Floating-Point Arithmetic

ﬂ Numerical Analysis
@ a definition
@ sources of error
@ Floating-Point Numbers
@ floating-point representation of a real number
@ machine precision
@ a Julia session in CoCalc
e Floating-Point Arithmetic
@ adding two floating-point numbers
@ loss of significance

6 Arbitrary Precision and Interval Arithmetic
@ extending floating-point arithmetic

MCS 471 Lecture 2
Numerical Analysis
Jan Verschelde, 24 August 2022

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 1/28

Floating-Point Arithmetic

0 Numerical Analysis
@ a definition

Numerical Analysis (MCS 471) Floating-Point Arithmetic

Numerical Analysis — a definition

Definition (Nick Trefethen, SIAM News 1992)

Numerical analysis is the study of algorithms for the problems of
continuous mathematics.

An algorithm is a finite number of unambiguous steps, where
each step can be executed by arithmetical operations.

We care for the efficiency and accuracy of algorithms.

In continuous models to solve problems,
we obtain approximate answers for approximate input data.

Two related disciplines:
@ Computer Algebra to formulate and re-formulate problems.
@ Scientific Computing, for applications to science.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

3/28

Floating-Point Arithmetic

0 Numerical Analysis

@ sources of error

Numerical Analysis (MCS 471) Floating-Point Arithmetic

sources of error

Some sources of error are
@ truncation errors in mathematical models;
@ observed input data are approximate numbers;
@ representation errors, e.g.: 1/10 in binary, 1/3 in decimal,
@ roundoff error during calculations.

In numerical analysis, we ask two important questions:
@ How sensitive is the output to changes in the input?
@ Do roundoff errors in an algorithm propagate?

Answers to these two questions, are addressed respectively by
@ numerical conditioning is a property of a problem;
@ numerical stability is a property of an algorithm.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

5/28

absolute and relative error

Definition (absolute error)

Let X be an approximation for x. The absolute error Ax is the absolute
value of the difference of x with X:

AX = |x —X|.

Definition (relative error)
Let X be an approximation for x. The relative error 6x is the absolute
error divided by the absolute value of x:

AX

O0X = —.
|x|

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 6/28

scientific notation of numbers
Consider the following three numbers:
-1.8826009335422041e-18

1.6324136076090274e-16

3.5505687098878179%9e-17

They look completely different. What do they have in common?

Well, they represent respectively the numbers
-1.88x 107" 1.63x 107" 355x10°",

and those three numbers are very tiny.

We represent all real numbers in scientific notation.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

7/28

Floating-Point Arithmetic

9 Floating-Point Numbers
@ floating-point representation of a real number

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 8/28

floating-point numbers

A floating-point number consists of
@ one sign bit,
© a normalized fraction: the leading bit is nonzero, and
© an exponent.

Definition
The floating-point representation f¢(x) of a real number x € R is

FU(X) = £.bb...b x 2°,

stored compactly as the tuple (£, e, bb. .. b).
The representation erroris |f¢(x) — X|.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

9/28

floating-point formats

Hardware supports single precision (32-bit), double precision (64-bit),
and long double precision (80-bit), summarized below:

number of bits

precision sign | exponent | fraction | total
single 1 8 23 32
double 1 11 52 64
long double | 1 15 64 80

A 64-bit floating-point number has

@ 1 sign bit s, 0 for positive, 1 for negative,
., €11 in the exponent, and
@ 52 bits fi, £, ..., f52 in the fraction, f; # 0.

@ 11 bits ey, &5, ..

[sTerlea] - Teul A~]

Numerical Analysis (MCS 471)

Floating-Point Arithmetic

L-2 24 August 2022

10/28

a number line

Consider a floating-point number system with basis 2
@ with two bits in the (normalized) fraction, and
@ with exponents —1, 0, +1, +2.
We display all positive floating-point numbers in this system:
102" = 001 = 1/4 1127" = 0011 = 3/8

102 = 01 = 1/2 112> = 011 = 3/4
02T = 1 A12FT = 14 = 3/2
1022 = 10 = 2 1272 = 11 = 3
N A | | |
T | | |
0 131 3 1 3 2 3
482 4 2
error |f{(x) — x| <1/8 error |f{(x) — x| <1/2

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 11/28

Floating-Point Arithmetic

@ Floating-Point Numbers

@ machine precision

Numerical Analysis (MCS 471) Floating-Point Arithmetic

machine precision

Definition

The number machine precision emaen is the distance between 1 and
the smallest floating-point number greater than one.

For basis B and size p of the fraction: ep,cn = B7P.

For0 < e < emaeh: (14+¢) —1#¢+(1—1).

The machine precision as supported by hardware single floats (32-bit),
double floats (64-bit), and long double floats (80-bit) is below:

number of bits machine
precision sign | exponent | fraction | total precision
single 1 8 23 32 [2728 ~ 1.192e-07
double 1 11 52 64 | 2752 ~ 2.220e-16
long double | 1 15 64 80 | 27% ~5.421e-20

Numerical Analysis (MCS 471)

Floating-Point Arithmetic

L-2 24 August 2022 13/28

the smallest and largest exponent

An exponent e € [emin, emax] Where

emin 1S the smallest exponent and ey, is the largest exponent.

number of bits

exponent range

precision sign | exponent | fraction | total Emin | €max
single 1 8 23 32 —126 +127
double 1 11 52 64 —1022 | +1023
long double | 1 15 64 80 | —16382 | +16383

Special values for the exponent for double precision:
@ 111 1111 1111, nonzero fraction : —-NaN, not a number;
@ 111 1111 1111, zero fraction : —Inf, represents —oo;

@ 000 0000 0000 : numbers that are not normalized;

@ 011 1111 1111, zero fraction : +Inf, represents +oc.

Numerical Analysis (MCS 471)

Floating-Point Arithmetic

L-2 24 August 2022 14/28

Floating-Point Arithmetic

e Floating-Point Numbers

@ a Julia session in CoCalc

Numerical Analysis (MCS 471)

Floating-Point Arithmetic

welcome to CoCalc!

[JON] () Welcome to CoCalc! - CoCalc X +
&« > C O & https://cocalc.com/projects/9c4895 120% 9% Q_ Search
(,) Projects % Welcome to Co... =

i

@ cCocCalc Help m
/A Thank you for trying CoCalc! Please sign up to avoid losing your work.

E=Files ®New CLog Q Find

A
2 Welcome to CoCalc.ipynb X
[File v -+ O 0 X a m Notebook vV = [X
File Edit View Insert Cell Kernel Help
+ »Run M Stop @Tab O » Code v 0]

Validate
Select a Kernel

This notebook has no kernel.
A working kernel is required in order to evaluate the code in the notebook. Please select one for the
programming language you want to work with.

Suggested kernels

& Julia 1.6

The Julia Programming Language

Numerical Analysis (MCS 471)

—
«0O» «F)» «=)H» «
Floating-Point Arithmetic

it
v

pa ¢

documenting calculations in a notebook

[JON]) Welcome to CoCalc! - CoCale X = +

<~ C O B nhttps://cocalc.com/projects/9c4895a6-d7da-4 120% ¢% Q Search m =
o Projects % Welcome to CoCa... ® CoCale Help m

A\ Thank you for trying CoCalc! Please sign up to avoid losing your work. A

E>Files ®New Clog Q Find
0 File v - + O O K @ @& Notebookv = [X

=
File Edit View Insert Cell Kernel Help cPU | Memory e= | Trusted | Julia 1.6 O S
+ »Run @@Stop 2Tab O » O Validate

In [1]: a= 2_0/\(_1022) 1.772 seconds 1

Out[1]: 2.2250738585072014e-308

In [2]: bitstring(a) 0.368 seconds 2
Out[2]: " 1

Indeed, the smallest exponent is 000 0000 0001. 3
In [3]: bitstring(2.0~1203) 0.01 seconds|4

Out[3]: "@11111111111

The above output verifies that the largest exponetis 111 1111 1110. 5

<O> <> A=V <ED>

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 1

it
M)

/28

=}

exponent encoding
The exponents are encoded with an offset, minus 1023 for double:

julia> a = 2.07(-1022)
2.2250738585072014e-308

julia> bitstring(a)
"00000000000100"
We see that the smallest exponentis 000 0000 0001.

julia> b = 2.071023
8.98846567431158e307

julia> bitstring (b)
"01111111111000"

We see that the largest exponentis 111 1111 1110.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 18/28

the smallest and largest double

julia> a = nextfloat (0.0)
5.0e-324

julia> bitstring(a)
"0001 "

The smallest number is not normalized: 2752 x 21022 — 1074,

julia> b = prevfloat (Inf)
1.7976931348623157e308

julia> bitstring(b)
*011111111110222221121124222222214242¢2222211414222221111212111111 1111111 121"

The largest number has exponent 2'% — 1 and fraction 1 4 (1 — 27-52),

julia> bitstring(2.071023%x(1 + (1 - 2.0"(=-52))))
v*o1111111111022221212112177747222121212112114422111121.1 1114412111111 111111111

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 19/28

Floating-Point Arithmetic

e Floating-Point Arithmetic
@ adding two floating-point numbers

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 20/28

adding two floating-point numbers

Consider two numbers in a system with 4 as the size of fraction:
x=+.1101 x2%and y = +.1011 x 21,
Four steps to add two floating-point numbers:

@ Align the numbers so they both have the same exponent.
y=+.1011 x 2" = +.01011 x 22 = +.001011 x 23

@ Perform the addition.

+.1101 x 23
+ +.001011 x 28
+.111111 x 28

© Round the result: x + y = +1.0000 x 23.
@ Normalize the result: x + y = +.1000 x 24,

Exercise 1: check the accuracy of the sum.
Translate all operations into our familiar decimal notation.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

21/28

Floating-Point Arithmetic

0 Floating-Point Arithmetic

@ loss of significance

Numerical Analysis (MCS 471) Floating-Point Arithmetic

loss of significance

Consider two numbers in a system with 4 as the size of fraction:
x=+.1110 x 2% and y = +.1101 x 28.

Compute x — y:

+1110 x 28
— 41101 x 28
+.0001 x 28

After normalization: x — y = +.1000 x 2°,

Problem: x and y have 4 bits of significance,
the result x — y has only one significant bit of accuracy.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

23/28

restructuring a calculation

Consider v/9.01 — 3 in a three decimal digit number system.

In this system, 3 is represented by +.300 x 10".
v/9.01 ~ 3.0016662 represented by +.300 x 10".
The subtraction will thus yield zero.

We can avoid the subtraction:

Vo073 (V801 -3)(vV0.01+3) 9.01-9

v9.01 + 3 - V/9.01+3

The difference in the numerator is not zero:
+.901 x 10" minus +.900 x 10" yields +.100 x 10~".

Dividing +.100 x 10~ by +/9.01 + 3 = 4-.600 x 10'
results in +.167 x 10~2.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022

24/28

two additional exercises

Exercise 2: Consider the representation of floating-point numbers
with base 10 and 2 digits in the fraction part.
The values for the exponents are between —10 and +10.

@ What is the machine precision in this number system?

© Represent the numbers 17 and 333 as floating point numbers
and illustrate the calculation of 17 + 333, using rounding.
What is the calculated sum?

Exercise 3: Consider a floating-point number system with base 10.
There are five digits in the fraction. Exponents range from —7 to +8.

@ What is the smallest positive floating-point number in this system?
© What is the result of 12.381 + 0.098321 in this system?

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 25/28

Floating-Point Arithmetic

e Arbitrary Precision and Interval Arithmetic
@ extending floating-point arithmetic

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 26/28

extending floating-point arithmetic

Two ways to extend floating-point arithmetic:
@ arbitrary precision floating-point arithmetic
The GNU Multiprecision Arithmetic Library and the GNU MPFR
library provide arbitrary-precision integers and floating-point
numbers, wrapped in Julia by the types BigInt and BigFloat.
See the methods precision () and setprecision () to query
the precision (in bits) and to set the precision (also in bits).

© multiple double arithmetic
A double double is an unevaluated sum of two doubles.
Double double arithmetic exploits the hardware double arithmetic.

© interval arithmetic

Instead of one number, we can calculate with an interval [a, b],
where ais the lower and b the upper bound for the approximation.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 27/28

bibliography

@ J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod,
M. Joldes, V. Lefevre, G. Melquiond, N. Revol, and S. Torres:
Handbook of Floating-Point Arithmetic.
Springer-Verlag, second edition, 2018.

@ J. Demmel and J. Riedy: A new IEEE 754 standard for
floating-point arithmetic in an ever-changing world.
SIAM News, 54(6):9-11, 2021.

Special Issue on Computational Science and Engineering.

o |[EEE. IEEE Standard for Floating-Point Arithmetic.
In IEEE Std 754-2019 (Revision of IEEE Std 754-2008),
84 pages, 2019.

The SIAM News article (second item above) is recommended reading.

Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022 28/28

	Numerical Analysis
	a definition
	sources of error

	Floating-Point Numbers
	floating-point representation of a real number
	machine precision
	a Julia session in CoCalc

	Floating-Point Arithmetic
	adding two floating-point numbers
	loss of significance

	Arbitrary Precision and Interval Arithmetic
	extending floating-point arithmetic

