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reformulating problems

The Ford-Fulkerson algorithm computes maximum flow.

By reduction to a flow problem,
we could solve the following problems:

bipartite matching,
circulation with demands,
edge-disjoint paths,
survey design, and
airline scheduling.

Because the Ford-Fulkerson algorithm is an efficient algorithm,
all those problems can be solved efficiently as well.

Our plan for the remainder of the course is to explore
computationally hard problems.
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imagine a meeting with your boss ...

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.
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what you want to say is

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.
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you better have some backup

From Computers and intractability. A Guide to the Theory of
NP-Completeness by Michael R. Garey and David S. Johnson,
Bell Laboratories, 1979.
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reformulating a problem in polynomial time

If we encounter a difficult problem X , we would like to be able
to formally express that problem X is at least as hard as problem Y.

If we have a black box capable of solving X , then we can also solve Y .

Definition (1)
Problem Y is polynomial-time reducible to X , denoted by Y ≤P X ,
if arbitrary instances of problem Y can be solved

using a polynomial number of standard computational steps, and
a polynomial number of calls to a black box that solves X .
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an application of reducibility

Proposition (2)
Assume Y ≤P X. If X can be solved in polynomial time,
then Y can be solved in polynomial time.

Proof. If Y ≤P X , then we can solve Y using
1 a polynomial number of standard computational steps, and
2 a polynomial number of calls to a black box that solves X .

If X can be solved in polynomial time, then the black box that solves X
runs in polynomial time.
A polynomial number of calls to a black box that runs in polynomial
time is bounded by polynomial time because f (g(x)) is a polynomial
for any two polynomials f and g.
Adding the polynomial that bounds the cost for calling the black box
solver to the polynomial number of standard computational steps is
again a polynomial. Thus Y can be solved in polynomial time. Q.E.D.
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intractability

Definition (3)
A problem is computationally tractable
if we have an efficient algorithm to solve it.

A problem that is not computationally tractable is intractable.

Proposition (4)
Assume Y ≤P X. If X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

The statement in the proposition is true because it is contrapositive to
the statement in the previous preposition.
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the independent set problem

Definition (5)
Given a graph G = (V ,E), a subset S ⊆ V is an independent set
if for all u, v ∈ S: (u, v) ̸∈ E .

Given a graph G and some number k ,
does G contain an independent set of size at least k?

1 2

3 4 5

6 7

1 2

3 4 5

6 7
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apply dynamic programming

Dynamic programming applies to an exhaustive search.

Given a graph G = (V ,E) and some v ∈ V ,
the size of an independent set that contains v is one
plus the size of the independent set of the graph G′ = (V ′,E ′)

1 V ′ = V \ {v},
2 E ′ = { (u,w) ∈ E | u ̸= v ,w ̸= v }.

Exercise 1:
Apply dynamic programming to the independent set problem.

1 Develop a recurrence based on the definition of G′ above.
2 Given k , the size of an independent set,

describe the algorithm to compute an independent set of size k ,
or to return nothing if there is no independent set of size k .

3 What is the running time of this algorithm?
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optimization and decision questions

The decision question for the Independent Set Problem:

Given a graph G and some number k ,
does G contain an independent set of size at least k?

The optimization question for the Independent Set Problem:

Given a graph G, find the largest independent set in G.

From the polynomial-time solvability, both problems are equivalent:

A method to solve the optimization question also solves the
decision question for any value of k .

A method to solve the decision question can be combined with
binary search with O(log(n)), n = #V , different values of k .

Decision questions are more convenient to work with.
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the vertex cover problem

Definition (6)
Given a graph G = (V ,E), a subset S ⊆ V is a vertex cover
if for all (u, v) ∈ E : u ∈ S or v ∈ S.

Given a graph G and some number k ,
does G contain a vertex cover of size at most k?

1 2

3 4 5

6 7

1 2

3 4 5

6 7
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apply dynamic programming

Dynamic programming applies to an exhaustive search.

Given a graph G = (V ,E) and some v ∈ V ,
the size of a vertex cover that does not contain v is one
plus the size of the vertex cover of the graph G′ = (V ′,E ′)

1 V ′ = V \ {v},
2 E ′ = { (u,w) ∈ E | u ̸= v ,w ̸= v }.

Exercise 2:
Apply dynamic programming to the vertex cover problem.

1 Develop a recurrence based on the definition of G′ above.
2 Given k , the size of a vertex cover

describe the algorithm to compute a vertex cover of size k ,
or to return nothing if there is no vertex cover of size k .

3 What is the running time of this algorithm?
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independent set is equivalent to vertex cover

An example of the independent set problem:

1 2

3 4 5

6 7

1 2

3 4 5

6 7

An example of the vertex cover problem:

1 2

3 4 5

6 7

1 2

3 4 5

6 7
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independent set is equivalent to vertex cover

A subset S ⊆ V is a vertex cover if for all (u, v) ∈ E : u ∈ S or v ∈ S.

A subset S ⊆ V is an independent set if for all u, v ∈ S: (u, v) ̸∈ E .

Theorem (7)
Let G = (V ,E) be a graph. Then S is an independent set
if and only if its complement V \ S is a vertex cover.

Proof. If and only if means ⇒ and ⇐.
⇒: Let S be an independent set. Consider any edge (u, v).

Because an independent set contains vertices which are not
connected by an edge, u and v cannot be both in S.

Therefore, u or v must be in V \ S. So the edge (u, v) has at least
one vertex in V \ S. Thus V \ S is a vertex cover.
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vertex cover is equivalent to independent set

A subset S ⊆ V is a vertex cover if for all (u, v) ∈ E : u ∈ S or v ∈ S.

A subset S ⊆ V is an independent set if for all u, v ∈ S: (u, v) ̸∈ E .

Theorem (8)
Let G = (V ,E) be a graph. Then S is an independent set
if and only if its complement V \ S is a vertex cover.

Proof. If and only if means ⇒ and ⇐.
⇐: Let V \ S be a vertex cover. Consider any u, v ∈ S, and note
that u and v are not part of the vertex cover.

If (u, v) ∈ E , then V \ S would not be a vertex cover as (u, v) is an
edge with u and v not in the vertex cover.

So (u, v) ̸∈ E , for any pair u, v ∈ S.
Thus S is an independent set. Q.E.D.
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independent set reduces to vertex cover

Corollary (9)
Independent Set ≤P Vertex Cover

This means that arbitrary instances of the independent set problem
can be solved using a polynomial number of standard computational
steps and a polynomial number of calls to the black box solver that
solves the vertex cover problem.

Proof. If we have a black box solver for the vertex cover problem,

then whether the graph has an independent set of size at least k

can be decided by asking the black box whether the graph has

a vertex cover of size at most n − k ,

where n equals the number of vertices. Q.E.D.
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vertex cover reduces to independent set

Corollary (10)
Vertex Cover ≤P Independent Set

This means that arbitrary instances of the vertex cover problem can be
solved using a polynomial number of standard computational steps
and a polynomial number of calls to the black box solver that solves
the independent set problem.

Proof. If we have a black box solver for the independent set problem,

then whether the graph has a vertex cover of size at most k

can be decided by asking the black box whether the graph has

an independent set of size at least n − k ,

where n equals the number of vertices. Q.E.D.
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the set cover problem

Independent set and vertex cover can be viewed as
Independent set can be viewed as a packing problem.
The goal is to pack in as many vertices as possible,
avoiding conflicts represented by edges.
Vertex cover can be viewed as a covering problem.
The goal is to cover all edges in the graph,
with as few as possible vertices.

Vertex cover is a special instance of the Set Cover problem:

Given are U = { 1,2, . . . ,n },
a collection Si ⊆ U, i = 1,2, . . . ,m,
and some number k .

Is there an index set I = { i1, i2, . . . , ik }:
⋃
j∈I

Sj = U ?
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an application of the set cover problem

The set U are n capabilities we want to cover with
a subset of size k of m available software systems Si ,
each software system has capabilities Si ⊆ U.

capabilities all software a set cover
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reducing vertex cover to set cover

Theorem (11)
Vertex Cover ≤P Set Cover

Proof. An arbitrary instance of vertex cover is given by a graph
G = (V ,E) and a number k . We have a black box to solve set cover.

Given G = (V ,E), define the input for a set cover as follows:
U = E , and
for every vertex i : Si contains all edges incident to i .
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from vertex cover to set cover

1 2

3 4 5

6 7

U = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,6), (3,7), (4,7), (5,7), (6,7)}.

S1 = {(1,2), (1,3)}, S2 = {(1,2), (2,3), (2,4), (2,5)},
S3 = {(1,3), (2,3), (3,6), (3,7)}, S4 = {(2,4), (4,7)},
S5 = {(2,5), (5,7)}, S6 = {(3,6), (6,7)},
S7 = {(3,7), (4,7), (5,7), (6,7)}.
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the corresponding set cover problem

U = {(1,2), (1,3), (2,3), (2,4), (2,5), (3,6), (3,7), (4,7), (5,7), (6,7)}.

S1 = {(1,2), (1,3)}, S2 = {(1,2), (2,3), (2,4), (2,5)},
S3 = {(1,3), (2,3), (3,6), (3,7)}, S4 = {(2,4), (4,7)},
S5 = {(2,5), (5,7)}, S6 = {(3,6), (6,7)},
S7 = {(3,7), (4,7), (5,7), (6,7)}.

(1,3) (1,2)

(2,3) (2,4) (2,5)

(3,7) (4,7) (5,7)

(3,6) (6,7)

(1,3) (1,2)

(2,3) (2,4) (2,5)

(3,7) (4,7) (5,7)

(3,6) (6,7)

(1,3) (1,2)

(2,3) (2,4) (2,5)

(3,7) (4,7) (5,7)

(3,6) (6,7)
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set cover solves vertex cover

(1,3) (1,2)

(2,3) (2,4) (2,5)

(3,7) (4,7) (5,7)

(3,6) (6,7)

1 2

3 4 5

6 7
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Lemma (12)
U can be covered by at most k of the sets S1, S2, . . ., Sm
if and only if G has a vertex cover of size at most k.

Proof. If and only if means ⇒ and ⇐.
⇒: If the sets Si1 , Si2 , . . ., Siℓ , for ℓ ≤ k cover U,
then every edge in G is incident to one of the vertices i1, i2, . . ., iℓ.
So the set { i1, i2, . . . , iℓ } is a vertex cover in G of size ℓ ≤ k .
⇐: If the set { i1, i2, . . . , iℓ } is a vertex cover, ℓ ≤ k ,
then the sets Si1 , Si2 , . . ., Siℓ cover U. Q.E.D.

Thus the theorem Vertex Cover ≤P Set Cover follows from
1 using (V ,E) to formulate the instance of the Set Cover problem,
2 pass the input to the Set Cover problem to the black box, and
3 answer yes if and only if the black box solver answers yes.

Q.E.D.
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the set packing problem

The independent set problem generalizes to the set packing problem:

Given a set U of n elements,
a collection S1, S2, . . ., Sm of subsets of U, and
some number k ,

does there exists a collection of at least k of these sets
so that no two of them intersect?

As an application, consider U as a set of non-sharable resources,
and a set of m processes Si , the i-th process requires Si ⊆ U
resources to run, and some number k .
Can you run at least k of the processes?

Exercise 3:
Show that Independent Set ≤P Set Packing.
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Boolean expressions

A Boolean variable takes values in { 0,1 }, false, or true.

Operations on Boolean variables x and y are
x := not x , the negation, 1 + x mod 2
x ∨ y := x or y , the disjunction, x + y mod 2
x ∧ y := x and y , the conjunction, x × y

Those 3 operations are realized by 3 basic logic gates.

Definition (13)
Let X = { x1, x2, . . . , xn } be a set of Boolean variables.
A clause C is a disjunction of distinct terms

C = t1 ∨ t2 ∨ · · · ∨ tℓ, ti = x or ti = x , for x ∈ X .

A clause corresponds to a circuit composed of logic gates: or, not.
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assignments satisfy clauses

For which inputs do we obtain one as output?

Definition (14)
Let X = { x1, x2, . . . , xn } be a set of Boolean variables.
A truth assignment for X is a function ν:

ν : X → { 0,1 }
x 7→ ν(x).

Is there an assignment of the variables for which a clause is true?

Definition (15)
Given a clause C and an assignment ν for the variables in C,
we say that ν satisfies C if the application of the rules of Boolean logic
causes C to evaluate to 1.
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satisfiability

A clause applies or, not operations to Boolean variables.

For a collection of clauses, we can ask whether there is
an assignment of the variables that makes all of them true.

Definition (16)
Given a collection of clauses C1, C2, . . ., Ck , and
an assignment ν for the variables in the clauses,
we say that ν is a satisfying assignment with respect to C1, C2, . . ., Ck
if the application of the rule of Boolean logic causes all Ci to evaluate
to 1, or equivalently, if

C1 ∧ C2 ∧ · · · ∧ Ck evaluates to 1.

Then we say that C1 ∧ C2 ∧ · · · ∧ Ck is satisfiable.
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an example

Consider for example

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3).

The assignment ν: ν(x1) = 1, ν(x2) = 1, ν(x3) = 1 results in

(1 ∨ 0) ∧ (0 ∨ 0) ∧ (1 ∨ 0) = 0

and is therefore not a satisfying assignment.

The assignment ν: ν(x1) = 0, ν(x2) = 0, ν(x3) = 0 results in

(0 ∨ 1) ∧ (1 ∨ 1) ∧ (0 ∨ 1) = 1

and is therefore a satisfying assignment.

The set of clauses (x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3) is satisfiable.
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the satisfiability and 3-satisfiability problems
The satisfiability problem, or SAT for short is

Given X = { x1, x2, . . . , xn } a set of Boolean variables, and
C1, C2, . . ., Ck , a set of clauses over X ,

does there exist a satistying truth assignment?

A special case which is equally difficult is the 3-SAT problem.

The 3-satisfiability problem, or 3-SAT for short is

Given X = { x1, x2, . . . , xn } a set of Boolean variables, and
C1, C2, . . ., Ck , a set of clauses over X ,
where each clause Ci has exactly three terms,

does there exist a satistying truth assignment?

The combinatorial problem is that we have to make n independent
decisions about the value (zero or one) of the n Boolean variables
in order to satisfy a set of constraints simultaneously.
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reducing 3-SAT to independent set

Given a graph G = (V ,E), a subset S ⊆ V is an independent set
if for all u, v ∈ S: (u, v) ̸∈ E . Given a graph G and some number k ,
does G contain an independent set of size at least k?

Theorem (17)
3-SAT ≤P Independent Set

Proof. We have a black box for independent set and an instance of
3-SAT consisting of k clauses C1, C2, . . ., Ck over
X = { x1, x2, . . . , xn }.

We will formulate the input to 3-SAT as an independent set problem.
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satisfying clauses and independent sets

Consider for example

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

and the corresponding graph:

y

x

z y

x

z y

x

z
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independent set solves satisfiability

y

x

z y

x

z y

x

z

Take x = 1, y = 1, z = 1, and

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

is satisfied. Observe: the green nodes define an independent set.
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defining the corresponding graph G

Consider the Boolean variables as vertices

(v1,1 ∨ v1,2 ∨ v1,3) ∧ (v2,1 ∨ v2,2 ∨ v2,3) ∧ · · · ∧ (vk ,1 ∨ vk ,2 ∨ vk ,3).

Every clause vi,1 ∨ vi,2 ∨ vi,3 corresponds to a triangle
with vertices vi,1, vi,2, vi,3

and edges (vi,1, vi,2), (vi,1, vi,3), (vi,2, vi,3).
For a clause to be true, it suffices that one term is true.

For every pair of clauses (i , j), we add the edge (u, v)
if u = v or u = v ,
for u ∈ { vi,1, vi,2, vi,3 } and v ∈ { vj,1, vj,2, vj,3 }.

The graph G corresponding to k clauses has 3k vertices
and edges defined by the above rules.
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another numerical example

Exercise 4:
Consider the expression

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

1 Define the corresponding graph.
2 Does there exist a satisying truth assignment?

Justify your answer.
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satisfiability implies an independent set

Lemma (18)
The 3-SAT problem with k clauses is satisfiable if and only if the
corresponding graph G has an independent set of size at least k.

Proof. If and only if means ⇒ and ⇐.
⇒: If 3-SAT is satisfiable, then every triangle contains at least one
node with value equal to one.
Let S collect the nodes of every triangle with value equal to one.
We claim that S is an independent set.

If for any u, v ∈ S, there would be an edge (u, v) in the graph.
But if there is an edge (u, v), then the values at the nodes conflict,
which contradicts the satisfiability.
Thus for any u, v ∈ S, there is no edge (u, v)
and thus S is an independent set of size k .
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independent set implies satisfiability

Proof continued.
⇐ If we have an independent set S of size k , then we construct an
assignment ν as follows:

▶ If xi appears in S, then we set ν(xi) = 1.
▶ If xi appears in S, then we set ν(xi) = 0.

By the construction of the graph, we can have at most one vertex
from every triangle.
Because #S = k , we have assigned one in every clause, so the
clause will evaluate to one and we obtained satisfiability. Q.E.D.

Thus the theorem 3-SAT ≤P Independent Set follows from
1 the construction of the corresponding graph G,
2 calling the black box for independent set on G, and
3 answering yes if and only if the black box solver answers yes.

Q.E.D.
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reducing vertex cover to set cover

2 The Satisfiability Problem
satisfying truth assignments
SAT and 3-SAT
reducing 3-SAT to independent set
transitivity of reductions
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transitivity of reductions

Theorem (19)
If Z ≤P Y and Y ≤P X, then Z ≤P X.

Proof. The result follows from a composition of black boxes:
To solve an instance of Z , we call the black box for Y .
To solve an instance of Y , we call the black box for X .

The polynomial number of computational steps in the definition of
Z ≤P X is absorbed by the calls to the black box for Y . Q.E.D.

We have proved

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover,

we have therefore also

3-SAT ≤P Set Cover.
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3-SAT and the set packing problem

Exercise 5:
Formulate the relationship between 3-SAT
and the Set Packing problem.
Illustrate your formulation with an example.

Justify your answer.
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