Priority Queues and Huffman Trees

1. **the Heap**
 - storing the heap with a vector
 - deleting from the heap

2. **Binary Search Trees**
 - sorting integer numbers
 - deleting from a binary search tree

3. **Huffman Trees**
 - encoding messages
 - a recursive tree creation algorithm

MCS 360 Lecture 26
Introduction to Data Structures
Jan Verschelde, 22 October 2010
Priority Queues and Huffman Trees

1. **the Heap**
 - storing the heap with a vector
 - deleting from the heap

2. **Binary Search Trees**
 - sorting integer numbers
 - deleting from a binary search tree

3. **Huffman Trees**
 - encoding messages
 - a recursive tree creation algorithm
A heap is a binary tree:

For node at p: left child is at $2p + 1$, right child is at $2p + 2$. Parent of node at p is at $(p - 1)/2$.
Priority Queues and Huffman Trees

1. **the Heap**
 - storing the heap with a vector
 - deleting from the heap

2. **Binary Search Trees**
 - sorting integer numbers
 - deleting from a binary search tree

3. **Huffman Trees**
 - encoding messages
 - a recursive tree creation algorithm
We replace the top first with the bottom, and then swap as long as parent less than largest child:
the class Heap

```cpp
class Heap
{
    private:

    std::vector<int> h;

    int index_to_bottom;

    int max_child( int p );
    // returns index of largest
    // child or -1 if no child

    void swap_from_top( int p );
    // swaps the element at p with
    // its largest child if that child
    // has value larger than the parent
```
int Heap::max_child(int p)
{
 if(index_to_bottom <= p)
 return -1;
 else {
 int left = 2*p+1;
 int right = 2*p+2;
 if(left > index_to_bottom)
 return -1;
 else {
 if(right > index_to_bottom)
 return left;
 else {
 if(right > index_to_bottom)
 return left;
 else
 return (h[left] > h[right]) ? left : right;
 }
 }
 }
}
The Heap
storing the heap with
a vector
deleting from the
heap

Binary Search
Trees
sorting integer
numbers
deleting from a
binary search tree

Huffman Trees
encoding messages
a recursive tree
creation algorithm

void Heap::pop() {
 if(index_to_bottom == 0)
 index_to_bottom--;
 else {
 h[0] = h[index_to_bottom--];
 swap_from_top(0);
 }
}

void Heap::swap_from_top(int p) {
 if(index_to_bottom == -1) return;
 int c = max_child(p);
 if(c == -1) return;
 if(h[c] > h[p]) {
 int t = h[p];
 h[p] = h[c]; h[c] = t;
 swap_from_top(c);
 }
}
void Heap::pop() {
 if(index_to_bottom == 0)
 index_to_bottom--;
 else {
 h[0] = h[index_to_bottom--];
 swap_from_top(0);
 }
}

void Heap::swap_from_top(int p) {
 if(index_to_bottom == -1) return;
 int c = max_child(p);
 if(c == -1) return;
 if(h[c] > h[p]) {
 int t = h[p];
 h[p] = h[c]; h[c] = t;
 swap_from_top(c);
 }
}
Terminology: a heap is a *complete* binary tree.
A heap implements a priority queue.

```cpp
#include <queue>

using namespace std;

int main()
{
    priority_queue<int> q;
}
Pushing \( n \) random numbers:

```cpp
definition
for(int i=0; i<n; i++)
{
 int r = 10 + rand() % 90;
 q.push(r);
}
```

Sorting with top and pop:

```cpp
definition
vector<int> result;
for(; q.size() > 0; q.pop())
 result.push_back(q.top());
```

The numbers in \( \text{result} \) are in decreasing order.
Pushing \( n \) random numbers:

```cpp
for(int i=0; i<n; i++)
{
 int r = 10+rand()%90;
 q.push(r);
}
```

Sorting with top and pop:

```cpp
vector<int> result;
for(; q.size() > 0; q.pop())
 result.push_back(q.top());
```

The numbers in `result` are in decreasing order.
Priority Queues and Huffman Trees

1. **the Heap**
   - storing the heap with a vector
   - deleting from the heap

2. **Binary Search Trees**
   - sorting integer numbers
   - deleting from a binary search tree

3. **Huffman Trees**
   - encoding messages
   - a recursive tree creation algorithm
Sorting Numbers using a Tree

Consider the sequence 4, 5, 2, 3, 8, 1, 7

Insert the numbers in a tree:

```
 4
 /
 2 5
 /
 1 3
 /
 8
 /
 7
```

Rules to insert $x$ at node $N$:
- if $N$ is empty, then put $x$ in $N$
- if $x < N$, insert $x$ to the left of $N$
- if $x \geq N$, insert $x$ to the right of $N$

Recursive printing: left, node, right sorts the sequence.
finding smallest element

Recursive algorithm to find smallest element?

```cpp
Tree Tree::smallest() const
{
 if(root == NULL)
 return NULL;
 else if(root->left == NULL)
 return Tree(root);
 else
 {
 Tree L = this->get_left();
 return L.smallest();
 }
}
```
finding smallest element

Recursive algorithm to find smallest element?

```cpp
Tree Tree::smallest() const
{
 if (root == NULL)
 return NULL;
 else if (root->left == NULL)
 return Tree(root);
 else
 {
 Tree L = this->get_left();
 return L.smallest();
 }
}
```
Priority Queues and Huffman Trees

1. the Heap
   - storing the heap with a vector
   - deleting from the heap

2. Binary Search Trees
   - sorting integer numbers
   - deleting from a binary search tree

3. Huffman Trees
   - encoding messages
   - a recursive tree creation algorithm
deleting the root

Assume the binary search tree is not empty. We want to delete the root node.

- right or left child is null:

  \[
  \begin{array}{c}
  r \\
  S \\
  \end{array}
  \]

  → removing root \( r \) leads to subtree \( S \)

- left or right child is null:

  \[
  \begin{array}{c}
  2 \\
  1 \quad 3 \\
  \end{array}
  \]

  \[
  \begin{array}{c}
  3 \\
  1 \quad 4 \\
  \end{array}
  \]

  → removing root 2 leads to subtree \( S \)

- otherwise …
deleting the root

Assume the binary search tree is not empty. We want to delete the root node.

- right or left child is null:

\[
\begin{array}{c}
\text{r} \\
\downarrow \\
S
\end{array}
\quad \begin{array}{c}
\text{r} \\
\downarrow \\
S
\end{array}
\]

→ removing root \( r \) leads to subtree \( S \)

- left or right child is null:

\[
\begin{array}{c}
2 \\
\downarrow \\
1 \\
\downarrow \\
4
\end{array}
\quad \rightarrow 
\begin{array}{c}
3 \\
\downarrow \\
1 \\
\downarrow \\
4
\end{array}
\]

- otherwise ...
deleting the root

Assume the binary search tree is not empty. We want to delete the root node.

- right or left child is null:

  \[ \begin{array}{c}
  \text{r} \\
  \text{S} \\
  \end{array} \quad \begin{array}{c}
  \text{r} \\
  \text{S} \\
  \end{array} \]

  → removing root \( r \) leads to subtree \( S \)

- left or right child is null:

  \[ \begin{array}{c}
  2 \\
  \text{1} \quad \text{3} \\
  \end{array} \quad \rightarrow \quad \begin{array}{c}
  3 \\
  \text{1} \quad \text{4} \\
  \end{array} \]

  \[ \begin{array}{c}
  \text{1} \quad \text{4} \\
  \end{array} \]

- otherwise ...
Assume the binary search tree is not empty. We want to delete the root node.

- right or left child is null:
  
  \[
  \begin{array}{c}
  r \\
  \uparrow \\
  S
  \end{array} \quad \begin{array}{c}
  r \\
  \downarrow \\
  S
  \end{array}
  
  \rightarrow \text{removing root } r \text{ leads to subtree } S
  
- left or right child is null:
  
  \[
  \begin{array}{c}
  2 \\
  \uparrow \\
  1 \quad 3
  \end{array} \quad \rightarrow \quad \begin{array}{c}
  3 \\
  \uparrow \\
  1 \quad 4
  \end{array}
  
- otherwise...
otherwise . . . the general case

Removing the root:

```
 2
 / \ \
1 5
 / \
 3 6
 \
 4
```

```
 3
 / \ \
1 5
 / \
 4 6
```

Algorithm:

1. Find the smallest element of the right child.
2. Replace the root with that smallest element.
3. Update the parent of node of smallest element.

Observe that the smallest element has no left child.
otherwise ... the general case

Removing the root:

```
 2
 / \-----------→-----------\n 1 5 3 1
 / \ / \ / \
 3 6 4 5 4 6
 \ \
 \ \
 \ \
```

Algorithm:

1. Find the smallest element of the right child.
2. Replace the root with that smallest element.
3. Update the parent of node of smallest element.

Observe that the smallest element has no left child.
otherwise . . . the general case

Removing the root:

2
/   \
1  5

3
/   \   \
4  6

3
/   \   \
1  5

4
/   \
6

Algorithm:
1. Find the smallest element of the right child.
2. Replace the root with that smallest element.
3. Update the parent of node of smallest element.

Observe that the smallest element has no left child.
finding the parent node

We have already code to find the smallest element. Needed: find the parent of the smallest node.

The base cases:

```cpp
def find_parent_node(self, item):
 if self.root is None:
 return None
 else if self.root.data == item:
 return None
 else:
 if self.root.left is not None:
 return self.root.left
 else if self.root.right is not None:
 return self.root.right
 else:
 return None
```
finding the parent node

We have already code to find the smallest element. Needed: find the parent of the smallest node.

The base cases:

```cpp
Node* Tree::find_parent_node(int item) const
{
 if(root == NULL)
 return NULL;
 else if(root->data == item)
 return NULL;
 else
 // find parent node
 return NULL;
}
```
finding the parent in general

```cpp
bool found = false;
Node *parent = root;
Node *child;
do {
 if(item < parent->data)
 child = parent->left;
 else
 child = parent->right;
 if(child == NULL)
 return NULL;
 else if(child->data == item)
 found = true;
 else
 parent = child;
} while(!found);
return parent;
```
the remove() method

```cpp
void Tree::remove(int item)
{
 if(root == NULL)
 return;
 else if(root->data == item)
 {
 if(root->left == NULL)
 root = root->right;
 else if(root->right == NULL)
 root = root->left;
 else if(root->right->left == NULL)
 {
 root->right->left = root->left;
 root = root->right;
 }
 }
```
remove() continued

else
{
    Tree R = this->get_right();
    Tree L = R.get_left();
    Tree S = L.smallest();
    int md = S.get_data();

    root->data = md;
    Node *p = R.find_parent_node(md);
    Node *r = NULL;
    if(!S.is_right_null()) r = S.get_right().root;

    if(p->left == NULL)
        p->right = r;
    else if(p->left->data == md)
        p->left = r;
    else
        p->right = r;
}
Knowing the removal of the root of a binary search tree, can we work with a “local root”? 

Given an item that occurs in the search tree:

1. Find the item and its parent.
2. Consider the item as a “local root” node.
3. Update the appropriate child of the parent with the tree that has the item removed.

Why does this approach work?
removing any item

Knowing the removal of the root of a binary search tree, can we work with a “local root”?

Given an item that occurs in the search tree:

1. Find the item and its parent.
2. Consider the item as a “local root” node.
3. Update the appropriate child of the parent with the tree that has the item removed.

Why does this approach work?
removing any item

Knowing the removal of the root of a binary search tree, can we work with a “local root”?

Given an item that occurs in the search tree:

1. Find the item and its parent.
2. Consider the item as a “local root” node.
3. Update the appropriate child of the parent with the tree that has the item removed.

Why does this approach work?
Priority Queues and Huffman Trees

1. the Heap
   storing the heap with a vector
   deleting from the heap

2. Binary Search Trees
   sorting integer numbers
   deleting from a binary search tree

3. Huffman Trees
   encoding messages
   a recursive tree creation algorithm
A Huffman tree is a binary tree with data at leaves. Turn left: add 0, turn right: add 1 to code.

Vowels e, a, o are more frequent than o and u.

Decode bit string by walking the tree, encode: use table.
A Huffman tree is a binary tree with data at leaves. Turn left: add 0, turn right: add 1 to code.

Vowels e, a, o are more frequent than o and u.

Decode bit string by walking the tree, encode: use table.
encoding messages

A is the alphabet \( \{ a_1, a_2, \ldots, a_n \} \) of symbols, a message \( M \) is a sequence of elements of \( A \).

\( f_M(a_i) \) is the frequency of the symbol \( a_i \) occurring in \( M \)

\[
d_H(a_i) = \text{depth of } a_i \text{ in Huffman tree} = \text{#bits in encoding of } a_i
\]

#bits of \( M \) as encoded by Huffman tree \( H \):

\[
|M|_H = \sum_{a \in A} f_M(a) \times d_H(a)
\]

Goal: find optimal Huffman tree \( H \) for message \( M \).
encoding messages

A is the alphabet \( \{a_1, a_2, \ldots, a_n\} \) of symbols, a message \( M \) is a sequence of elements of \( A \).

\( f_M(a_i) \) is the frequency of the symbol \( a_i \) occurring in \( M \)

\[
d_H(a_i) = \text{depth of } a_i \text{ in Huffman tree}
\]

\( \# \text{bits in encoding of } a_i \)

\#	ext{bits of } M \text{ as encoded by Huffman tree } H:

\[
|M|_H = \sum_{a \in A} f_M(a) \times d_H(a)
\]

Goal: find optimal Huffman tree \( H \) for message \( M \).
A is the alphabet \( \{ a_1, a_2, \ldots, a_n \} \) of symbols, a message \( M \) is a sequence of elements of \( A \).

\( f_M(a_i) \) is the frequency of the symbol \( a_i \) occurring in \( M \)

\[ d_H(a_i) = \text{depth of } a_i \text{ in Huffman tree} = \text{#bits in encoding of } a_i \]

The number of bits of \( M \) as encoded by Huffman tree \( H \):

\[ |M|_H = \sum_{a \in A} f_M(a) \times d_H(a) \]

Goal: find optimal Huffman tree \( H \) for message \( M \).
Priority Queues and Huffman Trees

1. **the Heap**
   - storing the heap with a vector
   - deleting from the heap

2. **Binary Search Trees**
   - sorting integer numbers
   - deleting from a binary search tree

3. **Huffman Trees**
   - encoding messages
   - a recursive tree creation algorithm
the Heap
storing the heap with a vector
deleting from the heap

Binary Search Trees
sorting integer numbers
deleting from a binary search tree

Huffman Trees
encoding messages
a recursive tree creation algorithm

For two symbols, \( n = 2 \): \( a_1 \mapsto 0 \), \( a_2 \mapsto 1 \).

Order symbols along their frequencies in message \( M \):

\[
f_M(a_1) \leq f_M(a_2) \leq f_M(a_3) \leq \cdots \leq f_M(a_n)
\]

Replace \( a_1 \) and \( a_2 \) by \( a_{1,2} \), \( f_M(a_{1,2}) = f_M(a_1) + f_M(a_2) \),
then \( M_{n-1} \) is the message \( M \) over \( \{a_{1,2}, a_3, \ldots, a_n\} \)
and let \( H_{n-1} \) be the optimal Huffman tree to encode \( M_{n-1} \).

A Huffman tree \( H \) for \( M \) is then obtained via

Claim: this \( H \) obtained recursively is optimal for \( M \).
running the algorithm

\[
\begin{array}{c|c}
\text{f}_5(\cdot) & \text{e} & 103 \\
\text{a} & 64 \\
\text{o} & 63 \\
\text{i} & 57 \\
\text{u} & 23 \\
\end{array}
\rightarrow
\begin{array}{c|c}
\text{f}_4(\cdot) & \text{e} & 103 \\
\text{i} & 80 \\
\text{a} & 64 \\
\text{o} & 63 \\
\end{array}
\rightarrow
\begin{array}{c|c}
\text{f}_3(\cdot) & \text{ao} & 127 \\
\text{e} & 103 \\
\text{i} & 80 \\
\text{u} & 127 \\
\end{array}
\rightarrow
\begin{array}{c|c}
\text{f}_2(\cdot) & \text{eiu} & 183 \\
\text{ao} & 127 \\
\end{array}
\]

\[
\begin{array}{c}
0 \\
\text{ao} \\
\text{eiu} \\
1
\end{array}
\]

the Heap
- storing the heap with a vector
- deleting from the heap

Binary Search Trees
- sorting integer numbers
- deleting from a binary search tree

Huffman Trees
- encoding messages
- a recursive tree creation algorithm
running the algorithm

<table>
<thead>
<tr>
<th>f_5(·)</th>
<th>f_4(·)</th>
<th>f_3(·)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e 103</td>
<td>e 103</td>
<td>ao 127</td>
</tr>
<tr>
<td>a 64</td>
<td>iu 80</td>
<td>e 103</td>
</tr>
<tr>
<td>o 63</td>
<td>a 64</td>
<td>iu 80</td>
</tr>
<tr>
<td>i 57</td>
<td>o 63</td>
<td></td>
</tr>
<tr>
<td>u 23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A recursive tree creation algorithm.
running the algorithm

<table>
<thead>
<tr>
<th>.</th>
<th>( f_5(\cdot) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>103</td>
</tr>
<tr>
<td>a</td>
<td>64</td>
</tr>
<tr>
<td>o</td>
<td>63</td>
</tr>
<tr>
<td>i</td>
<td>57</td>
</tr>
<tr>
<td>u</td>
<td>23</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c}
\cdot & f_5(\cdot) \\

e & 103 \\
a & 64 \\
o & 63 \\
i & 57 \\
u & 23 \\
\end{array}
\]

\[
\begin{array}{c|c}
\cdot & f_4(\cdot) \\

e & 103 \\
iu & 80 \\
a & 64 \\
o & 63 \\
\end{array}
\]

→

```
0
/
/
/
1
/
/
0 1
/
/
/
/
a o e iu
```
running the algorithm

<table>
<thead>
<tr>
<th>.</th>
<th>( f_5(\cdot) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>103</td>
</tr>
<tr>
<td>a</td>
<td>64</td>
</tr>
<tr>
<td>o</td>
<td>63</td>
</tr>
<tr>
<td>i</td>
<td>57</td>
</tr>
<tr>
<td>u</td>
<td>23</td>
</tr>
</tbody>
</table>

Diagram:

```
 0
 / \
 1 0
 / / \
ao o e iu
```
Notes on Huffman Trees

A Huffman tree is a *full* binary tree: every node has two nonempty children.

Optimal Huffman trees are not unique.

Elements of an algorithm for Huffman Trees:

- Make frequency table of symbols in a text. Nodes in priority queue are of type `struct` containing `string` for the symbol and `int` for count.

- Recursive tree creation algorithm. Going forward: contract the frequency table. Returns from the recursive calls refines the tree.

Symbols occurring with least frequency will appear separately only in the last stage of the algorithm.
Notes on Huffman Trees

A Huffman tree is a full binary tree: every node has two nonempty children.

Optimal Huffman trees are not unique.

Elements of an algorithm for Huffman Trees:

- Make frequency table of symbols in a text. Nodes in priority queue are of type `struct` containing `string` for the symbol and `int` for count.

- Recursive tree creation algorithm. Going forward: contract the frequency table. Returns from the recursive calls refines the tree.

Symbols occurring with least frequency will appear separately only in the last stage of the algorithm.
Summary + Assignments

Ended chapter 8 on trees.

Assignments:

1. Write an iterative version of the `smallest()` method to return the smallest element in a binary search tree.
2. Give code to use a STL priority queue to create a frequency table for lower case letters in a string.
3. Define a binary search tree for strings and use it to store words that appear in a text on file. A word is separated by one or more spaces.
4. Define the algorithm to decode a message (given as bit string) using a Huffman tree.