
Unified Modeling Language
a case study
1 an online phone book

use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

MCS 360 Lecture 5
Introduction to Data Structures

Jan Verschelde, 24 January 2020

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 1 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 2 / 27

An Online Phone Book

As case study we consider the management and the consultation of an
online phone book.

Two types of use:
1 manager: add and delete entries;
2 reader: lookup phone numbers.

Two types of diagrams in UML:
1 class diagram: defines data and methods;
2 use case diagram: who uses what methods.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 3 / 27

the class PhoneBook

We use an array of strings to represent
the entries in a phone book.

A class diagram:
-: private
+: public

PhoneBook

- string*
- number

+ PhoneBook()

+ P̃honeBook()

+ add()

+ delete()

+ lookup()

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 4 / 27

Use Case Diagram for PhoneBook
a behavior modeling diagram

Managers and readers differ in their use of the PhoneBook:

�� @@

i

manager

�� @@

i

reader

PhoneBook

�
 �	PhoneBook()�
 �	P̃honeBook()�
 �	add()�
 �	delete()�
 �	lookup()

�
�
�

Q
Q
Q

�
�
�
�

S
S
S
S

Q
Q

Q

�
�
�
�

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 5 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 6 / 27

Encapsulating a File

What does the creator PhoneBook() do?
1 read number of entries from file;
2 allocate memory;
3 read data from file into array.

The destructor P̃honeBook() deallocates the memory.

Principle of information hiding:
1 actual file and its format hidden from the user;
2 programmer considers array of strings.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 7 / 27

Command Line Arguments

Main program is used in two different modes:
1 administrative mode by manager;
2 reader only consults the phone book.

One possible way of implementation: -a is command line argument of
phonebook program.

Run in administrative mode:

$ phonebook -a

Without option, program runs in reader mode.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 8 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 9 / 27

Arguments of main

int main (int argc, char *argv[])

Two optional arguments:
1 argc: the number of arguments, argc ≥ 1

If there are no command line arguments, then argc = 1.
2 argv: the arguments of the command line
argv is an array of strings,
argv[0] is the name of the program
argv[i] is the (i-1)-th argument of the program.

Example at the command prompt $:

$ command_line_args -a somefile.txt

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 10 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 11 / 27

arrays of strings
#include <iostream>
#include <string>
using namespace std;

int main (int argc, char *argv[])
{

cout << "name of the program : \""
<< argv[0] << "\"" << endl;

cout << "number of command line arguments : "
<< argc-1 << endl;

if(argc > 1)
for(int i=1; i<argc; i++)

cout << "argument " << i << " : \""
<< argv[i] << "\"" << endl;

return 0;
}

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 12 / 27

two exercises

Exercise 1:
1 Modify copy_files.cpp of lecture 3 so that the names

for the two files are given on the command line.

Exercise 2:
2 Add the command line option -v to the hello_world.cpp

program of the first lecture.
I Without -v, the program executes as before.
I With -v, the program prints the version number,

e.g.: Release 1.0.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 13 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 14 / 27

Files

The data is stored on file, in phonebook_data.txt.
Example:

2
111-222-4444 Elliot Koffman
333-666-9999 Paul Wolfgang

Number of entries comes first, one entry per line.
On each line, a phone number is in the first 11 characters followed by a
name.

Other files:
phonebook.h: public and private attributes;
phonebook.cpp: defines the class methods;
use_phonebook.cpp: the main program.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 15 / 27

the file phonebook.h

#ifndef PHONEBOOK_H
#define PHONEBOOK_H
#include <string>
class PhoneBook
{

public:
PhoneBook();
~PhoneBook();
int length() const;
std::string operator[](size_t k) const;
void add(const std::string s);

private:
int number; // number of entries
std::string *data; // array of strings

};
#endif

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 16 / 27

specifications of methods
Add as documentation in phonebook.h:

PhoneBook();
/*

Reads phone book entries from file.

Precondition:
file phonebook_data has valid entries.

Postcondition:
for PhoneBook b, there are b.length()
entries b[k], with 0 <= k < b.length(). */

~PhoneBook();
/*

Deallocates memory occupied by entries.

Postcondition:
b.number == 0 after b.~PhoneBook(). */

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 17 / 27

specifications continued

int length() const;
/*

Returns the number of entries in phone book.

Precondition:
constructor PhoneBook() executed correctly.

Postcondition: length() >= 0. */

std::string operator[](size_t k) const;
/*

Returns element at index k in phone book.

Precondition: k < b.length() for PhoneBook b.
Postcondition:

b[k] is k-th entry in phone book,
matching appropriate line on file. */

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 18 / 27

specifications of add

void add(const std::string s);
/*

Adds a new entry defined by the data in s.

Precondition:
s matches the data format for file,
contains phone number and name.

Postcondition:
after PhoneBook b; b[b.length()-1] == s. */

In a more elaborate design, a separate class would define the layout of
the strings on file.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 19 / 27

constructor and destructor
#include <limits>
#include <fstream>
#include "phonebook.h"
PhoneBook::PhoneBook()
{

std::ifstream ins("phonebook_data.txt");
ins >> number;
data = new std::string[number];
ins.ignore(std::numeric_limits<int>::max(),’\n’);
for(int k=0; k<number; k++)

getline(ins,data[k],’\n’);
ins.close();

}
PhoneBook::~PhoneBook()
{

delete[] data;
number = 0;

}

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 20 / 27

selectors and modifier
int PhoneBook::length() const
{

return number;
}
std::string PhoneBook::operator[](size_t k) const
{

return data[k];
}
void PhoneBook::add(const std::string s)
{

std::ofstream outs("phonebook_data.txt");
number = number + 1;
outs << number << std::endl;
for(int k=0; k<number-1; k++)

outs << data[k] << std::endl;
outs << s << std::endl;
outs.close();

}

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 21 / 27

Unified Modeling Language

1 an online phone book
use case diagram
encapsulating a file

2 Command Line Arguments
arguments of main
arrays of strings

3 Class Definition
the files phonebook.h and phonebook.cpp
the main program

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 22 / 27

the main program

#include <iostream>
#include "phonebook.h"
using namespace std;

int main (int argc, char* argv[])
{

PhoneBook b;
int n = b.length();

cout << "number of entries : " << n << endl;
if(argc == 1)

for(int k=0; k<n; k++)
cout << " entry " << k << " : "

<< b[k] << endl;

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 23 / 27

running as manager

else
{

string new_entry;

cout << "give new entry : ";
getline(cin,new_entry);

b.add(new_entry);
}

return 0;
}

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 24 / 27

Dynamic Allocation and Deallocation

int main (int argc, char* argv[])
{

PhoneBook *b;
// statements welcoming user
b = new PhoneBook; // allocation
// statements using b
b->~PhoneBook(); // deallocation

For PhoneBook *b, need to replace
b.length() by b->length()
b[k] by (*b)[k]
b.add(new_entry) by b->add(new_entry)

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 25 / 27

the makefile defines the make use_phonebook

1 which c++ compiler to use,
2 the compilation of the definition of the class,
3 the compilation of the main program,
4 the linking of the files with the object code.

gpp=g++

use_phonebook:
$(gpp) -c phonebook.cpp
$(gpp) -c use_phonebook.cpp
$(gpp) -o /tmp/use_phonebook \

phonebook.o use_phonebook.o

clean:
del *.o

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 26 / 27

Summary + Additional Exercises

We ended Chapter 1: Introduction to Software Design.

Additional Exercises:
3 Provide another constructor to the class PhoneBook with allows

the name of the file as input parameter.
4 Add a method delete(size_t k) to remove an entry from file,

given the index k in the array.
5 Develop a search(const string name) method to search a

phone number given a name.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 27 / 27

	an online phone book
	use case diagram
	encapsulating a file

	Command Line Arguments
	arguments of main
	arrays of strings

	Class Definition
	the files phonebook.h and phonebook.cpp
	the main program

