Root Finding with Newton’s Method

@ Newton’s Method
@ derivation of the method
@ an implementation with SymPy and Julia

e Convergence of Newton’s Method
@ linear and quadratic convergence
@ geometric convergence for multiple roots

MCS 471 Lecture 5
Numerical Analysis
Jan Verschelde, 31 August 2022

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 1/25

Root Finding with Newton’s method

0 Newton’s Method

@ derivation of the method

Numerical Analysis (MCS 471)

Root Finding with Newton’s Method

derivation of Newton’s method via Taylor series
Let xo be an initial approximation for a root of f(x) = 0.
Find Ax so xy = xp + Ax: f(xq) = 0.
Apply Taylor series to f(xg + Ax):
f(Xo + Ax) = f(x0) + ' (x0) Ax + O((Ax)?).
Use f(x1) = f(xo + Ax) = 0 and ignore O((Ax)?):

0 = f(x0) + f'(X0)Ax.

Solve for Ax: Ax = — (%) . Then x4 is computed as
f'(Xo)
_ f(xo)

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

3/25

a geometric interpretation

F
— fix0)
—— tangent
6 -
4 -
2k
oF -]
x1 X0
1 1 1 1
0 1 2 3

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 4/25

derivation of Newton’s method via the tangent line

Consider the tangent line at the point (xg, f(Xp)):

y = f(xo0) = f'(x0)(x — x0)-

Set y = 0 and solve for x:

1) =)~ x0) & et —x g
f(xo)
< Xo— TX(()))

So we have the iterative formula:

f(x
Xk+1:Xk_f/((Xl:())7 k:0717

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

5/25

an example

Newton’s method:

f(x
Xk+1:Xk_f/((XI:())7 :Oa1a"'

Consider f(x) = x3 + x — 1 = 0. Its derivative: f'(x) = 3x% + 1.
The iterative formula is then:
Xg+xc—1 2x3 +1

3xZ+1 3x2+1

Xk+1 = Xk —

Recall the last example of fixed-point iterations in Lecture 3.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

6/25

Root Finding with Newton’s method

0 Newton’s Method

@ an implementation with SymPy and Julia

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 7/25

strings, expressions, and functions

julia> using SymPy

julia> x = Sym("x")
x
julia> s = "x"3 + 2xx"

"x"3 + 2xx"
julia> e = sympify(s)
3

x + 2-x

julia> £ = lambdify (e)
#89 (generic function with 1 method)

julia> f£(2)
12

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 8/25

derivatives with SymPy

using SymPy
X = Sym("x")

nmmwn

Returns the string representation of the derivative
of the expression in x, given in the string s.
nmmwn
function SymPyDerivative (s::String)
evaluated = sympify(s)
derivative = diff (evaluated, x)
return string(derivative)
end

Because of the first two lines, the string s

@ is evaluated into a SymPy expression,
@ for which di £ £ applies, and
© the derivative is then converted back into a string.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

9/25

the update function Ax = —f(x)/f(x)

nmnmon

Given a string representation of an expression in x,
returns the Julia function for the update -f(x)/f’ (x),

where f(x) 1is the function defined by the input string.

nmmon

function NewtonUpdate (f::String, verbose::Bool=true)
sdf = SymPyDerivative (f)
sdx = string("—-(", £, ")/(", sdf, M)™")
if verbose
println ("update : $sdx")
end
edx = sympify (sdx)
return lambdify (edx)

end

A simple test:

dx = NewtonUpdate ("x"3 + x — 1")
println("dx(1.0) : ", dx(1.0))

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

10/25

a Julia function for Newton’s method

Runs Newton’s method on the function f(x) = 0.

ON ENTRY
f a function in one variable
update defines the update in the Newton operator
x0 initial approximation for the root
N maximum number of iterations
dxtol tolerance on the magnitude of the update
fxtol tolerance on the residual

ON RETURN

(root, |dx|, |f(root)|, failure)
the computed approximation for the root,
estimates for forward and backward error,
and a boolean to indicate failure.
mmww
function Newton (f::Function, update::Function, x0::Float64,
N::Int64=6, dxtol::Floato6d4=1.0e-8,
fxtol::Float64=1.0e-8)

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 11/25

the definition of the function

myroot = x0; dx = 1; y = 1.0
stri = @sprintf("%$3d", 0)

strx = @sprintf("%.1l6e", myroot)

println ("step root [dx| [£(x) 1)
println("$stri $strx")

for i=1:N

y = abs(Float64 (f (myroot)))
dx = Float64 (update (myroot))
myroot = myroot + dx
stri = @sprintf ("%3d", i)
strx = @sprintf("%.16e", myroot)
stry = @sprintf("%.2e", vy)
strdx = @sprintf("%.2e", abs(dx))
println ("$stri $strx $strdx Sstry")
if ((abs(dx) < dxtol) | (y < fxtol))
return (myroot, abs(dx), y, false)

end

end

return (myroot, abs(dx), y, true)

end

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 12/25

the main function

Prompts for an expression and an initial value
and then calls Newton’s method.
wnn
function main ()
println("Testing Newton’s method ...")
print ("Give an expression in x : ")
funx = readline (stdin)
print ("Give an initial value for x0 : ")
x0line = readline (stdin)
x0 = parse(Float64, x0line)
f = lambdify (sympify (funx))
update = NewtonUpdate (funx)
result = Newton (f, update, x0)
root = @sprintf ("$.16e", result[1l]
forward = @sprintf("%.2e", result[2])
backward = @sprintf ("$%$.2e", result[3]
println("root : $root ")
println(" forward error : S$forward ")
print ("backward error : S$backward")
if Bool (result([4])
println(" Failed to converge.")
else
println(" Converged.")
end
end

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

13/25

running a test at the command prompt

$ julia
Testing
Give an
Give an
update
Step
0

Sw NN -

5
root

e O O O OO 1 U

newtonoperator.jl
Newton’s method

expression in x : x"3 + x — 1

initial value for x0

0.5

—(x"3 + x - 1)/ (3xx"2 + 1)

root

.0000000000000000e-01
.1428571428571430e-01
.8317972350230416e-01
.8232842330457821e-01
.8232780382834712e-01
.8232780382801939%9e-01
6.8232780382801939%9e-01

forward error : 3.28e-13
backward error : 7.86e-13

$

Numerical Analysis (MCS 471)

w oy © W N

[dx |

.14e-01
.11e-02
.51e-04
.19e-07
.28e-13

Converged.

Root Finding with Newton’s Method

.75e-01
.87e-02
.04e-03
.48e-06
.86e-13

~N PN 3w

L-5 31 August 2022 14/25

two exercises

Exercise 1: Consider the sensitivity of the choice of the start value 0.5
when running Newton’s method on x3 + x — 1.

@ How much smaller than 0.5 can you take the initial value and still
converge to the real root of x3 4+ x — 1?

@ How much larger than the real root of x3 + x — 1 can you take the
initial value and still converge?

Exercise 2: The polynomial x3 + x — 1 has two complex conjugated
roots but Newton’s method cannot compute the complex roots, unless
the arithmetic is complex.

Adjust the Julia/SymPy function so it works with initial values with
nonzero imaginary parts. Note that the imaginary unit in SymPy is I.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 15/25

Root Finding with Newton’s method

9 Convergence of Newton’s Method
@ linear and quadratic convergence

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 16/25

linear convergence

The bisection method converged linearly,
so did one of the fixed-point iterations of lecture 2.

If the bisection method converges, then we get one correct bit in every
step, and it takes three to four steps to get one decimal place correct.

Definition

If a sequence xi converges to X.., denote ex = |Xoo — X/
The sequence converges linearly if

. e
lim 2 — 5> 0,
k—oo €k

for some positive constant S.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 17/25

quadratic convergence

With Newton’s method we observe that the number of correct decimal
places doubles in each step.

Definition

If a sequence x, converges to X, denote ex = |Xoo — Xk|-
The sequence converges quadratically if

. e
lim k—;ﬂ =58>0,
k—o0 ek

for some positive constant S.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 18/25

order of convergence

Definition
The order of convergence of a fixed-point iteration xx1+1 = 9(Xk),
converging to x.., equals R if

g (Xo) = 9" (Xo0) =--- = Q(R_1)(X00) =0
and gf)(x,.) # 0.
Applied to Newton’s method, g(x) = x — ;(())(())
gy 1 P I

At the fixed point X f(Xs) = 0 and if f/(xx) # 0: 9’(Xs) = 0.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

19/25

computing square roots

For the computation of /7, consider the equation f(x) = x> —7 = 0.

Exercise 3:

@ Construct the formula for Newton’s method to derive the
fixed-point formula to solve f(x) = 0.

© Run Newton’s method, starting at xo = 7.
Draw a cobweb diagram.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

20/25

Root Finding with Newton’s method

9 Convergence of Newton’s Method

@ geometric convergence for multiple roots

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 21/25

multiple roots

Definition
Consider f(x) = 0 with root r. The multiplicity of a root ris m
it f(r)=f(r)=f"(r)=--- = f("(r) = 0 and fM(r) £ 0.

For a root r of multiplicity m of f(x) =0,
the Taylor series developed at x = r are

(m(r
00 =" o .

Denote C = f(M(r)/m! and ignore higher order terms:
f(x) ~ C(x—r)"
f(x) ~ Cm(x—r)™1
f'(x) ~ Cm(m—1)(x—r)"2.

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022

22/25

computing the rate of convergence
For a root r of multiplicity m of f(x) = 0:
f(x) ~ C(x—r)"

f(x) ~ Cm(x—r)™1
f'(x) ~ Cm(m—1)(x—r)"2.

1 MO~ ()
9 = 1T P

B C?m?(x — r)®™=2 — C(x — r)™Cm(m — 1)(x — r)™2

=1 C2m2(x — r)2m-2
m? —m(m—1)
= 1- .
m
. m-1
S om

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 23/25

geometric rate of convergence

Theorem
If Newton’s method converges to a root of multiplicy m,

then the rate of convergence is

Exercise 4: For multiplicity m, consider the modified Newton’s method

f(Xk)
M ()’
Show that if the modified Newton’s method converges to a root of
multiplicity m, then the convergence is quadratic.

Xk41 = Xk — k:0,1,...

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 24/25

another exercise

Exercise 5: Consider f(x) = (x — 1)3
@ Apply Newton’s method to f and compute the convergence rate,
based on the computed errors. Do you observe 2/3?

@ Apply the modified Newton’s method with m = 3.
Do you observe quadratic convergence?

Numerical Analysis (MCS 471) Root Finding with Newton’s Method L-5 31 August 2022 25/25

	Newton's Method
	derivation of the method
	an implementation with SymPy and Julia

	Convergence of Newton's Method
	linear and quadratic convergence
	geometric convergence for multiple roots

