Unified Modeling Language
a case study

0 an online phone book
@ use case diagram
@ encapsulating a file

9 Command Line Arguments
@ arguments of main
@ arrays of strings

e Class Definition
@ the files phonebook.h and phonebook . cpp
@ the main program

MCS 360 Lecture 5
Introduction to Data Structures
Jan Verschelde, 24 January 2020

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 1/27

Unified Modeling Language

0 an online phone book

@ use case diagram

Introduction to Data Structures (MCS 360)

Unified Modeling Language

An Online Phone Book

As case study we consider the management and the consultation of an
online phone book.

Two types of use:

@ manager: add and delete entries;
@ reader: lookup phone numbers.

Two types of diagrams in UML:
@ class diagram: defines data and methods;
@ use case diagram: who uses what methods.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 3/27

the class PhoneBook

We use an array of strings to represent
the entries in a phone book.

A class diagram:

—: private PhoneBook
+: public
- stringx
— number

+ PhoneBook ()
+ PhoneBook ()
+ add()
+ delete()
+ lookup ()

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 4/27

Use Case Diagram for PhoneBook

a behavior modeling diagram

Managers and readers differ in their use of the PhoneBook:

(PhoneBook ())

("PhoneBook ())

iz(aal)
(deteten)

manager (lookup()) reader

PhoneBook

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 5/27

Unified Modeling Language
0 an online phone book

@ encapsulating a file

Introduction to Data Structures (MCS 360)

Unified Modeling Language

Encapsulating a File

What does the creator PhoneBook () do?
@ read number of entries from file;
@ allocate memory;
© read data from file into array.

The destructor PhoneBook () deallocates the memory.

Principle of information hiding:
@ actual file and its format hidden from the user;
@ programmer considers array of strings.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020

7/27

Command Line Arguments

Main program is used in two different modes:
@ administrative mode by manager;
@ reader only consults the phone book.

One possible way of implementation: —a is command line argument of
phonebook program.

Run in administrative mode:
$ phonebook -a

Without option, program runs in reader mode.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 8/27

Unified Modeling Language

e Command Line Arguments

@ arguments of main

Introduction to Data Structures (MCS 360)

Unified Modeling Language

Arguments of main

int main (int argc, char xargv[])

Two optional arguments:

@ argc: the number of arguments, argc > 1
If there are no command line arguments, then argc = 1.

© argv: the arguments of the command line
argv is an array of strings,
argv [0] is the name of the program
argv[i] is the (i-1)-th argument of the program.

Example at the command prompt s:

$ command_line_args —-a somefile.txt

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 10/27

Unified Modeling Language

e Command Line Arguments

@ arrays of strings

Introduction to Data Structures (MCS 360)

Unified Modeling Language

arrays of strings

#include <iostream>
#include <string>
using namespace std;

int main (int argc, char xargv[])
{
cout << "name of the program : \""
<< argv[0] << "\"" << endl;

cout << "number of command line arguments : "
<< argc-1 << endl;
if(argc > 1)
for (int i=1; i<argc; i++)
cout << "argument " << i << " : \""
<< argv[i] << "\"" << endl;

return 0;

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 12/27

two exercises

Exercise 1:

@ Modify copy_files.cpp of lecture 3 so that the names
for the two files are given on the command line.

Exercise 2:
@ Add the command line option —v to the hello_world.cpp
program of the first lecture.

» Without —v, the program executes as before.
» With —v, the program prints the version number,
€e.g.: Release 1.0.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 13/27

Unified Modeling Language

e Class Definition

@ the files phonebook.h and phonebook. cpp

Introduction to Data Structures (MCS 360)

Unified Modeling Language

Files

The data is stored on file, in phonebook_data.txt.
Example:

2
111-222-4444 Elliot Koffman
333-666-9999 Paul Wolfgang

Number of entries comes first, one entry per line.
On each line, a phone number is in the first 11 characters followed by a
name.

Other files:
@ phonebook.h: public and private attributes;
@ phonebook.cpp: defines the class methods;
@ use_phonebook. cpp: the main program.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 15/27

the file phonebook.h

#ifndef PHONEBOOK_H

#define PHONEBOOK_H

#include <string>

class PhoneBook

{

public:

PhoneBook () ;
~PhoneBook () ;
int length () const;
std::string operator([] (size_t k) const;
void add(const std::string s);

private:
int number; // number of entries
std::string =*data; // array of strings
bi
#endif

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 16/27

specifications of methods

Add as documentation in phonebook . h:

PhoneBook () ;
/ %

Reads phone book entries from file.

Precondition:

file phonebook_data has wvalid entries.
Postcondition:

for PhoneBook b, there are b.length()

entries b[k], with 0 <= k < b.length(). */

~PhoneBook () ;
/%

Deallocates memory occupied by entries.

Postcondition:

b.number == 0 after b.~PhoneBook (). =/

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020

17/27

specifications continued

int length() const;
/ *

Returns the number of entries in phone book.

Precondition:
constructor PhoneBook () executed correctly.
Postcondition: length() >= 0. */

std::string operator([] (size_t k) const;
/%

Returns element at index k in phone book.

Precondition: k < b.length() for PhoneBook b.
Postcondition:

blk] is k-th entry in phone book,

matching appropriate line on file. */

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020

18/27

specifications of add

void add(const std::string s);
/%
Adds a new entry defined by the data in s.

Precondition:
s matches the data format for file,
contains phone number and name.
Postcondition:
after PhoneBook b; blb.length()-1] == s. */

In a more elaborate design, a separate class would define the layout of
the strings on file.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 19/27

constructor and destructor

#include <limits>

#include <fstream>

#include "phonebook.h"

PhoneBook: :PhoneBook ()

{
std::ifstream ins ("phonebook_data.txt");
ins >> number;
data = new std::string[number];
ins.ignore (std::numeric_limits<int>::max(),’\n’);
for (int k=0; k<number; k++)

getline (ins,datalk],’\n’);

ins.close () ;

}

PhoneBook: : ~PhoneBook ()

{

delete[] data;
number = 0;

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020

20/27

selectors and modifier

int PhoneBook::length () const
{
return number;
}
std::string PhoneBook: :operator[] (size_t k) const
{
return datalk];
}
void PhoneBook::add(const std::string s)

{

std::ofstream outs ("phonebook_data.txt");
number = number + 1;
outs << number << std::endl;
for (int k=0; k<number-1; k++)
outs << datal[k] << std::endl;
outs << s << std::endl;
outs.close();

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 21/27

Unified Modeling Language

© Class Definition

@ the main program

Introduction to Data Structures (MCS 360)

Unified Modeling Language

the main program

#include <iostream>
#include "phonebook.h"
using namespace std;

int main (int argc, charx argv([])
{

PhoneBook b;

int n = b.length();

cout << "number of entries : " << n << endl;
if (argc == 1)
for (int k=0; k<n; k++)
cout << " entry " << k << " "

<< b[k] << endl;

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020

23/27

running as manager

else

{
string new_entry;
cout << "give new entry

getline(cin, new_entry);

b.add (new_entry);

return 0;
}

Introduction to Data Structures (MCS 360)

Unified Modeling Language

n
4

Dynamic Allocation and Deallocation

int main (int argc, charx argv[])
{
PhoneBook *b;

// statements welcoming user

b = new PhoneBook; // allocation
// statements using b
b->~PhoneBook () ; // deallocation

For PhoneBook xb, need to replace
@ b.length () by b->1length ()
@ b[k] by (+b) [k]
@ b.add (new_entry) by b->add (new_entry)

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 25/27

the makefile defines the make use_phonebook

@ which c++ compiler to use,

@ the compilation of the definition of the class,
© the compilation of the main program,

© the linking of the files with the object code.

gpp=g++

use_phonebook:
S (gpp) —c phonebook.cpp
$ (gpp) —c use_phonebook.cpp
S (gpp) —-o /tmp/use_phonebook \
phonebook.o use_phonebook.o

clean:
del *.o

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 26/27

Summary + Additional Exercises

We ended Chapter 1: Introduction to Software Design.

Additional Exercises:

© Provide another constructor to the class PhoneBook with allows
the name of the file as input parameter.

© Add a method delete (size_t k) to remove an entry from file,
given the index k in the array.

© Develop a search (const string name) method to search a
phone number given a name.

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 27/27

	an online phone book
	use case diagram
	encapsulating a file

	Command Line Arguments
	arguments of main
	arrays of strings

	Class Definition
	the files phonebook.h and phonebook.cpp
	the main program

