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An Online Phone Book

As case study we consider the management and the consultation of an
online phone book.

Two types of use:

@ manager: add and delete entries;
@ reader: lookup phone numbers.

Two types of diagrams in UML:
@ class diagram: defines data and methods;
@ use case diagram: who uses what methods.
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the class PhoneBook

We use an array of strings to represent
the entries in a phone book.

A class diagram:

—: private PhoneBook
+: public
- stringx
— number

+ PhoneBook ()
+ PhoneBook ()
+ add()
+ delete()
+ lookup ()
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Use Case Diagram for PhoneBook

a behavior modeling diagram

Managers and readers differ in their use of the PhoneBook:

( PhoneBook ())

( "PhoneBook ())

iz( aal )
(deteten )

manager ( lookup() ) reader

PhoneBook
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Encapsulating a File

What does the creator PhoneBook () do?
@ read number of entries from file;
@ allocate memory;
© read data from file into array.

The destructor PhoneBook () deallocates the memory.

Principle of information hiding:
@ actual file and its format hidden from the user;
@ programmer considers array of strings.
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Command Line Arguments

Main program is used in two different modes:
@ administrative mode by manager;
@ reader only consults the phone book.

One possible way of implementation: —a is command line argument of
phonebook program.

Run in administrative mode:
$ phonebook -a

Without option, program runs in reader mode.
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Unified Modeling Language

e Command Line Arguments

@ arguments of main
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Arguments of main

int main ( int argc, char xargv[] )

Two optional arguments:

@ argc: the number of arguments, argc > 1
If there are no command line arguments, then argc = 1.

© argv: the arguments of the command line
argv is an array of strings,
argv [0] is the name of the program
argv[i] is the (i-1)-th argument of the program.

Example at the command prompt s:

$ command_line_args —-a somefile.txt
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Unified Modeling Language

e Command Line Arguments

@ arrays of strings
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arrays of strings

#include <iostream>
#include <string>
using namespace std;

int main ( int argc, char xargv[] )
{
cout << "name of the program : \""
<< argv[0] << "\"" << endl;

cout << "number of command line arguments : "
<< argc-1 << endl;
if(argc > 1)
for (int i=1; i<argc; i++)
cout << "argument " << i << " : \""
<< argv[i] << "\"" << endl;

return 0;
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two exercises

Exercise 1:

@ Modify copy_files.cpp of lecture 3 so that the names
for the two files are given on the command line.

Exercise 2:
@ Add the command line option —v to the hello_world.cpp
program of the first lecture.

» Without —v, the program executes as before.
» With —v, the program prints the version number,
€e.g.: Release 1.0.
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Unified Modeling Language

e Class Definition

@ the files phonebook.h and phonebook. cpp
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Files

The data is stored on file, in phonebook_data.txt.
Example:

2
111-222-4444 Elliot Koffman
333-666-9999 Paul Wolfgang

Number of entries comes first, one entry per line.
On each line, a phone number is in the first 11 characters followed by a
name.

Other files:
@ phonebook.h: public and private attributes;
@ phonebook.cpp: defines the class methods;
@ use_phonebook. cpp: the main program.
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the file phonebook.h

#ifndef PHONEBOOK_H

#define PHONEBOOK_H

#include <string>

class PhoneBook

{

public:

PhoneBook () ;
~PhoneBook () ;
int length () const;
std::string operator([] (size_t k) const;
void add(const std::string s);

private:
int number; // number of entries
std::string =*data; // array of strings
bi
#endif

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 16/27



specifications of methods

Add as documentation in phonebook . h:

PhoneBook () ;
/ %

Reads phone book entries from file.

Precondition:

file phonebook_data has wvalid entries.
Postcondition:

for PhoneBook b, there are b.length()

entries b[k], with 0 <= k < b.length(). */

~PhoneBook () ;
/%

Deallocates memory occupied by entries.

Postcondition:

b.number == 0 after b.~PhoneBook (). =/
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specifications continued

int length() const;
/ *

Returns the number of entries in phone book.

Precondition:
constructor PhoneBook () executed correctly.
Postcondition: length() >= 0. */

std::string operator([] (size_t k) const;
/%

Returns element at index k in phone book.

Precondition: k < b.length() for PhoneBook b.
Postcondition:

blk] is k-th entry in phone book,

matching appropriate line on file. */
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specifications of add

void add(const std::string s);
/%
Adds a new entry defined by the data in s.

Precondition:
s matches the data format for file,
contains phone number and name.
Postcondition:
after PhoneBook b; blb.length()-1] == s. */

In a more elaborate design, a separate class would define the layout of
the strings on file.
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constructor and destructor

#include <limits>

#include <fstream>

#include "phonebook.h"

PhoneBook: :PhoneBook ()

{
std::ifstream ins ("phonebook_data.txt");
ins >> number;
data = new std::string[number];
ins.ignore (std::numeric_limits<int>::max(),’\n’);
for (int k=0; k<number; k++)

getline (ins,datalk],’\n’);

ins.close () ;

}

PhoneBook: : ~PhoneBook ()

{

delete[] data;
number = 0;
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selectors and modifier

int PhoneBook::length () const
{
return number;
}
std::string PhoneBook: :operator[] (size_t k) const
{
return datalk];
}
void PhoneBook::add(const std::string s)

{

std::ofstream outs ("phonebook_data.txt");
number = number + 1;
outs << number << std::endl;
for (int k=0; k<number-1; k++)
outs << datal[k] << std::endl;
outs << s << std::endl;
outs.close();

Introduction to Data Structures (MCS 360) Unified Modeling Language L-5 24 January 2020 21/27



Unified Modeling Language

© Class Definition

@ the main program
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the main program

#include <iostream>
#include "phonebook.h"
using namespace std;

int main ( int argc, charx argv([] )
{

PhoneBook b;

int n = b.length();

cout << "number of entries : " << n << endl;
if (argc == 1)
for (int k=0; k<n; k++)
cout << " entry " << k << " "

<< b[k] << endl;
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running as manager

else

{
string new_entry;
cout << "give new entry

getline(cin, new_entry);

b.add (new_entry);

return 0;
}
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Dynamic Allocation and Deallocation

int main ( int argc, charx argv[] )
{
PhoneBook *b;

// statements welcoming user

b = new PhoneBook; // allocation
// statements using b
b->~PhoneBook () ; // deallocation

For PhoneBook xb, need to replace
@ b.length () by b->1length ()
@ b[k] by (+b) [k]
@ b.add (new_entry) by b->add (new_entry)
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the makefile defines the make use_phonebook

@ which c++ compiler to use,

@ the compilation of the definition of the class,
© the compilation of the main program,

© the linking of the files with the object code.

gpp=g++

use_phonebook:
S (gpp) —c phonebook.cpp
$ (gpp) —c use_phonebook.cpp
S (gpp) —-o /tmp/use_phonebook \
phonebook.o use_phonebook.o

clean:
del *.o
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Summary + Additional Exercises

We ended Chapter 1: Introduction to Software Design.

Additional Exercises:

© Provide another constructor to the class PhoneBook with allows
the name of the file as input parameter.

© Add a method delete (size_t k) to remove an entry from file,
given the index k in the array.

© Develop a search (const string name) method to search a
phone number given a name.
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