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numerical integration with quadrature rules

Given a function f (x) over an interval [a,b],
our problem is to approximate the definite integral over f over [a,b],
by a weighted sum of function values:∫ b

a
f (x)dx ≈ w1f (x1) + w2f (x2) + · · ·+ wnf (xn).

The quadrature rule is defined by
interpolation points xi ∈ [a,b], x1 < x2 < · · · < xn; and
weights wi to multiply the function values with.
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degree of precision

The cost of a quadrature rule is determined by the number of function
values, or equivalently, the number of interpolation points.

Definition
A quadrature rule has degree of precision d
if the rule integrates all polynomial of degree d or less exactly.

Because
∫ b

a
is a linear operator:

∫ b

a
cdxd + · · ·+ c1x + c0dx =

∫ b

a
cdxddx + · · ·+

∫ b

a
c1xdx +

∫ b

a
c0dx ,

it suffices to compute the degree of precision for the basis functions.
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the method of undetermined coefficients

Problem:
Construct a 3-point integration formula over [−h,+h], for h > 0,
evaluate at −h, 0, and +h. Determine the weights so the degree of
precision is as high as possible.

Answer: Setup the conditions imposed by the degree of precision.
Let a, b, and c be the weights in af (−h) + b f (0) + c f (+h).

f = 1 :

∫ +h

−h
1dx = 2h = a + b + c

f = x :

∫ +h

−h
xdx = 0 = a(−h) + b0 + c(+h)

f = x2 :

∫ +h

−h
x2dx =

2h3

3
= a(−h)2 + b02 + c(+h)2

Then we solve for a, b, and c.

Numerical Analysis (MCS 471) Gaussian Quadrature L-27 25 October 2021 6 / 35



computing the weights

We have to solve 
a + b + c = 2h
−a + c = 0
a + c = 2h/3

The solution is a = h/3 = c, b = 4h/3.

∫ h

−h
f (x)dx ≈ h

(
1
3

f (−h) +
4
3

f (0) +
1
3

f (+h)
)
.

This rule is a specific instance of Simpson’s rule.

In L-25, we used SymPy to derive this rule for [a,b],
with function values at a, (a + b)/2, and b.
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the midpoint rule (again . . .)

In the previous example, the interpolation points were given.

We can obtain a higher degree of precision if in the conditions
the interpolation are variable as well.

Solving the exercise below will give the midpoint rule.

Exercise 1:

Consider
∫ b

a
f (x)dx ≈ w1f (x1).

Determine w1 and x1 so the degree of precision is as high as possible.
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a second exercise

Exercise 2:
Consider the quadrature rule∫ 2a

−2a
f (x)dx ≈ w1f (−a) + w2f (a), for a > 0.

Determine the weights w1 and w2 so that the rule
has the highest possible algebraic degree of precision.
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conditions on polynomials

We seek to determine the interpolation points so polynomials of
degree higher than n will be integrated exactly.

Denote q(x) = (x − x0)(x − x1) · · · (x − xn−1).

We can write every polynomial f of degree higher than n as

f (x) = pn(x) + q(x)r(x), deg(pn) = n, pn(xi) = f (xi),

and q(x)r(x) contain the higher order terms:

r(x) = r0 + r1x + r2x2 + · · ·+ rkxk ,

so that deg(f ) = n + k .

The quadrature rule will be
∫ b

a
p(x)dx .
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conditions on polynomials

The condition to integrate f exactly is∫ b

a
f (x)dx =

∫ b

a
p(x)dx +

∫ b

a
q(x)r(x)dx︸ ︷︷ ︸

=0

.

As r(x) = r0 + r1x + · · ·+ rkxk and
∫ b

a
is a linear operator,

the conditions are equivalent to:∫ b

a
q(x)x idx = 0, i = 0,1, . . . , k ,

which is a necessary and sufficient condition.
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orthogonal polynomials

∫ b

a
q(x)x idx = 0, i = 0,1, . . . , k ,

means that q(x) is orthogonal to all x i ,
with respect to the inner product

〈f ,g〉 =
∫ b

a
f (x)g(x)dx .

As deg(q) = n, the highest k can go is n − 1.

With orthogonal polynomials we can reach a precision
of degree 2n − 1.
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Legendre and Chebyshev polynomials

Legendre polynomials: [a,b] = [−1,+1] follow a recursion:

L0(x) = 1, L1(x) = x , (n+1)Ln+1(x)−(2n+1)xLn(x)+nLn−1(x) = 0.

Gauss-Chebyshev quadrature has inner product:

〈f ,g〉 =
∫ +1

−1

f (x)g(x)√
1− x2

dx ,

where the weight function is 1/
√

1− x2.
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construction of Gaussian quadrature rules

Three steps to make a Gaussian quadrature rule with n points:

1 Construct the orthogonal polynomial q(x) of degree n.

2 The roots of q are the interpolation points of the rule.

3 The weights are integrals of the Lagrange polynomials.
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Legendre polynomials

The Legendre polynomials are defined by

L0(x) = 1, L1(x) = x , (n+1)Ln+1(x)−(2n+1)xLn(x)+nLn−1(x) = 0.

We turn this into an iterative algorithm:

Ln+1(x) =
1

n + 1

(
(2n + 1)x Ln(x)− nLn−1(x)

)
.

To compute the Legendre polynomial of degree d > 1:
1 L0 = 1; L1 = x
2 for n from 2 to d do

Ln(x) =
1
n

(
(2n − 1)x Ln−1(x)− (n − 1)Ln−2(x)

)
.
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defining Legendre polynomials with SymPy

using SymPy
x = Sym("x")

"""
legendre(d::Int)

returns the Legendre polynomial of degree d,
as a SymPy expression.
"""
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the function legendre

function legendre(d::Int)
if d == 0

return 1
elseif d == 1

return x
end
L0 = 1
L1 = x
L2 = 0
for n = 2:d

L2 = expand(((2*n-1)*x*L1 - (n-1)*L0)/n)
(L0, L1) = (L1, L2)

end
return L2

end
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the first six Legendre polynomials

L(0) = 1
L(1) = x
L(2) = 3*x^2/2 - 1/2
L(3) = 5*x^3/2 - 3*x/2
L(4) = 35*x^4/8 - 15*x^2/4 + 3/8
L(5) = 63*x^5/8 - 35*x^3/4 + 15*x/8

To extract the coefficients, we use array comprehensions:

for d=1:5
Ld = legendre(d)
cff = [Ld.coeff(x, k) for k=0:d]
nbr = [Float64(c) for c in cff]

end

The numerical coefficients are input for a numerical root finder.
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the first six Legendre coefficient vectors

Symbolic coefficients :
L(1) : Sym[0, 1]
L(2) : Sym[-1/2, 0, 3/2]
L(3) : Sym[0, -3/2, 0, 5/2]
L(4) : Sym[3/8, 0, -15/4, 0, 35/8]
L(5) : Sym[0, 15/8, 0, -35/4, 0, 63/8]
Numeric coefficients :
L(1) : [0.0, 1.0]
L(2) : [-0.5, 0.0, 1.5]
L(3) : [0.0, -1.5, 0.0, 2.5]
L(4) : [0.375, 0.0, -3.75, 0.0, 4.375]
L(5) : [0.0, 1.875, 0.0, -8.75, 0.0, 7.875]
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the companion matrix

The companion matrix of p = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 is

Cp =


0 0 0 0 −c0/c5
1 0 0 0 −c1/c5
0 1 0 0 −c2/c5
0 0 1 0 −c3/c5
0 0 0 1 −c4/c5

 .

The eigenvalues of Cp are the roots of p.

We apply eigvals of the LinearAlgebra module.
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making the companion matrix in Julia
"""

rootsCompanion(cff::Array{Float64,1})

returns the roots of the polynomial with coefficients cff,
by computing the eigenvalues of the companion matrix.
The last coefficient should not be zero.
"""
function rootsCompanion(cff::Array{Float64,1})

lead = cff[end] # leading coefficient
dim = length(cff) - 1
companion = zeros(dim, dim)
for k = 1:dim-1

companion[k+1, k] = 1
end
for k = 1:dim

companion[k, dim] = -cff[k]/lead
end
return eigvals(companion)

end

Numerical Analysis (MCS 471) Gaussian Quadrature L-27 25 October 2021 24 / 35



computing the roots of L5(x)

L5 = [0.0, 1.875, 0.0, -8.75, 0.0, 7.875]
rootsL5 = rootsCompanion(L5)
for i=1:5

sroot = @sprintf("%23.16e", rootsL5[i])
value = evalpoly(rootsL5[i], L5)
sterr = @sprintf("%.2e", value)
println("r[", i, "] : $sroot : $sterr")

end

r[1] : -9.0617984593866252e-01 : 1.01e-14
r[2] : -5.3846931010568388e-01 : 1.91e-15
r[3] : 0.0000000000000000e+00 : 0.00e+00
r[4] : 5.3846931010568311e-01 : -1.20e-16
r[5] : 9.0617984593866596e-01 : 1.35e-14
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roots of the Chebyshev polynomials

Exercise 3:
Chebyshev polynomials can be computed via the recursion:

T0(x) = 1, T1(x) = x , Tn(x) = 2xTn−1(x)− Tn−2(x).

1 Define a Julia function chebychev which takes on input a
degree d and which returns Td as a SymPy expression.
Your function should use a simple loop as in legendre.

2 Compute the roots of T5 and verify the results using

xi = cos
(
(2i − 1)π

2n

)
, i = 1,2, . . . ,n,

the theorem of lecture 16.
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backward error using the 3-terms recursion

Exercise 4:
Chebyshev polynomials can be computed via the recursion:

T0(x) = 1, T1(x) = x , Tn(x) = 2xTn−1(x)− Tn−2(x)

and have the roots

xi = cos
(
(2i − 1)π

2n

)
, i = 1,2, . . . ,n.

1 Use your function chebyshev of Exercise 3 to evaluate T100
at the roots xi . Report the residuals yi = |T100(xi)|.

2 Use the recursion for T100(x) to compute zi = |T100(xi)|.

Compare the values yi and zi . Write a conclusion.
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computation of the weights

The weights are in the solution vector of a linear system,
constructed from the requirements that all polynomials
to degree 2n − 1 are integrated exactly.

n∑
i=1

wixd
i =

∫ +1

−1
xddx =

(+1)d+1 − (−1)d+1

d + 1
, d = 0,1, . . . ,2n − 1.

Instead of solving a linear system,
we integrate the Lagrange polynomials:

wi =

∫ +1

−1
`i(x)dx , `i(x) =

n∏
j = 1
j 6= i

(
x − xj

xi − xj

)
,

where xi are the points of the quadrature formula.
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Gauss-Legendre quadrature with 5 points

$ julia gausslegendre.jl
L(5) = 63*x^5/8 - 35*x^3/4 + 15*x/8
Numeric coefficients :
L(5) : [0.0, 1.875, 0.0, -8.75, 0.0, 7.875]
The points :
r[1] : -9.0617984593866252e-01 : 9.97e-15
r[2] : -5.3846931010568388e-01 : 1.96e-15
r[3] : 0.0000000000000000e+00 : 0.00e+00
r[4] : 5.3846931010568311e-01 : 9.83e-18
r[5] : 9.0617984593866596e-01 : 1.35e-14
The weights :
w[1] : 2.3692688505619008e-01
w[2] : 4.7862867049936453e-01
w[3] : 5.6888888888888967e-01
w[4] : 4.7862867049936858e-01
w[5] : 2.3692688505618711e-01
$
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degree of precision

A Gauss-Legendre quadrature with n points will integrate
every polynomial of degree 2n − 1 or less correctly.

Exercise 5:
Apply the five points and weights of the Gauss-Legendre to a random
polynomial of degree nine and verify that the numerical approximation
corresponds to the exact value computed with SymPy.

Exercise 6:
Use the five point Gauss-Legendre rule to demonstrate that the first
ten Legendre polynomials form an orthogonal basis:

〈Li ,Lj〉 =
∫ +1

−1
Li(x)Lj(x)dx

equals zero for all j 6= i and one if j = i .
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reduction to an eigenvalue problem

If pn is an orthogonal polynomial of degree n,
with the three terms recursion denoted as

p−1(x) = 0, p0(x) = 1, for j > 1 : pj(x) = (ajx+bj)pj−1(x)−cjpj−2(x),

then the roots of pn are the eigenvalues of

J =


α1 β1
β1 α2 β2

. . . . . . . . .
βn−2 αn−1 βn−1

βn−1 αn


αi = −

bi

ai
,

βi =

√
ci+1

aiai+1
,

i = 1,2, . . . ,n − 1.
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weights of a Gauss quadrature rule

If q is the first row of Q,
of the orthogonal matrix with the eigenvectors of J in its columns,
then

wi = q2
i ×

∫ b

a
w(x)dx

is the weight of the i-th point in the Gauss quadrature rule
with weight function w(x) over the interval [a,b], as in∫ b

a
w(x)f (x)dx ≈

n∑
i=1

wi f (xi), with pn(xi) = 0, i = 1,2, . . . ,n.

Main point: This construction scales well to make rules
with several hundreds of points.
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an application: improper integrals

The integrand f (x) of an improper integral
∫ b

a
f (x)dx

is undefined at some x ∈ [a,b].

Example: ∫ 1

−1

1√
1− x2

dx = π.

The weight of Gauss-Chebyshev quadrature is w(x) =
1√

1− x2
.

Exercise 7:
Use the posted Jupyter notebook to apply a Gauss-Chebyshev

quadrature rule with five points to
∫ 1

−1

1√
1− x2

dx .

What is the accuracy of your computation?
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four lectures on differentiation and integration

1 Richardson extrapolation improves the accuracy of differences.

2 Quadrature rules are weighted sums of function evaluations
and the weights are integrals of Lagrange polynomials.

3 By extrapolation, Romberg integration improves the accuracy
of the composite trapezoidal rule.

4 Gaussian quadrature interpolates at the n roots of an orthogonal
polynomial to reach a degree of precision equal to 2n − 1.

Numerical Analysis (MCS 471) Gaussian Quadrature L-27 25 October 2021 35 / 35


	Constructing Quadrature Rules
	degree of precision
	the method of undetermined coefficients

	Gaussian Quadrature
	conditions on polynomials
	orthogonal polynomials
	Gauss-Legendre quadrature

	Making Gauss Quadrature Rules
	reduction to an eigenvalue problem


