1;
 else
 {
 int m = (a+b)/2;

 if(v[m] == e)
 return m;
 else if(v[m] < e)
 return search(v,m+1,b,e);
 else
 return search(v,a,m-1,e);
 }
}

recursive binary search
1 Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2 Binary Search
 - sorted vectors of numbers
 - fast power function

3 the Fibonacci numbers
 - when not to use recursion
 - memoization
a fast power function

Repeated squaring, for example:

\[a^4 = a \times a \times a \times a = (a^2) \times (a^2) = (a^2)^2. \]

No gain with 4, but for 8: \[a^8 = (a^4)^2 = ((a^2)^2)^2. \]

Cost?

\[
\begin{align*}
((a^2)^2)^2 &= b^2 = b \times b, b = (a^2)^2 \\
(a^2)^2 &= c^2 = c \times c, c = a^2 \\
a^2 &= a \times a.
\end{align*}
\]

We count three \(\times \), observe \(3 = \log_2(8) \).

In general: compute \(a^n \) with \(O(\log_2(n)) \) multiplications.
a recursive function

double recursive_power (double a, int n)
{
 if(n==0)
 return 1.0;
 else if(n==1)
 return a;
 else {
 int d = n / 2;
 int r = n % 2;
 double y = recursive_power(a,d);
 y = y*y;
 if(r==0)
 return y;
 else {
 double z = recursive_power(a,r);
 return y*z;
 }
 }
}
Binary Search

1. Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2. Binary Search
 - sorted vectors of numbers
 - fast power function

3. The Fibonacci numbers
 - when not to use recursion
 - memoization
the Fibonacci numbers

\[f_0 = 0, \quad f_1 = 1, \quad f_n = f_{n-1} + f_{n-2}, \quad n > 1 \]

```c
long long int f ( int n )
{
    if(n == 0)
        return 0;
    else if(n == 1)
        return 1;
    else
        return f(n-1) + f(n-2);
}
```
exponentional \#calls

Let $c_n = \#\text{calls to compute } f(n)$.

$c_2 = 2$, $c_3 = 4 = 2^2$, $c_4 = 8 = 2^3$

recursion: $c_n = c_{n-1} + c_{n-2} + 2 = \cdots$ is $O(2^n)$
1 Recursive Problem Solving
 - the towers of Hanoi
 - recursive C++ code

2 Binary Search
 - sorted vectors of numbers
 - fast power function

3 the Fibonacci numbers
 - when not to use recursion
 - memoization
memoization

We can store the results of the function calls. Before execution of definition, lookup table.

```cpp
long long int mf ( int n )
{
    static vector<long long int> v;

    if(n == -1)
    {
        v.reserve(100);
        for(int i=0; i<100; i++) v[i] = -1;
        return -1;
    }
    return -1;
}
```

Declaring `v` as static implies: `v` persists after `mf` returns.
using memoization

else if (n == -2)
{
 // we write the vector v
}
else
{
 if(v[n] != -1)
 return v[n];
 else
 {
 if(n==0)
 v[0] = 0;
 else if(n==1)
 v[1] = 1;
 else
 v[n] = mf(n-1) + mf(n-2);
 return v[n];
 }
}
Summary + Exercises

Covered more of Chapter 7 on recursion.

Exercises:

1. Modify the program to solve the towers of Hanoi so we see the number of each move when writing stacks.

2. Write a function `trace_recursive_power` to trace the recursive function calls in the recursive algorithm to compute a^n. Refer to the code to justify why the number of multiplications is $O(\log_2(n))$.

3. Adjust the original recursive definition of f to compute the Fibonacci numbers to count the number of function calls. Make a table for growing values of n.