Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function

MCS 471 Lecture 14
Numerical Analysis
Jan Verschelde, 23 September 2022
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
the interpolation problem

Often we have data collected from some difficult function $f(x)$. With interpolation we can represent the data by a polynomial.

Input: $(x_i, f_i = f(x_i)), i = 0, 1, \ldots, n, n + 1$ data points, $x_i \neq x_j$, for all $i \neq j$, distinct values for x.

Output: $p(x)$ a polynomial of degree at most n so that for all $i = 0, 1, \ldots, n$: $p(x_i) = f_i$.

The polynomial p interpolates the function $f(x)$ at the interpolation points $x_i, i = 0, 1, \ldots, n$.

We say that p is the interpolating polynomial for the function $f(x)$ at x_i.

Two questions:
1. Is there a unique solution to the interpolation problem?
2. How to efficiently compute the interpolating polynomial?
interpolating $\sin(x)$ at five points

at $-\pi$, $-\pi/2$, 0, $\pi/2$, and π
The coefficient problem

The coefficient problem asks to compute the coefficients of \(p \):

\[
p(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_2 x^2 + c_1 x + c_0
\]

so that \(p(x_i) = f_i \) for \(i = 0, 1, \ldots, n \).

Observe that we have

- \(n + 1 \) data points \((x_i, f_i)\) given on input; and
- \(n + 1 \) coefficients \(c_i, i = 0, 1, \ldots, n \) to compute.

Theorem (uniqueness condition on the solution)

If all interpolation points are mutually distinct: \(x_i \neq x_j \), for all \(i \neq j \), then the polynomial interpolation problem has a unique solution.

We prove this by setting up the interpolation conditions.
the interpolation conditions

For \(p(x) = c_n x^n + \cdots + c_2 x^2 + c_1 x + c_0 \)
the conditions \(p(x_i) = f_i \), for \(i = 0, 1, \ldots, n \)
lead to a linear system of \(n + 1 \) equations:

\[
\begin{aligned}
 c_n x_0^n + c_{n-1} x_0^{n-1} + \cdots + c_2 x_0^2 + c_1 x_0 + c_0 &= f_0 \\
 c_n x_1^n + c_{n-1} x_1^{n-1} + \cdots + c_2 x_1^2 + c_1 x_1 + c_0 &= f_1 \\
 c_n x_2^n + c_{n-1} x_2^{n-1} + \cdots + c_2 x_2^2 + c_1 x_2 + c_0 &= f_2 \\
 &\vdots \\
 c_n x_{n-1}^n + c_{n-1} x_{n-1}^{n-1} + \cdots + c_2 x_{n-1}^2 + c_1 x_{n-1} + c_0 &= f_{n-1} \\
 c_n x_n^n + c_{n-1} x_n^{n-1} + \cdots + c_2 x_n^2 + c_1 x_n + c_0 &= f_n
\end{aligned}
\]

The unknowns are the coefficients \(c_i \) of the polynomial \(p \).
the linear system in matrix notation

\[
\begin{align*}
&c_n x_0^n + c_{n-1} x_0^{n-1} + \cdots + c_2 x_0^2 + c_1 x_0 + c_0 = f_0 \\
&c_n x_1^n + c_{n-1} x_1^{n-1} + \cdots + c_2 x_1^2 + c_1 x_1 + c_0 = f_1 \\
&c_n x_2^n + c_{n-1} x_2^{n-1} + \cdots + c_2 x_2^2 + c_1 x_2 + c_0 = f_2 \\
&\vdots \\
&c_n x_{n-1}^n + c_{n-1} x_{n-1}^{n-1} + \cdots + c_2 x_{n-1}^2 + c_1 x_{n-1} + c_0 = f_{n-1} \\
&c_n x_n^n + c_{n-1} x_n^{n-1} + \cdots + c_2 x_n^2 + c_1 x_n + c_0 = f_n
\end{align*}
\]

\[
\begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} & x_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} & x_{n-1}^n \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{n-1} \\
c_n \\
\end{bmatrix}
=
\begin{bmatrix}
f_0 \\
f_1 \\
f_2 \\
\vdots \\
f_{n-1} \\
f_n \\
\end{bmatrix}
\]
the Vandermonde matrix

The linear system has a unique solution ⇔ the determinant of

\[V(x_0, x_1, x_2, \ldots, x_{n-1}, x_n) = \begin{bmatrix}
1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} & x_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} & x_{n-1}^n \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n
\end{bmatrix} \]

is different from zero.

Definition

The matrix \(V(x_0, x_1, x_2, \ldots, x_{n-1}, x_n) \) is the **Vandermonde matrix** for the points \(x_0, x_1, x_2, \ldots, x_{n-1}, x_n \).
there is a unique solution

Let $V = V(x_0, x_1, x_2, \ldots, x_{n-1}, x_n)$, the determinant of V is

$$
\det(V) = \prod_{i=0}^{n} \prod_{j=i+1}^{n} (x_i - x_j).
$$

Example for $n = 3$:

$$
\det(V) = (x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_1 - x_2)(x_1 - x_3)(x_2 - x_3).
$$

Observe $\deg(\det(V)) = n(n + 1)/2$ and $\det(V) \neq 0$ if $x_i \neq x_j$ for $i \neq j$.

Theorem (uniqueness condition on the solution)

The solution to the interpolation problem is unique if $x_i \neq x_j$ for $i \neq j$.
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
the numerical condition of the interpolation problem

Input: \((x_i, f_i = f(x_i)), i = 0, 1, \ldots, n, n + 1\) data points,
\(x_i \neq x_j\), for all \(i \neq j\), distinct values for \(x\).
Output: \(p(x)\) a polynomial of degree at most \(n\) so that
for all \(i = 0, 1, \ldots, n\): \(p(x_i) = f_i\).

The requirement \(x_i \neq x_j\), for all \(i \neq j\), guarantees a unique solution,
similarly as \(\det(A) \neq 0\) guarantees a unique \(x\) for \(Ax = b\).

What if \(x_i \approx x_j\), for some \(j \neq i\)?

Consider the lines interpolating through \(x_1\) and \(x_2\):

The line at the left is less sensitive to changes in \(x_1\) and \(x_2\)
than the line at the right.
a numerical experiment

using Printf
Base.show(io::IO, f::Float64) = @printf(io, "%.3e", f)
using LinearAlgebra

dim = 5
pdx = 1.0/dim
pts = [pdx*k for k = 1:dim]
vdm = zeros(dim, dim)
for i=1:dim
 vdm[i, 1] = 1.0
 vdm[i, 2] = pts[i]
 for j=3:dim
 vdm[i, j] = vdm[i, j-1]*pts[i]
 end
end
show(stdout, "text/plain", vdm); println("")
println("the condition number : ", cond(vdm))

prints a 5-by-5 Vandermonde matrix and

the condition number : 2.300e+03
Exercise 1:
Use the instructions on the previous slide to compute the condition number of the Vandermonde matrix for equidistant points in $[0, 1]$, for dimensions 5, 10, 20, 40.

Summarize your observations in a well written sentence.

If we solve the interpolation problem as a linear algebra problem, then what this implies for the condition of the interpolation problem?

In particular, with 64-bit floats, what is the largest problem you could still solve and achieve an accuracy of 8 decimal places?
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
Lagrange interpolation

Given are \(n + 1 \) interpolation points \((x_i, f_i), i = 0, 1, \ldots, n\), where for all \(i \neq j \): \(x_i \neq x_j \). The Lagrange interpolating polynomial has the form

\[
p(x) = \ell_0(x)f_0 + \ell_1(x)f_1 + \cdots + \ell_n(x)f_n,
\]

where

\[
\ell_i(x_j) = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j.
\end{cases}
\]

In this form, we have that \(p(x_i) = f_i, i = 0, 1, \ldots, n \).

Definition

For \(n + 1 \) mutually distinct points \(x_i, i = 0, 1, \ldots, n \),

the \textit{i-th Lagrange polynomial} is

\[
\ell_i(x) = \prod_{\substack{j = 0 \atop j \neq i}}^{n} \left(\frac{x - x_j}{x_i - x_j} \right).
\]
The Lagrange interpolating polynomial

The i-th Lagrange polynomial $\ell_i(x)$ is

$$\ell_i(x) = \prod_{j=0}^{n} \left(\frac{x-x_j}{x_i-x_j} \right).$$

Example: $n=3$, $i=1$: $\ell_1(x_0) = 0$, $\ell_1(x_1) = 1$, $\ell_1(x_2) = 0$, $\ell_1(x_3) = 0$.

$$\ell_1(x) = \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}.$$

The solution of the interpolation problem is unique as well, so the form for $\ell_1(x)$ is unique. The Lagrange interpolating polynomial is

$$p(x) = \sum_{i=0}^{n} \prod_{j=0}^{n} \left(\frac{x-x_j}{x_i-x_j} \right) f_i.$$

This is convenient if only the f_i’s change while the x_i’s stays the same.
Exercise 2:
Show that

\[\sum_{i=0}^{n} \ell_i(x) = 1. \]

Consider the interpolation data \((x_i, f_i = 1), i = 0, 1, \ldots, n\)
and remember that the interpolation problem has a unique solution.
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
the function lagrange

using Polynomials

""
 lagrange(pts::Array{Float64,1},idx::Int64)
""

Returns the Lagrange polynomial for the points in pts with index idx.

REQUIRED:

 All points in pts must be distinct.
 The index idx is between 1 and length(pts).

"""
function lagrange(pts::Array{Float64,1}, idx::Int64)
 result = 1.0
 for i=1:idx-1
 result = result * Polynomial([-pts[i], 1.0]) / (-pts[i] + pts[idx])
 end
 for i=idx+1:length(pts)
 result = result * Polynomial([-pts[i], 1.0]) / (-pts[i] + pts[idx])
 end
 return result
end
the verification

""
Verifies for a random collection of three points
that the value of the Lagrange polynomials are 0/1 and
that the sum of the Lagrange polynomials equals one.
""

function main()
 pts = rand(3)
 sumLagrange = 0.0
 for i=1:3
 Li = lagrange(pts, i)
 println("Lagrange polynomial L", i, ":")
 println(Li)
 for j=1:3
 println("L", i, ",(pts[", j, "]) = ")
 println(Li(pts[j]))
 end
 sumLagrange = sumLagrange + Li
 end
 println("Sum of Lagrange polynomials :")
 println(sumLagrange)
end

main()
running the program

$ julia lagrange.jl
Lagrange polynomial L1:
-4.2658 + 47.3187*x - 43.7541*x^2
L1(pts[1]) = 1.0000000000000047
L1(pts[2]) = 4.9914411920529706e-15
L1(pts[3]) = -2.9648825579806665e-17
Lagrange polynomial L2:
4.02443 - 44.7556*x + 42.4314*x^2
L2(pts[1]) = -5.309712702581818e-15
L2(pts[2]) = 0.9999999999999946
L2(pts[3]) = 8.552095321848118e-17
Lagrange polynomial L3:
1.24138 - 2.56304*x + 1.32271*x^2
L3(pts[1]) = 5.565465122993589e-17
L3(pts[2]) = 1.2695472919160173e-17
L3(pts[3]) = 1.0000000000000002
Sum of Lagrange polynomials:
1.0 + 4.88498e-15*x - 5.77316e-15*x^2
$
accuracy for growing dimensions

At first sight, the last polynomial from the previous slide

\[1.0 + 4.88498 \times 10^{-15} x - 5.77316 \times 10^{-15} x^2 \]

does not look as \[1.0 \] ...

Exercise 3:
Use the instructions on the previous slide to compute the sum of the Lagrange polynomials for equidistant points in \([0, 1]\), for dimensions 5, 10, 20, 40.

What do you observe about the errors in the sum of the Lagrange polynomials for growing dimensions?
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
the value problem

Input: \((x_i, f_i = f(x_i)), \ i = 0, 1, \ldots, n, \ n + 1\) data points,
\[x_i \neq x_j, \text{ for all } i \neq j,\] distinct values for \(x\),
\(x^*\) is the value for some \(x\).
Output: \(p(x^*)\) a the value of the interpolating polynomial at \(x^*\).

Theorem

Let \(p_i = f_i, \ for \ i = 1, 2, \ldots, n\) and

\[p_{0, 1, \ldots, n} = \left(\frac{x^* - x_n}{x_0 - x_n}\right) p_{0, \ldots, n-1} + \left(\frac{x^* - x_0}{x_n - x_0}\right) p_{1, \ldots, n}\]

then \(p_{0, 1, \ldots, n} = p(x^*)\).
Neville interpolation

Let \(p_i = f_i \), for \(i = 0, 1, \ldots, n \) and

\[
p_{0,1,\ldots,n}(x) = \left(\frac{x - x_n}{x_0 - x_n} \right) p_{0,\ldots,n-1}(x) + \left(\frac{x - x_0}{x_n - x_0} \right) p_{1,\ldots,n}(x)
\]

then \(p_{0,1,\ldots,n}(x_i) = f_i, i = 0, 1, \ldots, n. \)

- \(p_{0,1,\ldots,n}(x_0) = \left(\frac{x_0 - x_n}{x_0 - x_n} \right) p_{0,\ldots,n-1}(x) + 0 = f_0 \), analogous for \(x_n. \)
- For \(x_k \), for \(k > 1 \) and \(k < n \):

\[
p_{0,1,\ldots,n}(x_k) = \left(\frac{x_k - x_n}{x_0 - x_n} \right) p_{0,\ldots,n-1}(x_k) + \left(\frac{x_k - x_0}{x_n - x_0} \right) p_{1,\ldots,n}(x_k)
\]

\[
= \frac{x_k - x_n}{x_0 - x_n} f_k + \frac{x_k - x_0}{x_n - x_0} f_k
\]

\[
= \left(\frac{x_k - x_n}{x_0 - x_n} \right) f_k + \left(\frac{x_k - x_0}{x_n - x_0} \right) f_k
\]

\[
= f_k
\]
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
derivation of Neville’s algorithm

For interpolation data \((x_0, f_0), (x_1, f_1), \ldots, (x_n, f_n)\) and a value \(x^*\):

- \(p_i = f_i\), for \(i = 0, 1, \ldots, n\),
- \(p_{i,\ldots,j} = p(x^*)\) is the value of the interpolating polynomial at \(x^*\) through \((x_i, f_i), (x_{i+1}, f_{i+1}), \ldots, (x_j, f_j)\).

The values \(p_{i,\ldots,j}\) can be organized in a triangular table. For example, for \(n = 3\):

\[
\begin{array}{ccc}
 x_0 & f_0 & p_{0,1} \\
 x_1 & f_1 & p_{1,2} & p_{0,1,2} \\
 x_2 & f_2 & p_{2,3} & p_{1,2,3} & p_{0,1,2,3} \\
 x_3 & f_3 & & & \\
\end{array}
\]

Observe that we may replace \(f_0\) by \(p_{0,1}\), \(f_1\) by \(p_{1,2}\), and \(f_2\) by \(p_{2,3}\).
Neville’s algorithm

For interpolation data \((x_0, f_0), (x_1, f_1), \ldots, (x_n, f_n)\) and a value \(x^*\):

- \(p_i = f_i\), for \(i = 0, 1, \ldots, n\),
- \(p_{i-j, \ldots, i} = p(x^*)\) is the value of the interpolating polynomial at \(x^*\) through \((x_i, f_i), (x_{i+1}, f_{i+1}), \ldots, (x_j, f_j)\).

for \(i = 1, 2, \ldots, n\) do
 for \(j = 1, 2, \ldots, i\) do
 \[p_{i-j, \ldots, i} = \frac{(x^* - x_i)p_{i-j, \ldots, i-1} - (x^* - x_{i-j})p_{i-j+1, \ldots, i}}{x_{i-j} - x_i}\]

For efficient memory usage, relabel \(p_{i-j, \ldots, i}\) as \(p[i-j]\), \(p_{i-j, \ldots, i-1}\) as \(p[i-j]\) and \(p_{i-j+1, \ldots, i}\) as \(p[i-j+1]\).

The cost of Neville’s algorithm is \(O(n^2)\).
Polynomial Interpolation

1. Interpolating Polynomials
 - the interpolation problem
 - numerical condition

2. Lagrange Interpolation
 - a basis of Lagrange polynomials
 - Lagrange polynomials in Julia

3. Neville Interpolation
 - the value problem
 - Neville’s algorithm
 - a Julia function
a Julia function

```julia
"""
neville(x::Array{Float64,1},f::Array{Float64,1},xx::Float64)
```

Implements the interpolation algorithm of Neville.

ON ENTRY :
- x are the abscissas, given as a column vector
- f are the ordinates, given as a column vector
- xx is the point where to evaluate the interpolating polynomial through $(x[i], f[i])$

ON RETURN :
- p is the last row of Neville’s table where $p[1]$ is the value of the interpolator at xx

EXAMPLE :
```
x = [32.0, 22.2, 41.6, 10.1, 50.5];
f = [0.52992, 0.37784, 0.66393, 0.17537, 0.63608];
xx = 27.5;
p = neville(x,f,xx)
```

"""
function neville(x::Array{Float64,1},f::Array{Float64,1},xx::Float64)
```
Neville’s algorithm

\[ n = \text{length}(x) \]
\[ p = f \]
\[ dx = [0.0 \text{ for } i=1:n] \]
\[ \text{for } i=1:n \]
\[ \quad dx[i] = xx - x[i] \]
\[ \text{end} \]
\[ \text{for } i=2:n \]
\[ \quad \text{for } j=2:i \]
\[ \quad \quad p[i-j+1] = \frac{(dx[i] \times p[i-j+1] - dx[i-j+1] \times p[i-j+2])}{(x[i-j+1] - x[i])} \]
\[ \quad \text{end} \]
\[ \text{end} \]
\[ \text{return } p \]
Exercise 4:
Compare the cost of Neville interpolation (which is $O(n^2)$ for $n$ points) with the cost of Lagrange interpolation.

In particular, what is the cost to

1. construct the polynomial interpolating through $n$ points with Lagrange polynomials; and then
2. to compute the value at some $x^*$ of the interpolating polynomial?

Express this cost as a function of $n$. 

the cost of interpolation
uniqueness of interpolation

Exercise 5:
Consider $p = x^2 + 4x - 1$.

1. Apply Neville interpolation to compute the value at $x = 0$, using the points $(-2, p(-2))$, $(-1, p(-1))$, and $(+1, p(+1))$.
2. Explain why the value you obtain must equal $p(0)$. 

Numerical Analysis (MCS 471)
Polyynomial Interpolation