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Bisection and Fixed-Point lterations

@ The Bisection Method
@ bracketing a root
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the bisection method

Theorem (corollary of the intermediate value theorem)

Let f be a continuous function on |a, b].
Iff(a)f(b) <O, then thereisanr, a < r < b, such that f(r) = 0.

10+

0.5 -
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bisect [a, b], m= (a+ b)/2

10+ ——
—— coslpi/4)

—— cos(2*pif3)

—— cos{(pif4+2*pi/3)/2)
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halving the interval

m:=(a+ b)/2
if f(a)f(m) <0
then b:=m
else a:=m

Stop bisecting if one of the following conditions is met:
@ foragivend > 0: |b—a| < J; or
@ foragivene > 0: |[f(m)| < ¢; or
@ for a given N: number of bisections > N.
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Bisection and Fixed-Point lterations

G The Bisection Method

@ running the bisection method
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a Julia function

using Printf # to format floating-points numbers

nmnn

Applies the bisection method to the function f on [a,bl],
f is assumed to be continuous and f(a)x*f(b) < 0.

Stops when |[f(a)]| < eps or |f£(b)]| < eps or |b-al < eps.
Returns the left and right bound of the final interval
enclosing the root, and a Boolean reporting failure.
Failure is reported when the accuracy requirement is

not satisfied in N steps; otherwise fail = 0 on return.
Example
(a,b,fail) = bisect(cos,pi/4,2+pi/3,1.0e-4,100)

nmnon

function bisect (f::Function,
a::Float64,b::Float64,eps::Float64,N::Int)
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the loop

for i = 1:N

end

stra = @sprintf ("%4.3f", a)

strb = @sprintf ("%4.3f", Db)

strm = @sprintf ("%4.3f", m)

strafm = @sprintf ("%.2e", abs(fm))

strabma = @sprintf("%$.2e", abs(b-a))

println(" $stra $strb $strm $strafm S$strabma")
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applying the stopping criteria

end

if (abs(fm) < eps) | ((b-a) < eps)
fail = false;
stri = string (i)

println ("succeeded after $stri steps")
return (a, b, fail)
end
end
strN = string(N)
println("failed requirements after $strN steps")
fail = true
return (a, b, fail)

result = bisect (cos,pi/4,2+pi/3,1.0e-4,100)
strres = string(result)
println ("The result : Sstrres")
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running the function

$ julia bisection.ijl
running the bisection method...

a b
1.440 2.094
1.440 1.767
1.440 1.604
1.522 1.604
1.563 1.604
1.563 1.583
1.563 1.573
1.568 1.573
1.570 1.573
1.570 1.572
1.570 1.571
1.571 1.571
1.571 1.571

succeeded after
The result [1.

$
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N e e el e e N = T =

.571

13 steps

57076,

1.
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[ £(m) | Ib-al|
31le-01 6.54e-01
95e-01 3.27e-01
27e-02 1.64e-01
91e-02 8.18e-02
18e-03 4.09e-02
23e-02 2.05e-02
05e-03 1.02e-02
07e-03 5.11e-03
1le-04 2.56e-03
67e—-04 1.28e-03
28e-04 6.39e-04
92e-04 3.20e-04
20e-05 1.60e-04
57092, 0.0]
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a Jupyter notebook

" Jupyter plotcosbisect (autosaved) o | Logou
File Edit View Insert Cell Kernel Widgets LaTeX_envs Help Not Trusted = & | Julia 1.6.2 O

+ < & B | A4 ¥ PRin B C M | Code i (=]

&£ LaTeX_envs: Refresh rendering of labels, equations and citations & Read biblit and section

# LaTeX_envs: Some configuration options (toogle toolbar)

The Bisection Method

We illustrate the ication of the bi: ion r with some plots.

In [1]: using Plots; pyplot()
plot(cos, 0.0:0.01:3.0, label="cos")

-

Out[1]:

os

0.0




a first exercise

Exercise 1: Consider f(x) = e¥ —8x = 0.
Apply three steps with the bisection method to find an approximation
for a root of f(x) = 0 inside the interval [a, b] = [-2, 3].
@ Make a plot of f(x) = 0 to illustrate the method marking the end
points of the intervals [a1, b1](= [a, b]), [a2, b2], and [as, b3]
that contain the root of f.
@ Make a table with the numerical intermediate results of three
steps of the bisection method.

The numbers in the table must be formatted with four significant
decimal places after rounding, in scientific notation;
for example, 2 is represented as 2. 0000E+00.
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Bisection and Fixed-Point lterations

@ The Bisection Method

@ accuracy and cost
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accuracy and cost of the bisection method

In each step, the interval is halved.
Starting with [a, b], after N steps, the length of the interval is

b— 2|
2N

Take the middle m of the last interval as the approximation for the

root r, then
|b—a

\r—mygw.

Cost of the algorithm: one new function evaluation per step.

Exercise 2: Make the code for the function bisect more efficient by
storing the function values.
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predicting the accuracy of the bisection method

Exercise 3:
We want to find a root of f(x) = x® — 7x + 1 in the interval [2, 3].

@ Does the bisection method apply to this problem? Justify.

© What is the accuracy of executing 20 steps
of the bisection method?

Justify without running the bisection method.

Numerical Analysis (MCS 471) Bisection and Fixed-Point Iterations L-3 26 August 2022

15/32



Bisection and Fixed-Point lterations

e Fixed-Point Iterations
@ computing fixed points
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fixed-point iterations

Definition
The number r € R is a fixed point of the function g if g(r) = r. J

We will reformulate the root finding problem f(r) = 0
into a fixed point computation of g(r) = r.

Example f(x) = x3+x —1=01leadsto g(x) =1 — x3 = x.
A fixed-point iteration applies a simple formula:
Xer1 = 9(Xk), k=0,1,...

starting at an initial guess xp for the fixed point.

If the fixed-point iteration converges, then x. is a fixed point.
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a Julia function — specification

using Printf # to format floating-point numbers

nnn

Applies the fixed-point iteration to a given function g.

ON ENTRY
g a function in one variable
x0 initial guess for the fixed-point iteration
maxit upper bound on the number of iterations
tol tolerance on the abs(g(x) - x) where x is
the current approximation for the fixed point
ON RETURN
X the current approximation for the fixed point
numit the number of iterations done
fail true if the accuracy requirement was not met,
false otherwise.
EXAMPLE
g(x) = 1-x"3
(x, numit, fail) = fixedpoint(g,0.5,10,1.0e-4)

nnw

function fixedpoint (g::Function,x0::Float64,maxit::Int,tol::Float64)
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implementation of the function fixedpoint

strit = @sprintf ("$3d", 0)
strx0 = @sprintf ("%.4e", x0)
println("$strit : S$strx0")

xprevious = x0

xnext = xprevious

for i=l:maxit
xnext = g(xprevious)
strit = @sprintf ("$3d", i)
strxi = @sprintf ("%.4e", xnext)
error = abs(xnext - xprevious)
strerr = @sprintf ("%.2e", error)
println("$strit : $strxi : $strerr"

if error < tol
return (xnext, i, false)
end
xprevious = xnext
end
return (xnext, maxit, true)
end
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the main program

Calls the fixed point iteration on three examples.
wun
function main ()

x0 = 0.5

maxit = 15

tol = 1.0e-8

gl(x) =1 - x"3

println("running a fixed-point iteration on 1 - x*3 ...")
(endpt, numit, fail) = fixedpoint(gl, x0, maxit, tol)
g2(x) = (1 - x)"~(1/3)
println("running a fixed-point iteration on (1 - x)~(1/3) ...")
(endpt, numit, fail) = fixedpoint (g2, x0, maxit, tol)
g3(x) = (1 + 2*x"3)/(1 + 3*x"2)
println("running a fixed-point iteration on (1 + 2xx73)/ (1l + 3%x"2)
(endpt, numit, fail) = fixedpoint (g3, x0, maxit, tol)
end
main ()
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running with g(x) =1 — x3

running a fixed-point iteration on 1 - x"3

0 : 5.0000e-01

1 8.7500e-01 3.75e-01
2 3.3008e-01 5.45e-01
3 9.6404e-01 6.34e-01
4 1.0405e-01 8.60e-01
5 9.9887e-01 8.95e-01
6 3.3761e-03 9.95e-01
7 1.0000e+00 9.97e-01
8 1.1544e-07 1.00e+00
9 1.0000e+00 1.00e+00
10 0.0000e+00 1.00e+00
11 1.0000e+00 1.00e+00
12 0.0000e+00 1.00e+00
13 1.0000e+00 1.00e+00
14 0.0000e+00 1.00e+00
15 1.0000e+00 1.00e+00
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running with g(x) = v/1 — x

running a fixed-point iteration on (1 - x)"(1/3)

0 : 5.0000e-01

1 7.9370e-01 2.94e-01
2 5.9088e-01 2.03e-01
3 7.4236e-01 1.51e-01
4 6.3631e-01 1.06e-01
5 7.1380e-01 7.75e-02
6 6.5901e-01 5.48e-02
7 6.9863e-01 3.96e-02
8 6.7045e-01 2.82e-02
9 6.9073e-01 2.03e-02
10 6.7626e-01 1.45e-02
11 6.8665e-01 1.04e-02
12 6.7922e-01 7.42e-03
13 6.8454e-01 5.32e-03
14 6.8074e-01 3.81e-03
15 6.8346e-01 2.73e-03
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running on g(x) = (1 +2x3)/(1 + 3x2)

running
0 5
1 7
2 6
3 6
4 6
5 6

Numerical Analysis (MCS 471)

3x3

x = 1-x8

+x 14+ 2x8

Bx2+1)x = 1+2x°

a fixed-point iteration on
.0000e-01
.1429e-01
.8318e-01
.8233e-01
.8233e-01
.8233e-01

w o 0 W N

x = (1+2x3%)/(1+3x3)

.14e-01
.11e-02
.51e-04
.19e-07
.28e-13
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Bisection and Fixed-Point lterations

e Fixed-Point Iterations

@ geometric interpretation
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drawing a cobweb diagram

Two steps in executing xy = g(Xp):
@ evaluate g: y = g(xp), draw a vertical line
@ eliminate y: x; = y, draw a horizontal line

e
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cobweb diagram for g(x) =1 — x3
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cobweb diagram for g(x) = v/1 — x
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cobweb diagram for g(x) = (1 +2x3)/(1 + 3x2)
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the Jupyter notebook bisectcobweb.ipynb

The posted Jupyter notebook bisectcobweb. ipynb combines
@ numbers computed by the fixed-point iterations;
@ a plot of the cobweb diagram; and most importantly,
© text to document the numbers and the plot.

On a fresh Julia installation, install P1ots:

julia> import Pkg; Pkg.add("Plots")

Before doing homework, download the programs and notebooks at
http://www.math.uic.edu/~jan/mcs471
and execute the programs.
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Bisection and Fixed-Point lterations

e Fixed-Point Iterations

@ a criterion for convergence
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a criterion for convergence

If the fixed-point iteration xx 1 = g(xx) converges to X, where x is a
fixed point: X, = g(X), then the error xo, — X1 can be written as

Xoo = Xkt1 = 9(Xeo) — 9(Xk)
BN E TR
oo — Ak

For sufficiently close xi t0 X5, lim (g(xoo)—g(xk)> = 9'(X-) and

Xk—Xoo Xoo — Xk
we have:
[Xoo = Xk1] = |9 (Xo0) || Xoo — X
Theorem
If X1 = g(xx) converges to X, then |g'(x)| < 1. J

If at a fixed point r = g(r): |g'(r)| > 1, then xx, 1 = g(xx) diverges.
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a fourth exercise

Exercise 4:
The equation x = 2sin(x) has two fixed points: 0 and 1.895.
@ Compute the rate of convergence (or divergence)
of the fixed-point iteration xx,1 = 2sin(xk),
when x is close to the fixed point 0 or close to 1.895.
@ For xg = 0.5, compute xq, Xo, and xs.
Draw a cobweb diagram.

The assigned homework that will be collected is at

http://www.math.uic.edu/~jan/mcs471/homework.html.
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