- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Pixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

MCS 471 Lecture 3 Numerical Analysis Jan Verschelde, 26 August 2022

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Fixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

the bisection method

Theorem (corollary of the intermediate value theorem)

Let f be a continuous function on [a, b]. If f(a)f(b) < 0, then there is an r, a < r < b, such that f(r) = 0.

bisect [a, b], m = (a + b)/2

halving the interval

$$m := (a+b)/2$$

if $f(a)f(m) < 0$
then $b := m$
else $a := m$

Stop bisecting if one of the following conditions is met:

- for a given $\delta > 0$: $|b a| < \delta$; or
- for a given $\epsilon > 0$: $|f(m)| < \epsilon$; or
- for a given N: number of bisections $\geq N$.

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Fixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

a Julia function

```
using Printf # to format floating-points numbers
11 11 11
Applies the bisection method to the function f on [a,b],
f is assumed to be continuous and f(a) * f(b) < 0.
Stops when |f(a)| < eps or |f(b)| < eps or |b-a| < eps.
Returns the left and right bound of the final interval
enclosing the root, and a Boolean reporting failure.
Failure is reported when the accuracy requirement is
not satisfied in N steps; otherwise fail = 0 on return.
Example :
  (a,b,fail) = bisect(cos,pi/4,2*pi/3,1.0e-4,100)
11 11 11
function bisect (f::Function,
              a::Float64,b::Float64,eps::Float64,N::Int)
   println("running the bisection method...")
   println("-----")
   println(" a b m |f(m)| |b-a| ")
   println("----")
                                    イロト 4周ト 4 三ト 4 三ト 9 9 9 9
```

the loop

```
for i = 1:N
    m = (a+b)/2
    fm = f(m)
    if fm*f(a) < 0
       b = m
    else
       a = m
    end
    stra = @sprintf("%4.3f", a)
    strb = @sprintf("%4.3f", b)
    strm = @sprintf("%4.3f", m)
    strafm = @sprintf("%.2e", abs(fm))
    strabma = @sprintf("%.2e", abs(b-a))
    println(" $stra $strb $strm $strafm $strabma")
```

applying the stopping criteria

```
if (abs(fm) < eps) \mid ((b-a) < eps)
            fail = false;
            stri = string(i)
            println("succeeded after $stri steps")
            return (a, b, fail)
        end
    end
    strN = string(N)
    println("failed requirements after $strN steps")
    fail = true
    return (a, b, fail)
end
result = bisect (cos, pi/4, 2*pi/3, 1.0e-4, 100)
strres = string(result)
println("The result : $strres")
```

running the function

```
$ julia bisection.jl
running the bisection method...
```

a	b	m	f(m)	b-a	
1.440 1.440 1.440 1.522 1.563 1.563	2.094 1.767 1.604 1.604 1.583	1.440 1.767 1.604 1.522 1.563 1.583	1.31e-01 1.95e-01 3.27e-02 4.91e-02 8.18e-03 1.23e-02	6.54e-01 3.27e-01 1.64e-01 8.18e-02 4.09e-02 2.05e-02	
1.563 1.568 1.570 1.570 1.570 1.571	1.573 1.573 1.573 1.572 1.571 1.571	1.573 1.568 1.570 1.572 1.571 1.571	2.05e-03 3.07e-03 5.11e-04 7.67e-04 1.28e-04 1.92e-04 3.20e-05	1.02e-02 5.11e-03 2.56e-03 1.28e-03 6.39e-04 3.20e-04	
succeede The resu			ps 1.57092,	0.0]	

a Jupyter notebook

The Bisection Method

We illustrate the application of the bisection methods with some plots.

Now we add to this plot...

a first exercise

Exercise 1: Consider $f(x) = e^x - 8x = 0$.

Apply three steps with the bisection method to find an approximation for a root of f(x) = 0 inside the interval [a, b] = [-2, 3].

- Make a plot of f(x) = 0 to illustrate the method marking the end points of the intervals $[a_1, b_1] (= [a, b]), [a_2, b_2],$ and $[a_3, b_3]$ that contain the root of f.
- Make a table with the numerical intermediate results of three steps of the bisection method.
 - The numbers in the table must be formatted with four significant decimal places after rounding, in scientific notation; for example, 2 is represented as 2.0000E+00.

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Pixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

accuracy and cost of the bisection method

In each step, the interval is halved.

Starting with [a, b], after N steps, the length of the interval is

$$\frac{|b-a|}{2^N}.$$

Take the middle m of the last interval as the approximation for the root r, then

$$|r-m|\leq \frac{|b-a|}{2^{N+1}}.$$

Cost of the algorithm: one new function evaluation per step.

Exercise 2: Make the code for the function bisect more efficient by storing the function values.

predicting the accuracy of the bisection method

Exercise 3:

We want to find a root of $f(x) = x^3 - 7x + 1$ in the interval [2, 3].

- Does the bisection method apply to this problem? Justify.
- What is the accuracy of executing 20 steps of the bisection method?
 - Justify without running the bisection method.

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Pixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

fixed-point iterations

Definition

The number $r \in \mathbb{R}$ is a *fixed point* of the function g if g(r) = r.

We will reformulate the root finding problem f(r) = 0 into a fixed point computation of g(r) = r.

Example
$$f(x) = x^3 + x - 1 = 0$$
 leads to $g(x) = 1 - x^3 = x$.

A fixed-point iteration applies a simple formula:

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots$$

starting at an initial guess x_0 for the fixed point.

If the fixed-point iteration converges, then x_{∞} is a fixed point.

a Julia function – specification

```
using Printf # to format floating-point numbers
.. .. ..
Applies the fixed-point iteration to a given function q.
ON ENTRY :
           a function in one variable
    a
    \times 0
            initial guess for the fixed-point iteration
    maxit upper bound on the number of iterations
   t.o1
            tolerance on the abs(q(x) - x) where x is
            the current approximation for the fixed point
ON RETURN :
         the current approximation for the fixed point
    X
    numit the number of iterations done
    fail
           true if the accuracy requirement was not met,
            false otherwise.
EXAMPLE :
    q(x) = 1 - x^3
    (x, numit, fail) = fixedpoint(q, 0.5, 10, 1.0e-4)
.. .. ..
function fixedpoint (q::Function, x0::Float64, maxit::Int, tol::Float64)
                                                4 D > 4 P > 4 E > 4 E > E 900
```

implementation of the function fixedpoint

```
strit = @sprintf("%3d", 0)
   strx0 = @sprintf("%.4e", x0)
   println("$strit : $strx0")
   xprevious = x0
   xnext = xprevious
   for i=1:maxit
       xnext = q(xprevious)
       strit = @sprintf("%3d", i)
       strxi = @sprintf("%.4e", xnext)
       error = abs(xnext - xprevious)
       strerr = @sprintf("%.2e", error)
       println("$strit : $strxi : $strerr")
       if error < t.ol
           return (xnext, i, false)
       end
       xprevious = xnext
   end
   return (xnext, maxit, true)
end
```

the main program

```
....
Calls the fixed point iteration on three examples.
function main()
    x0 = 0.5
    maxit = 15
    tol = 1.0e-8
    g1(x) = 1 - x^3
    println("running a fixed-point iteration on 1 - x^3 \dots")
    (endpt, numit, fail) = fixedpoint(q1, x0, maxit, tol)
    g2(x) = (1 - x)^{(1/3)}
    println("running a fixed-point iteration on (1 - x)^{(1/3)}...")
    (endpt, numit, fail) = fixedpoint(q2, x0, maxit, tol)
    q3(x) = (1 + 2*x^3)/(1 + 3*x^2)
    println("running a fixed-point iteration on (1 + 2 \times x^3)/(1 + 3 \times x^2) ...")
    (endpt, numit, fail) = fixedpoint(q3, x0, maxit, tol)
end
```

main()

running with $g(x) = 1 - x^3$

```
running a fixed-point iteration on 1 - x^3 ...
  0 : 5.0000e-01
  1 : 8.7500e-01 : 3.75e-01
  2 : 3.3008e-01 : 5.45e-01
  3 : 9.6404e-01 : 6.34e-01
  4 : 1.0405e-01 : 8.60e-01
  5:9.9887e-01:8.95e-01
  6:3.3761e-03:9.95e-01
  7 : 1.0000e+00 : 9.97e-01
  8 : 1.1544e - 07 : 1.00e + 00
  9:1.0000e+00:1.00e+00
 10 : 0.0000e+00 : 1.00e+00
 11 : 1.0000e+00 : 1.00e+00
 12 : 0.0000e+00 : 1.00e+00
 13 : 1.0000e+00 : 1.00e+00
 14 : 0.0000e+00 : 1.00e+00
 15 : 1.0000e+00 : 1.00e+00
```

running with $g(x) = \sqrt[3]{1-x}$

```
running a fixed-point iteration on (1 - x)^{(1/3)} ...
  0 : 5.0000e-01
  1 : 7.9370e-01 : 2.94e-01
  2 : 5.9088e-01 : 2.03e-01
  3 : 7.4236e-01 : 1.51e-01
  4 : 6.3631e-01 : 1.06e-01
  5 : 7.1380e-01 : 7.75e-02
  6: 6.5901e-01: 5.48e-02
  7 : 6.9863e-01 : 3.96e-02
  8:6.7045e-01:2.82e-02
  9: 6.9073e-01: 2.03e-02
 10 : 6.7626e - 01 : 1.45e - 02
 11 : 6.8665e-01 : 1.04e-02
 12 : 6.7922e-01 : 7.42e-03
 13: 6.8454e-01: 5.32e-03
 14 : 6.8074e-01 : 3.81e-03
 15 : 6.8346e - 01 : 2.73e - 03
```

running on $g(x) = (1 + 2x^3)/(1 + 3x^2)$

$$x = 1 - x^{3}$$

$$3x^{3} + x = 1 + 2x^{3}$$

$$(3x^{2} + 1)x = 1 + 2x^{3}$$

$$x = (1 + 2x^{3})/(1 + 3x^{2})$$

running a fixed-point iteration on $(1 + 2*x^3)/(1 + 3*x^2)$...

```
0 : 5.0000e-01
```

- 1 : 7.1429e-01 : 2.14e-01 2 : 6.8318e-01 : 3.11e-02
- 3 : 6.8233e-01 : 8.51e-04
- 4 : 6.8233e-01 : 6.19e-07
- 4 : 6.8233e-01 : 6.19e-07 5 : 6.8233e-01 : 3.28e-13

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Pixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

drawing a cobweb diagram

Two steps in executing $x_1 = g(x_0)$:

- evaluate g: $y = g(x_0)$, draw a vertical line
- 2 eliminate y: $x_1 = y$, draw a horizontal line

cobweb diagram for $g(x) = 1 - x^3$

cobweb diagram for $g(x) = \sqrt[3]{1-x}$

cobweb diagram for $g(x) = (1 + 2x^3)/(1 + 3x^2)$

the Jupyter notebook bisectcobweb.ipynb

The posted Jupyter notebook bisectcobweb.ipynb combines

- numbers computed by the fixed-point iterations;
- a plot of the cobweb diagram; and most importantly,
- 3 text to document the numbers and the plot.

On a fresh Julia installation, install Plots:

```
julia> import Pkg; Pkg.add("Plots")
```

Before doing homework, download the programs and notebooks at http://www.math.uic.edu/~jan/mcs471 and execute the programs.

- The Bisection Method
 - bracketing a root
 - running the bisection method
 - accuracy and cost
- Pixed-Point Iterations
 - computing fixed points
 - geometric interpretation
 - a criterion for convergence

a criterion for convergence

If the fixed-point iteration $x_{k+1}=g(x_k)$ converges to x_∞ , where x_∞ is a fixed point: $x_\infty=g(x_\infty)$, then the error $x_\infty-x_{k+1}$ can be written as

$$x_{\infty} - x_{k+1} = g(x_{\infty}) - g(x_k)$$

$$= \frac{g(x_{\infty}) - g(x_k)}{x_{\infty} - x_k} (x_{\infty} - x_k)$$

For sufficiently close x_k to x_∞ , $\lim_{x_k \to x_\infty} \left(\frac{g(x_\infty) - g(x_k)}{x_\infty - x_k} \right) = g'(x_\infty)$ and we have:

$$|x_{\infty}-x_{k+1}|=|g'(x_{\infty})||x_{\infty}-x_k|.$$

Theorem

If $x_{k+1} = g(x_k)$ converges to x_{∞} , then $|g'(x_{\infty})| < 1$.

If at a fixed point r = g(r): |g'(r)| > 1, then $x_{k+1} = g(x_k)$ diverges.

a fourth exercise

Exercise 4:

The equation $x = 2\sin(x)$ has two fixed points: 0 and 1.895.

- Compute the rate of convergence (or divergence) of the fixed-point iteration $x_{k+1} = 2\sin(x_k)$, when x_k is close to the fixed point 0 or close to 1.895.
- Provide For $x_0 = 0.5$, compute x_1 , x_2 , and x_3 . Draw a cobweb diagram.

The assigned homework that will be collected is at

http://www.math.uic.edu/~jan/mcs471/homework.html.