1. solving recurrences
 number of calls for a plain recursive Fibonacci

2. solving recurrences
 the substitution method
 a boundary condition
 when things are not straightforward
the substitution method

1. solving recurrences
 number of calls for a plain recursive Fibonacci

2. solving recurrences
 the substitution method
 a boundary condition
 when things are not straightforward
Recall the straightforward recursive algorithm to compute the Fibonacci numbers f_n following:

$f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$, for $n > 1$.

Denote by $c_n = \text{#calls to compute } f_n$.

$c_2 = 2$, $c_3 = 4 = 2^2$, $c_4 = 8 = 2^3$

Following the recursion: $c_n = c_{n-1} + c_{n-2} + 2 = \cdots$.

In Lecture 22 we then just claimed that c_n is $O(2^n)$.

solving recurrences
the substitution method

1. solving recurrences
 number of calls for a plain recursive Fibonacci

2. solving recurrences
 the substitution method
 a boundary condition
 when things are not straightforward
The substitution method for solving recurrences consists of two steps:

1. Guess the form of the solution.
2. Use mathematical induction to find constants in the form and show that the solution works.

The inductive hypothesis is applied to smaller values, similar like recursive calls bring us closer to the base case.

The substitution method is powerful to establish lower or upper bounds on a recurrence.
The recurrence relation for the cost of a divide-and-conquer method is
\[T(n) = 2T(\lfloor n/2 \rfloor) + n. \]

Our induction hypothesis is \(T(n) \) is \(O(n \log_2(n)) \) or \(T(n) \leq cn \log_2(n) \) for some constant \(c \), independent of \(n \).

Assume the hypothesis holds for all \(m < n \) and substitute:
\[
T(n) \leq 2(c \lfloor n/2 \rfloor \log_2(\lfloor n/2 \rfloor)) + n
\[
\leq cn \log_2(n/2) + n
\]
\[
= cn \log_2(n) - cn \log_2(2) + n
\]
\[
= cn \log_2(n) - cn + n
\]
\[
\leq cn \log_2(n)
\]
as long as \(c \geq 1 \).
applied to recursive Fibonacci

Denote by \(c_n = \) \#calls to compute the \(n \)-th Fibonacci number in a plain recursive manner.

The recurrence is \(c_n = c_{n-1} + c_{n-2} + 2 \).

Our induction hypothesis: \(c_n \) is \(O(2^n) \) or \(c_n \leq \gamma 2^n \) for some constant \(\gamma \), independent of \(n \).

Assuming the induction hypothesis holds for all \(m < n \), we substitute:

\[
\begin{align*}
 c_n & \leq \gamma 2^{n-1} + \gamma 2^{n-2} + 2 \\
 & = \gamma 2^{n-2}(2 + 1) + 2 \\
 & \leq \gamma 2^{n-2}(2 + 2), \quad \text{for } n > 2, \gamma \geq 1 \\
 & \leq \gamma 2^n
\end{align*}
\]

so the upper bound on \(c_n \) holds.
1. solving recurrences
 number of calls for a plain recursive Fibonacci

2. solving recurrences
 the substitution method
 a boundary condition
 when things are not straightforward
We derived the upper bound for the recurrence for the recursive Fibonacci, requiring $n > 2$.

Note:

- Mostly we are interested only in asymptotic values for n, that is: for sufficiently large values of n.
- The boundary condition on n is a constant.
revisiting our earlier example

In our earlier example we showed the *induction step* of

\[T(n) = 2T(\lfloor n/2 \rfloor) + n , \]

i.e. \(T(n) \leq cn \log_2(n) \) when \(c \geq 1 \).

- We should also show that the base case holds!

Assuming that \(T(1) = 1 \), we would like to show

\[T(1) \leq c \cdot 1 \cdot \log_2(1) = c \cdot 0 = 0 , \]

which is impossible when \(T(1) > 0 \).

We only want to show that \(T(n) \leq cn \log_2(n) \) for *sufficiently large* values of \(n \); i.e. \(\forall n \geq n_0 \).

\[\implies \text{try } n_0 > 1. \]
the base case

\[T(n) = 2T(\lfloor n/2 \rfloor) + n. \]

We have:

\[T(1) = 1 \Rightarrow \left\{ \begin{array}{c} T(2) = 4 \\ T(3) = 5 \end{array} \right. \]

We want to satisfy simultaneously:

\[\left\{ \begin{array}{c} 4 = T(2) \leq c \cdot 2 \cdot \log_2(2) \\ 5 = T(3) \leq c \cdot 3 \cdot \log_2(3) \end{array} \right. \]

\[\Rightarrow \left\{ \begin{array}{c} c \geq \frac{2}{\log_2(3)} \approx 1.052 \Rightarrow c \geq 2 \end{array} \right. \]

- We have to check both \(T(2) \) and \(T(3) \) simultaneously because of the nature of the recursive equation.
We want to show $T(n) \geq cn \log_2(n)$. Assume that n is a power of 2. We have:

\[
T(n) \geq 2(c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)) + n \quad \text{(Induction Hypothesis)}
\]

\[
= cn \log(n/2) + n \quad \text{(n is a power of 2)}
\]

\[
= cn \log n - cn \log 2 + n
\]

\[
= cn \log n - (c - 1)n
\]

\[
\geq cn \log n ,
\]

as long as $c \leq 1$.

We also want to satisfy the boundary condition ($T(2) = 4$).

\[
T(2) \geq c \cdot 2 \cdot \log 2 = 2 \cdot c
\]

In other words, it is enough if $c \leq 2$. By the requirement $c \leq 1$ for the induction step we choose $c = 1$.
We will prove that $T(n)$ is strictly increasing.

For the base case note that $T(1) = 1 < 4 = T(2)$.

Assuming that for all $k \leq n$ it holds $T(k) > T(k - 1)$, we want to show that $T(n + 1) > T(n)$. We distinguish cases for $n + 1$.

$(n + 1)$ is odd

Say $n + 1 = 2m + 1$. Then, it holds

\[
T(2m + 1) = 2T(\lfloor (2m + 1)/2 \rfloor) + 2m + 1 \quad \text{(Definition)}
\]
\[
= 2T(m) + 2m + 1
\]
\[
= T(2m) + 1 \quad \text{(Definition)}
\]
\[
> T(2m) .
\]
a lower bound - part 3 of 4

(n + 1) is even

Say $n + 1 = 2m$. Then, it holds

\[
T(2m) = \begin{cases}
2T\left(\lfloor(2m)/2\rfloor\right) + 2m & \text{(Definition)} \\
2T(m) + 2m & \text{(Definition)} \\
2T(m - 1) + 2m & \text{(Ind. Hyp.)} \\
2T\left(\lfloor(2m - 1)/2\rfloor\right) + (2m - 1) + 1 & \text{(Definition)} \\
T(2m - 1) + 1 & \text{(Definition)} \\
T(2m - 1) & .
\end{cases}
\]

Note that the induction hypothesis is used only when $(n + 1)$ is even!
Consider the binary expansion of $n > 0$; i.e. $n = \sum_{i=0}^{\infty} b_i 2^i$. Set

$$k = \max_i \left\{ b_i = 1 : n = \sum_{i=0}^{\infty} b_i 2^i \right\}.$$

Define the function

$$g(n) = \begin{cases}
 n \cdot \lg n & , \text{ n is a power of 2,} \\
 k \cdot 2^k & , \text{ otherwise; } k \text{ as defined above} \end{cases} \quad (1)$$

In other words, $g(n)$ has "jumps" on the values that it takes when n is a power of 2, and remains constant until the next power of 2. From the previous analysis it now follows that $T(n) = \Omega(g(n))$.
solving recurrences
the substitution method
a boundary condition
when things are not straightforward

\[g(n) \leq T(n) \leq 2n \log_2(n) \]
the substitution method

1. solving recurrences
 number of calls for a plain recursive Fibonacci

2. solving recurrences
 the substitution method
 a boundary condition
 when things are not straightforward
Consider the recurrence

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1. \]

Our guess is \(O(n) \), so we try to show \(T(n) \leq cn \).

\[T(n) \leq cn/2 + c\lceil n/2 \rceil + 1 \]
\[= cn + 1 \]

which does not imply that \(T(n) \leq cn \), for any \(c \).

• We need to show the exact form!

Ideas to overcome the hurdle:

1. Revise our guess; say \(T(n) = O(n^2) \).
 • However, our original guess was correct!

2. Sometimes it is easier to prove something stronger!
try a stronger bound

We will attempt to show $T(n) = cn - b$, where b is another constant.
We have:

$$T(n) \leq (c\lfloor n/2 \rfloor - b) + (c\lceil n/2 \rceil - b) + 1$$
$$= cn - 2b + 1$$
$$\leq cn - b \quad \text{for } b \geq 1$$

- We still have to specify c.

Assume that $T(1) = 1$. We want

$$T(1) = 1 \leq c \cdot 1 - b$$

Hence, it is enough to set $c = 2$ and $b = 1$.
changing variables

Consider the recurrence

\[T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log_2(n) . \]

Rename \(m = \log_2(n) \). We have:

\[T(2^m) = 2T(2^{m/2}) + m . \]

Define \(S(m) = T(2^m) \). We get:

\[S(m) = 2S(m/2) + m . \]

Hence, the solution is \(O(m \log_2(m)) \), or with substitution

\[O(\log_2(n) \cdot \log_2(\log_2(n))) . \]
want an exact solution?

Using Maple:

```maple
rsolve(c(n) = c(n-1) + c(n-2) + 2, c(n));
```

returns

\[
\left(\frac{1}{2}c(0) + \frac{1}{10}c(0) - \frac{1}{5}\sqrt{5}c(1) \right) \left(-\frac{1}{2}\sqrt{5} + \frac{1}{2} \right)^n \\
+ \left(-\frac{1}{10}c(0)\sqrt{5} + \frac{1}{2}c(0) + \frac{1}{5}c(1)\sqrt{5} \right) \left(\frac{1}{2}\sqrt{5} + \frac{1}{2} \right)^n \\
+ \frac{4}{5}\sqrt{5}\left(-\frac{2}{\sqrt{5}+1} \right)^n - \frac{4}{5}\sqrt{5}\left(\frac{-2}{-\sqrt{5}+1} \right)^n - 2
\]
Summary + Assignments

Assignments:

1. Apply the substitution method to show that the solution of $T(n) = T(n - 1) + n$ is $O(n^2)$.

2. Consider the recurrence defined by $T(n) = T(\lceil n/2 \rceil) + 1$. Show that the solution to this recurrence is $O(\log_2(n))$.