Numerical Analysis

- a definition
- sources of error
- Floating-Point Numbers
 - floating-point representation of a real number
 - machine precision
 - a Julia session in CoCalc
- Floating-Point Arithmetic
 - adding two floating-point numbers
 - Ioss of significance

Arbitrary Precision and Interval Arithmetic

extending floating-point arithmetic

MCS 471 Lecture 2 Numerical Analysis Jan Verschelde, 24 August 2022

Numerical Analysis a definition

sources of error

2 Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

• extending floating-point arithmetic

Numerical Analysis – a definition

Definition (Nick Trefethen, SIAM News 1992)

Numerical analysis is the study of algorithms for the problems of continuous mathematics.

An algorithm is a finite number of unambiguous steps, where each step can be executed by arithmetical operations.

We care for the efficiency and accuracy of algorithms.

In continuous models to solve problems, we obtain approximate answers for approximate input data.

Two related disciplines:

- Computer Algebra to formulate and re-formulate problems.
- Scientific Computing, for applications to science.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical Analysis

- a definition
- sources of error

Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

3 Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

• extending floating-point arithmetic

sources of error

Some sources of error are

- truncation errors in mathematical models;
- observed input data are approximate numbers;
- representation errors, e.g.: 1/10 in binary, 1/3 in decimal;
- roundoff error during calculations.

In numerical analysis, we ask two important questions:

- How sensitive is the output to changes in the input?
- Or roundoff errors in an algorithm propagate?

Answers to these two questions, are addressed respectively by

- numerical conditioning is a property of a problem;
- Inumerical stability is a property of an algorithm.

イロト イポト イラト イラト

absolute and relative error

Definition (absolute error)

Let \hat{x} be an approximation for *x*. The *absolute error* Δx is the absolute value of the difference of *x* with \hat{x} :

$$\Delta x = |x - \widehat{x}|.$$

Definition (relative error)

Let \hat{x} be an approximation for x. The *relative error* δx is the absolute error divided by the absolute value of x:

$$\delta x = \frac{\Delta x}{|x|}.$$

scientific notation of numbers

Consider the following three numbers:

-1.8826009335422041e-18

1.6324136076090274e-16

3.5505687098878179e-17

They look completely different. What do they have in common? Well, they represent respectively the numbers

 -1.88×10^{-18} , 1.63×10^{-16} , 3.55×10^{-17} ,

and those three numbers are very tiny.

We represent all real numbers in scientific notation.

Numerical Analysis

- a definition
- sources of error

Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

extending floating-point arithmetic

floating-point numbers

A floating-point number consists of

- one sign bit,
- a normalized fraction: the leading bit is nonzero, and
 - an exponent.

Definition

The *floating-point representation* $f\ell(x)$ of a real number $x \in \mathbb{R}$ is

$$f\ell(x) = \pm .bb \dots b \times 2^e$$

stored compactly as the tuple $(\pm, e, bb \dots b)$. The *representation error* is $|f\ell(x) - x|$.

< ロ > < 同 > < 回 > < 回 >

floating-point formats

Hardware supports single precision (32-bit), double precision (64-bit), and long double precision (80-bit), summarized below:

	number of bits			
precision	sign	exponent	fraction	total
single	1	8	23	32
double	1	11	52	64
long double	1	15	64	80

A 64-bit floating-point number has

- 1 sign bit s, 0 for positive, 1 for negative,
- 11 bits e_1, e_2, \ldots, e_{11} in the exponent, and
- 52 bits f_1 , f_2 , ..., f_{52} in the fraction, $f_1 \neq 0$.

a number line

Consider a floating-point number system with basis 2

- with two bits in the (normalized) fraction, and
- 2 with exponents -1, 0, +1, +2.

We display all positive floating-point numbers in this system:

4 D K 4 B K 4 B K 4 B K

Numerical Analysis

- a definition
- sources of error

Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

extending floating-point arithmetic

machine precision

Definition

The number *machine precision* ϵ_{mach} is the distance between 1 and the smallest floating-point number greater than one. For basis *B* and size *p* of the fraction: $\epsilon_{mach} = B^{-p}$.

For
$$0 < \epsilon < \epsilon_{\text{mach}}$$
: $(1 + \epsilon) - 1 \neq \epsilon + (1 - 1)$.

The machine precision as supported by hardware single floats (32-bit), double floats (64-bit), and long double floats (80-bit) is below:

	number of bits				machine
precision	sign	exponent	fraction	total	precision
single	1	8	23	32	$2^{-23} pprox 1.192e-07$
double	1	11	52	64	$2^{-52} \approx 2.220e-16$
long double	1	15	64	80	$2^{-64} \approx 5.421e-20$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

the smallest and largest exponent

An exponent $e \in [e_{\min}, e_{\max}]$ where e_{\min} is the smallest exponent and e_{\max} is the largest exponent.

	number of bits			exponer	nt range	
precision	sign	exponent	fraction	total	e_{\min}	e _{max}
single	1	8	23	32	-126	+127
double	1	11	52	64	-1022	+1023
long double	1	15	64	80	-16382	+16383

Special values for the exponent for double precision:

- 111 1111 1111, nonzero fraction : -NaN, not a number;
- 111 1111 1111, zero fraction : -Inf, represents $-\infty$;
- 000 0000 0000 : numbers that are not normalized;
- 011 1111 1111, zero fraction : +Inf, represents $+\infty$.

Numerical Analysis

- a definition
- sources of error

Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

• extending floating-point arithmetic

welcome to CoCalc!

• • • Welcome to CoCalc! - CoCalc × +						
\leftarrow \rightarrow C \bigcirc A https://cocalc.com/projects	/9c4895a6 120% 🏠	Q Search	\boxtimes III \equiv			
🔵 Projects 🕉 Welcome to Co 🛜		🛈 CoCalc 📑 Help	Sign Up!			
A Thank you for trying CoCalc! Please sign	up to avoid losing y	our work.	\land			
≌Files ⊕New ©Log ୍ Find େ Welcome to ୮୩ File ✓ । ସି ତ – + ୦	CoCalc.ipynb X	L ² Notebook ∨ E	= []] ×			
+ H Run ■ Stop 🛱 Tab 🔿 🕨 Code ∨ 📟 🕛 Validate						
Select a Kernel						
This notebook has no kernel. A working kernel is required in order to evaluate the code in the notebook. Please select one for the						
programming language you want to work with.						
Suggested kernels						
♣ Julia 1.6	The Julia Program	nming Language				
		 < □ > < □ > < □ > < □ > 	★ E > E >			

documenting calculations in a notebook

O Welcome to CoCalc! - CoCalc × +	
\leftarrow \rightarrow C \bigcirc A https://cocalc.com/projects/9c4895a6-d7da-48 120% \circlearrowright Q Search \heartsuit	\ ≡
🕐 Projects 🕏 Welcome to CoCa 🕕 Sign	n Up!
⚠ Thank you for trying CoCalc! Please sign up to avoid losing your work.	\triangle
∋Files ⊕New ⓒLog ♀Find ☺Welcome to CoCalc.ipynb ×	
□ File ∨ □ NOT saved! ○ − + ○ ○ % □ to Notebook ∨ □ []	×
File Edit View Insert Cell Kernel Help CPU Memory - Trusted Julia 1.6	: 🔿 🍰
+ ⊨ Run ■ Stop 🛱 Tab 🔿 🕨 Code ∨ 📼 🕛 Validate	
In [1]: a = 2.0^(-1022) 1.772 seco	nds 1
Out[1]: 2.2250738585072014e-308	
In [2]: bitstring(a) 0.368 seco	nds 2
Out[2]: "0000000001000000000000000000000000000	
Indeed, the smallest exponent is 000 0000 0001.	3
In [3]: bitstring(2.0^1203) 0.01 seco	nds 4
Out[3]: "0111111111100000000000000000000000000	
The above output verifies that the largest exponet is 111 1111 1110.	5
< 日> < 图> < 注> < 注>	E S
Numerical Analysis (MCS 471) Floating-Point Arithmetic L-2 24 August 2022	2 17

exponent encoding

The exponents are encoded with an offset, minus 1023 for double:

```
julia> a = 2.0^(-1022)
2.2250738585072014e-308
```

We see that the smallest exponent is 000 0000 0001.

julia> b = 2.0^1023 8.98846567431158e307

We see that the largest exponent is 111 1111 1110.

the smallest and largest double

```
julia> a = nextfloat(0.0)
5.0e-324
```

The smallest number is not normalized: $2^{-52} \times 2^{-1022} = 2^{-1074}$.

julia> b = prevfloat(Inf) 1.7976931348623157e308

The largest number has exponent $2^{10} - 1$ and fraction $1 + (1 - 2^{-52})$.

Numerical Analysis

- a definition
- sources of error

Ploating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

adding two floating-point numbers

Ioss of significance

Arbitrary Precision and Interval Arithmetic

• extending floating-point arithmetic

adding two floating-point numbers

Consider two numbers in a system with 4 as the size of fraction: $x = +.1101 \times 2^3$ and $y = +.1011 \times 2^1$.

Four steps to add two floating-point numbers:

- Align the numbers so they both have the same exponent. $y = +.1011 \times 2^1 = +.01011 \times 2^2 = +.001011 \times 2^3$
- Perform the addition.

- Solution Round the result: $x + y = +1.0000 \times 2^3$.
- Normalize the result: $x + y = +.1000 \times 2^4$.

Exercise 1: check the accuracy of the sum.

Translate all operations into our familiar decimal notation.

Numerical Analysis

- a definition
- sources of error

2 Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

• extending floating-point arithmetic

loss of significance

Consider two numbers in a system with 4 as the size of fraction: $x = +.1110 \times 2^3$ and $y = +.1101 \times 2^3$.

Compute x - y:

	+.1110	×	2^{3}
_	+.1101	×	2 ³
	+.0001	×	2 ³

After normalization: $x - y = +.1000 \times 2^{0}$.

Problem: x and y have 4 bits of significance, the result x - y has only one significant bit of accuracy.

イロト イポト イラト イラト

restructuring a calculation

Consider $\sqrt{9.01} - 3$ in a three decimal digit number system.

In this system, 3 is represented by $+.300 \times 10^{1}$. $\sqrt{9.01} \approx 3.0016662$ represented by $+.300 \times 10^{1}$. The subtraction will thus yield zero.

We can avoid the subtraction:

$$\sqrt{9.01} - 3 = \frac{(\sqrt{9.01} - 3)(\sqrt{9.01} + 3)}{\sqrt{9.01} + 3} = \frac{9.01 - 9}{\sqrt{9.01} + 3}$$

The difference in the numerator is not zero: +.901 × 10¹ minus +.900 × 10¹ yields +.100 × 10⁻¹. Dividing +.100 × 10⁻¹ by $\sqrt{9.01}$ + 3 = +.600 × 10¹ results in +.167 × 10⁻².

two additional exercises

Exercise 2: Consider the representation of floating-point numbers with base 10 and 2 digits in the fraction part.

The values for the exponents are between -10 and +10.

- What is the machine precision in this number system?
- Provide a straight of the state of the st

Exercise 3: Consider a floating-point number system with base 10. There are five digits in the fraction. Exponents range from -7 to +8.

- What is the smallest positive floating-point number in this system?
- What is the result of 12.381 + 0.098321 in this system?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Numerical Analysis

- a definition
- sources of error

Floating-Point Numbers

- floating-point representation of a real number
- machine precision
- a Julia session in CoCalc

Floating-Point Arithmetic

- adding two floating-point numbers
- Ioss of significance

Arbitrary Precision and Interval Arithmetic

extending floating-point arithmetic

extending floating-point arithmetic

Two ways to extend floating-point arithmetic:

arbitrary precision floating-point arithmetic

The GNU Multiprecision Arithmetic Library and the GNU MPFR library provide arbitrary-precision integers and floating-point numbers, wrapped in Julia by the types <code>BigInt</code> and <code>BigFloat</code>. See the methods <code>precision()</code> and <code>setprecision()</code> to query the precision (in bits) and to set the precision (also in bits).

- multiple double arithmetic
 A double double is an unevaluated sum of two doubles.
 Double double arithmetic exploits the hardware double arithmetic.
- interval arithmetic

Instead of one number, we can calculate with an interval [a, b], where *a* is the lower and *b* the upper bound for the approximation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

bibliography

- J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond, N. Revol, and S. Torres: Handbook of Floating-Point Arithmetic. Springer-Verlag, second edition, 2018.
- J. Demmel and J. Riedy: A new IEEE 754 standard for floating-point arithmetic in an ever-changing world. SIAM News, 54(6):9–11, 2021.
 Special Issue on Computational Science and Engineering.
- IEEE. IEEE Standard for Floating-Point Arithmetic. In IEEE Std 754-2019 (Revision of IEEE Std 754-2008), 84 pages, 2019.

The SIAM News article (second item above) is recommended reading.

3