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numerical integration with quadrature rules

Given a function f(x) over an interval [a, b],

our problem is to approximate the definite integral over f over [a, b],
by a weighted sum of function values:

/b f(x)dx = wyf(x1) + waf(X2) + - - - + Waf(Xn).

The quadrature rule is defined by
@ interpolation points x; € [a, b], X1 < Xo < - -+ < Xp; and
@ weights w; to multiply the function values with.
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degree of precision

The cost of a quadrature rule is determined by the number of function
values, or equivalently, the number of interpolation points.

Definition
A quadrature rule has degree of precision d

if the rule integrates all polynomial of degree d or less exactly.

b
Because / is a linear operator:
a

b b

b
/ cdxd+---+c1x+codx:/
a

a

cdxddx+~--+/

a

b
cixax + / CoaXx,
a

it suffices to compute the degree of precision for the basis functions.
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Gaussian Quadrature

0 Constructing Quadrature Rules

@ the method of undetermined coefficients
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the method of undetermined coefficients

Problem:
Construct a 3-point integration formula over [—h, +h], for h > 0,
evaluate at —h, 0, and +h. Determine the weights so the degree of

precision is as high as possible.

Answer: Setup the conditions imposed by the degree of precision.
Let a, b, and c be the weights in af(—h) + bf(0) + cf(+h).

+h
f=1: / 1dx = 2h = a+b+c
h
f=x: / xdx = 0 = a(—h)+ b0+ c(+h)
jr,;? 2h3
f=x2: / x2dx = 5 = a(—h)? + b0? + c(+h)?
—h

Then we solve for a, b, and c.
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computing the weights

We have to solve

-a+c¢c =0
at+c = 2h/3

The solutionis a= h/3 =c, b=4h/3.

{ at+b+c = 2h

h 1 4 1
/_h F(x)dx ~ h <§f(—h) +2H(0) + §f(+h)) .

This rule is a specific instance of Simpson’s rule.

In L-25, we used SymPy to derive this rule for [a, b],
with function values at a, (a+ b)/2, and b.
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the midpoint rule (again .. .)

In the previous example, the interpolation points were given.

We can obtain a higher degree of precision if in the conditions
the interpolation are variable as well.

Solving the exercise below will give the midpoint rule.

Exercise 1:
Consider/ f(x)dx =~ wyf(xq).
a

Determine wy and x4 so the degree of precision is as high as possible.
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a second exercise

Exercise 2:
Consider the quadrature rule

2a
/ f(x)dx =~ wyf(—a) + wef(a), for a>o0.
—2a

Determine the weights wy and w» so that the rule
has the highest possible algebraic degree of precision.
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conditions on polynomials

We seek to determine the interpolation points so polynomials of
degree higher than n will be integrated exacily.

Denote q(x) = (x — xo)(X — Xq) -+ - (X — Xp_1).
We can write every polynomial f of degree higher than n as

f(x) = pn(x) + q(x)r(x), deg(pn) = n, pn(x;) = f(xi),
and g(x)r(x) contain the higher order terms:
r(x) = rg+ rx+ npx?+ -+ nxk,

so that deg(f) = n+ k.

b
The quadrature rule will be / p(x)dx.
a
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conditions on polynomials

The condition to integrate f exactly is

b b b
/ f(x)dx = / p(x)dx + / g(x)r(x)dx.
a a a
=0
b
Asr(x)=ry+rx+- -+ rx¥and is a linear operator,

the conditions are equivalent to:

b .
/ g(x)x'dx =0, i=0,1,... Kk,
a

which is a necessary and sufficient condition.
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orthogonal polynomials

b .
/ g(x)x'dx =0, i=0,1,... Kk,
a

means that g(x) is orthogonal to all x’,
with respect to the inner product

b
(f.g) = / (x)g(x)okx.

As deg(q) = n, the highest k can gois n — 1.

With orthogonal polynomials we can reach a precision
of degree 2n — 1.
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Legendre and Chebyshev polynomials

Legendre polynomials: [a, b] = [-1, +1] follow a recursion:

Lo(x) =1, Li(x)=x, (n+1)Lpr1(x)—(2n+1)xL(x)+nL,_1(x) = 0.

Gauss-Chebyshev quadrature has inner product:

+1

where the weight function is 1/v/1 — x2.
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construction of Gaussian quadrature rules

Three steps to make a Gaussian quadrature rule with n points:
@ Construct the orthogonal polynomial g(x) of degree n.
© The roots of g are the interpolation points of the rule.

© The weights are integrals of the Lagrange polynomials.
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e Gaussian Quadrature

@ Gauss-Legendre quadrature
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Legendre polynomials
The Legendre polynomials are defined by

Lo(x) =1, Li(x)=x, (n+1)Lpr1(x)—(2n+1)xLa(x)+nLy—1(x) = 0.

We turn this into an iterative algorithm:

Loii(x) = njr1 < (2n+1)xLnp(x) — nLy_1(x) >

To compute the Legendre polynomial of degree d > 1:
Q LO =1, L1 =x
@ for nfrom2to d do

Ln(x) = % < 2n—1)xLy_1(x)—(n—1)L_2(x) ) .
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defining Legendre polynomials with Sympy

using SymPy
x = Sym("x")

legendre (d: :Int)

returns the Legendre polynomial of degree d,
as a SymPy expression.
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the function 1egendre

function legendre (d::Int)

if d ==
return 1

elseif d ==
return x

end

LO = 1

L1l = x

L2 =0

for n = 2:d

L2 = expand(((2+n-1)*x+«L1 -

(LO, L1) = (L1, L2)
end
return L2
end
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six Legendre polynomials

1

x

3xx72/2 - 1/2

5#x73/2 — 3*xx/2

35xx"4/8 — 15xx"2/4 + 3/8
63xx"5/8 — 35%x"3/4 + 15%xx/8

To extract the coefficients, we use array comprehensions:

for

end

d=1:5

Ld = legendre (d)

cff [Ld.coeff(x, k) for k=0:d]
nbr [Float64 (c¢c) for ¢ in cff]

The numerical coefficients are input for a numerical root finder.
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the first six Legendre coefficient vectors

Symbolic coefficients

L(1) : Sym[O0, 1]

L(2) : Sym[-1/2, 0, 3/2]

L(3) : Sym[0, -3/2, 0, 5/2]

L(4) : Sym[3/8, 0, -15/4, 0, 35/8]
L(5) : Sym[O, 15/8, 0, -35/4, 0, 63/8]
Numeric coefficients

L(1) [0.0, 1.0]

L(2) [-0.5, 0.0, 1.5]

L(3) (0.0, -1.5, 0.0, 2.5]

L(4) [0.375, 0.0, -3.75, 0.0, 4.375]

L(5) (0.0, 1.875, 0.0, =-8.75, 0.0, 7.875]
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the companion matrix

The companion matrix of p = ¢y + C1X 4+ Cox? + c3x3 + c4x* + c5x° is

0

Cp ==

[eN el Sl o)

0
1
0
00

The eigenvalues of C, are the roots of p.

o =+ 0O OO0

0
0
0
0
1

—Co/Cs
—C1/Cs
—C2/Cs
—03/Cs
—C4/Cs

We apply eigvals of the LinearAlgebra module.
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making the companion matrix in Julia

rootsCompanion (cff::Array{Float64,1})

returns the roots of the polynomial with coefficients cff,
by computing the eigenvalues of the companion matrix.
The last coefficient should not be zero.
mwan
function rootsCompanion(cff::Array{Float64,1})
lead = cfflend] # leading coefficient
dim = length(cff) -1
companion = zeros (dim, dim)
for k = 1:dim-1
companion[k+1, k]

Il
=

end
for k = 1:dim
companion[k, dim]

—cff[k]/lead
end
return eigvals (companion)

end
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computing the roots of Ls(x)

L5 = [0.0, 1.875, 0.0, -8.75, 0.0, 7.875]
rootsL5 = rootsCompanion (L5)
for i=1:5
sroot = @sprintf ("%$23.16e", rootsL5[i])
value = evalpoly(rootsL5[i], L5)
sterr = @sprintf("%.2e", wvalue)
println("r[", 1, "] Ssroot Ssterr")
end
r(l] -9.0617984593866252e-01 1.01e-14
r[2] -5.3846931010568388e-01 1.91e-15
r[3] 0.0000000000000000e+00 0.00e+00
r[4] 5.3846931010568311e-01 -1.20e-16
r[5] 9.0617984593866596e-01 1.35e-14
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roots of the Chebyshev polynomials

Exercise 3:
Chebyshev polynomials can be computed via the recursion:

To(x) =1, Ti(x)=x, Ta(x)=2xTp_1(X) — Tp_2(x).

@ Define a Julia function chebychev which takes on input a
degree d and which returns Ty as a SymPy expression.

Your function should use a simple loop as in 1egendre.

@ Compute the roots of Ts and verify the results using

2i —
x,-:cos<(l1)7r), i=1,2,...,n,
2n

the theorem of lecture 16.
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backward error using the 3-terms recursion

Exercise 4:
Chebyshev polynomials can be computed via the recursion:

To(x)=1, Ti(x)=x, Ta(x)=2xTp_1(x) — Th_2(x)

and have the roots

x;:cos<(21_1)7r>, i=1,2,...,n.
2n

@ Use your function chebyshev of Exercise 3 to evaluate Ty
at the roots x;. Report the residuals y; = | T100(Xi)|.

@ Use the recursion for Typp(x) to compute z; = | T1o0(Xi)|-

Compare the values y; and z;. Write a conclusion.
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computation of the weights

The weights are in the solution vector of a linear system,

constructed from the requirements that all polynomials
to degree 2n — 1 are integrated exactly.

n +1 d+1 _ (_4\d+1
ZW;X,-d—/ xddx:(+1) (=1) , d=0,1,...,2n—1.
P 1 d+1

Instead of solving a linear system,
we integrate the Lagrange polynomials:

W,-:/TE,-(x)dx, li(x) = ﬁ <X_Xj>,

Xj — X;
j=1 "
J#i
where x; are the points of the quadrature formula.
Numerical Analysis (MCS 471)
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Gauss-Legendre quadrature with 5 points

$ julia gausslegendre.jl

L(5) =

63xx"5/8 — 35xx"3/4 + 15xx/8

Numeric coefficients
0, 1.875, 0.0, -8.75, 0.

L(5)

r(l]
r[z]
3]
4]
5]

[

g w N

]
]
]
]
]

= 5 7 5 5
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[0.
The points
-9.
-5.
rl 0.
[ 5.
[ 9.
The welghts
[ 2.
[ .7862867049936453e-01
[ .6888888888888967e-01
[ .7862867049936858e-01
[ .3692688505618711e-01

NS O

0617984593866252e-01
3846931010568388e-01
0000000000000000e+00
3846931010568311e-01
0617984593866596e-01

3692688505619008e-01

Gaussian Quadrature

P o O W

0, 7.87

.97e-15
.96e-15
.00e+00
.83e-18
.35e-14

5]
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degree of precision

A Gauss-Legendre quadrature with n points will integrate
every polynomial of degree 2n — 1 or less correctly.

Exercise 5:

Apply the five points and weights of the Gauss-Legendre to a random
polynomial of degree nine and verify that the numerical approximation
corresponds to the exact value computed with SymPy.

Exercise 6:
Use the five point Gauss-Legendre rule to demonstrate that the first
ten Legendre polynomials form an orthogonal basis:

+
(Lj, L)) = Li(x)L;(x)dx
1

equals zero for all j # i and one if j = |.
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Gaussian Quadrature

© Making Gauss Quadrature Rules
@ reduction to an eigenvalue problem
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reduction to an eigenvalue problem

If p, is an orthogonal polynomial of degree n,
with the three terms recursion denoted as

p-1(x) =0, po(x) =1, forj>1":pj(x) = (ax+b;)pj—1(x)—cipj—2(X),

then the roots of p, are the eigenvalues of

ay B | b
1
B1 az B2 aj=——,
a;
J = - . - ) c
o i+1
Bn—2 an—1 Bn-1 Bi = \ @aa.’
i Aj+1
L Bn-1 Qp i
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weights of a Gauss quadrature rule

If q is the first row of Q,
of the orthogonal matrix with the eigenvectors of J in its columns,

then ,
w = q? ></ w(x)dx
a

is the weight of the i-th point in the Gauss quadrature rule
with weight function w(x) over the interval [a, b], as in

b n
/ w(x)f(x)dx ~ Z wif(x;), withps(x;))=0,i=1,2,...,n
a i=1

Main point: This construction scales well to make rules
with several hundreds of points.
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an application: improper integrals
b
The integrand f(x) of an improper integral/ f(x)dx

is undefined at some x € [a, b]. :

1 1
/ ax = .
1 V1 —x?

The weight of Gauss-Chebyshev quadrature is w(x) =

Example:

1
V1—x2

Exercise 7:

Use the posted Jupyter notebook to apply a Gauss-Chebyshev
1
ax.

quadrature rule with five points to /
—1 V1 —x?

What is the accuracy of your computation?
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four lectures on differentiation and integration

@ Richardson extrapolation improves the accuracy of differences.

© Quadrature rules are weighted sums of function evaluations
and the weights are integrals of Lagrange polynomials.

© By extrapolation, Romberg integration improves the accuracy
of the composite trapezoidal rule.

© Gaussian quadrature interpolates at the n roots of an orthogonal
polynomial to reach a degree of precision equal to 2n — 1.
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