Enumeration and Backtracking

1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions

MCS 360 Lecture 23
Introduction to Data Structures
Jan Verschelde, 6 March 2020
Enumeration and Backtracking

1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions
The function `gcd_stack`.

The elements on the stack are the arguments of the gcd function.

```c++
int gcd_stack ( int a, int b )
{
    vector<int> v;

    v.push_back(a);
    v.push_back(b);

    stack< vector<int> > s;
    s.push(v);

    The stack is a stack of integer vectors.
```
int result;
while(!s.empty())
{
 cout << "the stack : ";
 write(s);
 vector<int> e = s.top(); s.pop();
 int r = e[0] % e[1];
 if(r == 0)
 {
 result = e[1];
 }
 else
 {
 e[0] = e[1]; e[1] = r;
 s.push(e);
 }
}
return result;
$ /tmp/gcd_stack
give x : 1988
give y : 2010
the stack : (1988,2010)
the stack : (2010,1988)
the stack : (1988,22)
the stack : (22,8)
the stack : (8,6)
the stack : (6,2)
gcd(1988,2010) = 2

Stack with one element: tail recursion.
Enumeration and Backtracking

1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions
Fibonacci numbers

\[f(0) = 0, \quad f(1) = 1, \quad \text{for } n > 1: \quad f(n) = f(n - 1) + f(n - 2) \]

```
$ /tmp/fib_stack
give n : 4
the stack : (4)
the stack : (3)(2)
the stack : (2)(1)(2)
the stack : (1)(0)(1)(2)
the stack : (0)(1)(2)
the stack : (1)(2)
the stack : (2)
the stack : (1)(0)
the stack : (0)
f(4) = 3
```
the function fib_stack

```cpp
int fib_stack ( int n )
{
    stack<int> s;
    s.push(n);
    int result = 0;
    while (!s.empty())
    {
        cout << "the stack : "; write(s);
        int e = s.top(); s.pop();
        if (e <= 1)
            result = result + e;
        else
        {
            s.push(e-2); s.push(e-1);
        }
    }
    return result;
}
```
program inversion

Typically, our code has a function `main()`, prompting the user for input before launching `f()`.

Especially if `f()` takes a very long time to complete, we want to see intermediate results.

Program inversion is a technique to invert the control of execution from a subroutine `f()` back to `main()`.

- We maintain the state of the function, e.g.: stack of calls as static variable.
- The function is invoked as a `get_next()`:
 give me the next result.

Application area: GUIs are user driven.
Example: a GUI for the towers of Hanoi (MCS 275).
Enumeration and Backtracking

1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions
enumerating all subsets

Problem: given a set, enumerate all subsets.

Suppose the set has n elements.
A boolean vector b of length n stores a subset:
- if $(b[k])$: subset contains the kth element of set.
- if $(b[k])$: subset does not contain the kth element.

For a set of three elements, we generate a tree:
a recursive algorithm

To enumerate all combinations of \(n \) bits:

- base case: write accumulated choices
- general case involves two calls:
 1. do not choose \(k \)th element, call with \(k + 1 \)
 2. choose \(k \)th element, call with \(k + 1 \)

The parameter \(k \) controls the recursion.
Initialize at \(k = 0 \), base case: \(k == n \),
\(k \) is the index of current element.

Termination: \(k \) increases only, only two calls.
void enum_bits (int k, int n, vector<bool> &a);
// enumerates all combinations of n bits,
// starting at k (call with k = 0),
// accumulates the result in the boolean vector a.

int main()
{
 cout << "give number of bits : ";
 int n; cin >> n;

 vector<bool> v;
 for(int i=0; i<n; i++) v.push_back(false);
 enum_bits(0,n,v);

 return 0;
}
function enum_bits

void enum_bits (int k, int n, vector<bool> &a)
{
 if(k == n)
 {
 for(int i=0; i<n; i++)
 cout << " " << a[i];
 cout << endl;
 }
 else
 {
 a[k] = false;
 enum_bits(k+1,n,a);
 a[k] = true;
 enum_bits(k+1,n,a);
 }
}

1 Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2 Enumeration
 - enumerating all subsets
 - combining words

3 Backtracking
 - the percolation problem
 - recursive backtracking functions
combining words

Problem: given a vector of strings, enumerate all combinations of the characters in the strings.

$ /tmp/enumwords
give number of words : 3
word[0] : bm
word[1] : aue
word[2] : tr
the words : bm aue tr
combinations : bat bar but bur bet ber mat mar \mut mur met mer
$

For the kth character there are as many possible choices as the number of characters in the kth word.
A string accumulates the chosen characters.

- base case: write accumulated string
- general case: determine kth character

 for all characters c in kth word do
 add c to accumulated string;
 make recursive call with $k + 1$.

The recursion is controlled by k:
k is index to the current character of result;
base case: $k = n$, #calls depends on word sizes.
prototype and main

```c++
void enumerate_words
    ( int k, int n,
    vector<string> &s, string &a );

// enumerates all combinations of n characters,
// one character from each string,
// starting at k (call with k = 0),
// accumulates the result in the string a.

int main()
{
    cout << "give number of words : ";
    int n; cin >> n;

    cin.ignore(numeric_limits<int>::max(),'
');
```
vector<string> words;
for(int i=0; i<n; i++)
{
 cout << "word[" << i << "] : ";
 string w;
 getline(cin,w,'\n');
 words.push_back(w);
}
cout << "the words :";
for(int i=0; i<n; i++)
 cout << " " << words[i];
cout << endl;

string r = "";
for(int i=0; i<n; i++) r = r + " ";
cout << "combinations :";
enumerate_words(0,n,words,r);
cout << endl;
function enumerate_words

void enumerate_words
 (int k, int n,
 vector<string> &s, string &a)
{
 if(k == n)
 cout << " " << a;
 else
 {
 for(int i=0; i<s[k].size(); i++)
 {
 a[k] = s[k][i];
 enumerate_words(k+1,n,s,a);
 }
 }
}
Enumeration and Backtracking

1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions
the percolation problem

Percolation is similar to finding a path in a maze.

Consider a grid of squares from top to bottom.

A square can be empty: admits flow, while occupied square blocks flow.

Problem: given a grid marked with empty and occupied squares, find if there exists a path from some empty square at the top to the bottom.
running the algorithm

give probability : 0.6
give number of rows : 10
give number of columns : 20
the grid :
1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1
0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0
0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0
1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1
1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0
0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1
1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1
1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1
a solution

found path:

+ + + + + + + + + + 8 +
+ + + + + + + + + + + + 8 +
+ + + + + + + + + + + + + + 8 +
+ + + + + + + + + + + + + + + + 8 +
+ + + + + + + + + + + + + + + + + + 8 +
+ 8 + + + +
+ 8 + + +
+ 8 + + +
+ 8 + +
+ 8 + + +
+ 8 + +
+ 8 + + +
+ 8 + +
+ 8 + + +
int coin (double p);
// p is the probability in [0,1] that 1 appears,
// if p == 0, then coin always returns 0,
// if p == 1, then coin always returns 1.

int coin (double p)
{
 double r = double(rand()) / RAND_MAX;

 return (r <= p) ? 1 : 0;
}
the grid

vector< vector<int> > grid
 (int n, int m, double p)
{
 vector< vector<int> > A;

 A.reserve(n);
 for(int i=0; i<n; i++)
 {
 A[i].reserve(m);
 for(int j=0; j<m; j++)
 {
 A[i][j] = coin(p);
 }
 }

 return A;
}
1. Stacks of Function Calls
 - stack for the recursive gcd
 - stack for the Fibonacci numbers

2. Enumeration
 - enumerating all subsets
 - combining words

3. Backtracking
 - the percolation problem
 - recursive backtracking functions
prototypes

bool percolates
 (int n, int m,
 vector< vector<int> > &A);

// returns true if there is a path through open
// spots in A from top to the bottom, if there
// is a path, then the path is marked in A

bool percolates
 (int n, int m, int i, int j,
 vector< vector<int> > &A);

// returns true if there is a path from A[i][j]
// at the top row to an open spot to the bottom,
// if there is a path, then it is marked in A
bool percolates(
 int n, int m,
 vector< vector<int> > &A)
{
 for (int k=0; k<m; k++)
 if (A[0][k] == 0)
 {
 A[0][k] = 8;
 if (percolates(n, m, 0, k, A)) return true;
 A[0][k] = 0;
 }
 return false;
}
going down at $A[i][j]$

```cpp
bool percolates
    ( int n, int m, int i, int j,
    vector< vector<int> > &A )
{
    if(i == n-1) return true;

    if(A[i+1][j] == 0)
    {
        A[i+1][j] = 8;
        if(percolates(n,m,i+1,j,A)) return true;
        A[i+1][j] = 0;
    }
}
```
going down diagonally

\[
\begin{align*}
\text{if}(j>0) \\
&\quad \text{if}(A[i+1][j-1] == 0) \\
&\quad \quad \{ \\
&\quad \quad \quad A[i+1][j-1] = 8; \\
&\quad \quad \quad \text{if}(\text{percolates}(n, m, i+1, j-1, A)) \text{ return true;} \\
&\quad \quad \quad A[i+1][j-1] = 0; \\
&\quad \} \\
&\quad \text{if}(j<m-1) \\
&\quad \quad \{ \\
&\quad \quad \quad A[i+1][j+1] = 8; \\
&\quad \quad \quad \text{if}(\text{percolates}(n, m, i+1, j+1, A)) \text{ return true;} \\
&\quad \quad \quad A[i+1][j+1] = 0; \\
&\quad \} \\
\text{return false;}
\end{align*}
\]
Summary + Exercises

Ended Chapter 7 on recursion.

Exercises:

1. Consider a recursive definition of the Harmonic numbers H_n: $H_1 = 1$ and for $n > 1$: $H_n = H_{n-1} + 1/n$.

2. A boolean n-by-n matrix A represents a graph with n nodes: If there is an edge from node i to j, then $A[i, j]$ is true, otherwise $A[i, j]$ is false. Write a C++ function to find a path between any two nodes.

3. Use a stack to make an iterative version of the function `enum_bits`.

4. Modify `percolation.cpp` for the problem of finding a path in a maze, going from $A[0][0]$ to $A[n-1][m-1]$.