Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics

MCS 471 Lecture 30
Numerical Analysis
Jan Verschelde, 1 November 2021
Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
local and global errors

We consider the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0.$$

For some step $h > 0$, we set $x_1 = x_0 + h$ and compute

$$y(x_0 + h) = y(x_0) + y'(x_0)h + y''(x_0)\frac{h^2}{2!} + \cdots + O(h^p).$$

The order of the method is p if the approximation coincides with the first p terms of the Taylor series.

The *local error* of a method is the error of one step: $|y_1 - y(x_1)|$.

In the *global error* we take the accumulation of errors into account. After n steps, $x_n = x_0 + nh$, and the global error is $|y_n - y(x_n)|$.

If the local error is $O(h^p)$, then the global error is $O(h^{p-1})$.
Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
Euler’s method and the modified Euler method

Consider two examples:

1. Euler’s method: \[y_{n+1} = y_n + hf(x_n, y_n), \quad n = 0, 1, \ldots \]
 Local error: \(O(h^2) \), global error: \(O(h) \).

2. the modified Euler method:

 \[
 \bar{y}_{n+1} = y_n + hf(x_n, y_n) \\
 \quad y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, \bar{y}_{n+1}) \right), \quad n = 0, 1, \ldots
 \]

 Local error: \(O(h^3) \), global error: \(O(h^2) \).
1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
Consider a 2-stage Runge-Kutta method:

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + \alpha h, y_n + \beta k_1) \\
 y_{n+1} &= y_n + ak_1 + bk_2.
\end{align*}
\]

This is a 2-stage method because we have 2 function evaluations.

There are four parameters: \(\alpha, \beta, a, b\).

The goal is to determine \(\alpha, \beta, a, b\) so that the order of the method is as high as possible.
a 2-stage Runge-Kutta method

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + \alpha h, y_n + \beta k_1) \\
 y_{n+1} &= y_n + a k_1 + b k_2
\end{align*}
\]

is equivalent to

\[
y_{n+1} = y_n + a f(x_n, y_n) + b f(x_n + \alpha h, y_n + \beta f(x_n, y_n)).
\]

We apply Taylor series in several variables:

\[
f(x_n + \alpha h, y_n + \beta f(x_n, y_n)) \\
\approx f(x_n, y_n) + \alpha h f_x(x_n, y_n) + \beta f(x_n, y_n) f_y(x_n, y_n)
\]

which becomes

\[
y_{n+1} = y_n + a f(x_n, y_n) \\
+ b \left(f(x_n, y_n) + \alpha h f_x(x_n, y_n) + \beta f(x_n, y_n) f_y(x_n, y_n) \right).
\]
compare the terms with Taylor series of $y(x_n + h)$

$$y_{n+1} = y_n + af(x_n, y_n) + b\left(f(x_n, y_n) + \alpha hf_x(x_n, y_n) + \beta f(x_n, y_n)f_y(x_n, y_n)\right)$$

$$y_{n+1} = y_n + (a + b)f(x_n, y_n) + \alpha bh f_x(x_n, y_n) + b\beta f(x_n, y_n)f_y(x_n, y_n)$$

Develop $y(x_n + h)$ at x_n with Taylor series:

$$y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + O(h^3).$$

We apply this to the differential equation $y' = f$:

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} \frac{d}{dx} f(x, y(x)) \bigg|_{(x_n, y_n)}.$$
conditions on the parameters

\[y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} \left. \frac{d}{dx} f(x, y(x)) \right|_{(x_n, y_n)} \]

\[\frac{d}{dx} f(x, y(x)) = f_x(x, y(x)) + f_y(x, y(x))y'(x), \quad y'(x) = f(x, y(x)) \]

\[\left. \frac{d}{dx} f(x, y(x)) \right|_{(x_n, y_n)} = f_x(x_n, y_n) + f_y(x_n, y_n)f(x_n, y_n) \]

\[y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} \left(f_x(x_n, y_n) + f_y(x_n, y_n)f(x_n, y_n) \right) \]

Compare this to

\[y_{n+1} = y_n + (a + b)f(x_n, y_n) + \alpha bh f_x(x_n, y_n) + b\beta f(x_n, y_n)f_y(x_n, y_n). \]
determination of the parameters

The parameters in the 2-stage Runge-Kutta method

\[y_{n+1} = y_n + (a + b)f(x_n, y_n) + \alpha bh f_x(x_n, y_n) + b\beta f(x_n, y_n)f_y(x_n, y_n) \]

is compared with the Taylor series of the solution at \(x_n + h \):

\[y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} \left(f_x(x_n, y_n) + f_y(x_n, y_n)f(x_n, y_n) \right) . \]

The system on \(\alpha, \beta, a, b \) is

\[
\begin{cases}
 a + b &= h \\
 \alpha bh &= h^2/2 \\
 b\beta &= h^2/2 .
\end{cases}
\]

We can solve this system symbolically with SymPy.
solving \(a + b = h, \ \alpha bh = h^2/2, \ b\beta = h^2/2 \)

using SymPy

\[a, b, \alpha, \beta, h = \text{Sym}("a, b, \alpha, \beta, h") \]

\[\text{eq1} = a + b - h \]
\[\text{eq2} = \alpha \cdot b \cdot h - h^2/2 \]
\[\text{eq3} = b \cdot \beta - h^2/2 \]

\[\text{sys} = \{\text{eq1}, \text{eq2}, \text{eq3}\} \]

\[\text{sol} = \text{solve}(\text{sys}, [a, b, \alpha, \beta]) \]

println(sol)

The output is a 4-tuple of symbolic values for \(a, b, \alpha, \text{and} \ \beta \):

\[(\frac{-h \cdot (-2 \beta + h)}{2 \beta}, \frac{h^2}{2 \beta}, \frac{\beta}{h}, \beta) \]

Choose \(\beta = h \), then \(\alpha = 1 \), and \(a = \frac{h}{2} = b \).
the modified Euler method

The solution on the previous slide leads to

\[y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_n + h, y_n + h f(x_n, y_n)) \right), \]

which allows to rewrite the modified Euler method as a 2-stage Runge-Kutta method:

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + h, y_n + h k_1) \\
 y_{n+1} &= y_n + \frac{h}{2} \left(k_1 + k_2 \right).
\end{align*}
\]

This shows that the modified Euler method has order 3, which is equivalent to stating that the local error is \(O(h^3) \).
The modified Euler method is one of the rules of the form

\[y_{n+1} = y_n + (a + b)f(x_n, y_n) + \alpha bh f_x(x_n, y_n) + b\beta f(x_n, y_n)f_y(x_n, y_n) \]

where the parameters satisfy

\[
\begin{align*}
 a + b &= h \\
 \alpha bh &= h^2/2 \\
 b\beta &= h^2/2.
\end{align*}
\]

Exercise 1:
Set \(\alpha = 1/2 \) and derive the midpoint method. Verify the order of the midpoint method.
Runge-Kutta Methods

1 Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2 Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3 Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
application on the test equation

\[y(x) = \exp(x) \] is the exact solution of the test equation:

\[\frac{dy}{dx} = y, \quad y(0) = 1. \]

Apply the 2-stage Runge-Kutta method

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + h, y_n + h k_1) \\
 y_{n+1} &= y_n + \frac{h}{2} \left(k_1 + k_2 \right)
\end{align*}
\]

with \(f = y \):

\[
\begin{align*}
 k_1 &= y_n \\
 k_2 &= y_n + h k_1 \\
 y_{n+1} &= y_n + \frac{h}{2} \left(k_1 + k_2 \right)
\end{align*}
\]
a Julia function

""
 rk2exp(n::Int64)
""

A 2-stage Runge-Kutta method with n steps
on the interval [0,1] on y' = y, y(0) = 1.
""

function rk2exp(n::Int64)
 h = 1.0/n
 y0 = 1.0
 y1 = 1.0
 for i=1:n
 x = i*h
 k1 = y0
 k2 = y0 + h*k1
 y1 = y0 + (h/2)*(k1 + k2)
 y0 = y1
 end
 return y1
end
on the test equation with \(h = 1/10 \)

Running a 2-stage Runge-Kutta method ...

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>k2</th>
<th>2-stage RK</th>
<th>exact</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>1.100000e+00</td>
<td>1.105000e+00</td>
<td>1.105171e+00</td>
<td>1.71e-04</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>1.215500e+00</td>
<td>1.221025e+00</td>
<td>1.221403e+00</td>
<td>3.78e-04</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>1.343128e+00</td>
<td>1.349233e+00</td>
<td>1.349859e+00</td>
<td>6.26e-04</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>1.484156e+00</td>
<td>1.490902e+00</td>
<td>1.491825e+00</td>
<td>9.23e-04</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>1.639992e+00</td>
<td>1.647447e+00</td>
<td>1.648721e+00</td>
<td>1.27e-03</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
<td>1.812191e+00</td>
<td>1.820429e+00</td>
<td>1.822119e+00</td>
<td>1.69e-03</td>
</tr>
<tr>
<td>7</td>
<td>0.70</td>
<td>2.002472e+00</td>
<td>2.011574e+00</td>
<td>2.013753e+00</td>
<td>2.18e-03</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>2.212731e+00</td>
<td>2.222789e+00</td>
<td>2.225541e+00</td>
<td>2.75e-03</td>
</tr>
<tr>
<td>9</td>
<td>0.90</td>
<td>2.445068e+00</td>
<td>2.456182e+00</td>
<td>2.459603e+00</td>
<td>3.42e-03</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>2.701800e+00</td>
<td>2.714081e+00</td>
<td>2.718282e+00</td>
<td>4.20e-03</td>
</tr>
</tbody>
</table>

This the same output as the modified Euler method:

- the local error is \(1.71e-04\),
- the global error is \(4.20e-03\).
application of the midpoint method

Exercise 2:
Apply the midpoint method (see Exercise 1) to the test equation. Compare the local and global error of the midpoint method to the output of the modified Euler method.
Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
A p-th order Runge-Kutta method proceeds in p stages:

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + \alpha_2 h, y_n + \beta_2 k_1) \\
 k_3 &= f(x_n + \alpha_3 h, y_n + \beta_3 k_2) \\
 &\vdots \\
 k_p &= f(x_n + \alpha_p h, y_n + \beta_p k_{p-1}) \\
 y_{n+1} &= y_n + a_1 k_1 + a_2 k_2 + a_3 k_3 + \cdots + a_p k_p.
\end{align*}
\]

If the parameters $\alpha_2, \alpha_3, \ldots, \alpha_p, \beta_2, \beta_3, \ldots, \beta_p$, and $a_1, a_2, a_3, \ldots, a_p$ are determined to agree with the Taylor series of $y(x_n + h)$, then the local error is $O(h^{p+1})$, the global error is $O(h^p)$.

Numerical Analysis (MCS 471) Runge-Kutta Methods L-30 1 November 2021 21 / 38
A third order Runge-Kutta method proceeds in three stages:

\[
\begin{align*}
 k_1 &= f(x_n, y_n) \\
 k_2 &= f(x_n + h/2, y_n + hk_1/2) \\
 k_3 &= f(x_n + 3h/4, y_n + 3hk_2/4) \\
 y_{n+1} &= y_n + \frac{h}{9} \left(2k_1 + 3k_2 + 4k_3 \right).
\end{align*}
\]

The local error is $O(h^4)$, the global error is $O(h^3)$.

on the test equation with \(h = 1/10 \)

Running a 3-stage Runge-Kutta method ...

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>k3</th>
<th>3-stage RK</th>
<th>exact</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>1.078750e-01</td>
<td>1.105167e+00</td>
<td>1.105171e+00</td>
<td>4.25e-06</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>1.192199e-01</td>
<td>1.221393e+00</td>
<td>1.221403e+00</td>
<td>9.40e-06</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>1.317578e-01</td>
<td>1.349843e+00</td>
<td>1.349859e+00</td>
<td>1.56e-05</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>1.456143e-01</td>
<td>1.491802e+00</td>
<td>1.491825e+00</td>
<td>2.30e-05</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>1.609281e-01</td>
<td>1.648690e+00</td>
<td>1.648721e+00</td>
<td>3.17e-05</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
<td>1.778524e-01</td>
<td>1.822077e+00</td>
<td>1.822119e+00</td>
<td>4.21e-05</td>
</tr>
<tr>
<td>7</td>
<td>0.70</td>
<td>1.965565e-01</td>
<td>2.013698e+00</td>
<td>2.013753e+00</td>
<td>5.42e-05</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>2.172277e-01</td>
<td>2.225472e+00</td>
<td>2.225541e+00</td>
<td>6.85e-05</td>
</tr>
<tr>
<td>9</td>
<td>0.90</td>
<td>2.400728e-01</td>
<td>2.459518e+00</td>
<td>2.459603e+00</td>
<td>8.52e-05</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>2.653205e-01</td>
<td>2.718177e+00</td>
<td>2.718282e+00</td>
<td>1.05e-04</td>
</tr>
</tbody>
</table>

For this 3-stage Runge-Kutta method,
- the local error is \(4.25 \times 10^{-6} \),
- the global error is \(1.05 \times 10^{-4} \).
A fourth order Runge-Kutta method proceeds in four stages:

\[
\begin{align*}
k_1 &= f(x_n, y_n) \\
k_2 &= f(x_n + h/2, y_n + (h/2)k_1) \\
k_3 &= f(x_n + h/2, y_n + (h/2)k_2) \\
k_4 &= f(x_n + h, y_n + hk_3) \\
y_{n+1} &= y_n + \frac{h}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right).
\end{align*}
\]

The local error is \(O(h^5)\), the global error is \(O(h^4)\).
on the test equation with $h = 1/10$

Running a 4-stage Runge-Kutta method ...

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>k4</th>
<th>4-stage RK</th>
<th>exact</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>1.105250e-01</td>
<td>1.105171e+00</td>
<td>1.105171e+00</td>
<td>8.47e-08</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>1.221490e-01</td>
<td>1.221403e+00</td>
<td>1.221403e+00</td>
<td>1.87e-07</td>
</tr>
<tr>
<td>3</td>
<td>0.30</td>
<td>1.349955e-01</td>
<td>1.349858e+00</td>
<td>1.349859e+00</td>
<td>3.11e-07</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>1.491931e-01</td>
<td>1.491824e+00</td>
<td>1.491825e+00</td>
<td>4.58e-07</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>1.648839e-01</td>
<td>1.648721e+00</td>
<td>1.648721e+00</td>
<td>6.32e-07</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
<td>1.822248e-01</td>
<td>1.822118e+00</td>
<td>1.822119e+00</td>
<td>8.38e-07</td>
</tr>
<tr>
<td>7</td>
<td>0.70</td>
<td>2.013896e-01</td>
<td>2.013752e+00</td>
<td>2.013753e+00</td>
<td>1.08e-06</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>2.225699e-01</td>
<td>2.225540e+00</td>
<td>2.225541e+00</td>
<td>1.37e-06</td>
</tr>
<tr>
<td>9</td>
<td>0.90</td>
<td>2.459778e-01</td>
<td>2.459601e+00</td>
<td>2.459603e+00</td>
<td>1.70e-06</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>2.718474e-01</td>
<td>2.718280e+00</td>
<td>2.718282e+00</td>
<td>2.08e-06</td>
</tr>
</tbody>
</table>

For this 4-stage Runge-Kutta method,

- the local error is $8.47e-08$,
- the global error is $2.08e-06$.
summary of the experiments

Running Runge-Kutta methods of order 2, 3, and 4 on the test equation \(y' = y, \ y(0) = 1 \).

On the interval \([0, 1]\), we do \(n = 10 \) steps, \(h = 1/n = 1/10 \).

For a \(p \)-stage Runge-Kutta method, we expect

- a local error of \(O(h^{p+1}) \), and
- a global error of \(O(h^p) \).

The actual values for local and global errors are below:

<table>
<thead>
<tr>
<th>(p)</th>
<th>local error</th>
<th>global error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.71e-04</td>
<td>4.20e-03</td>
</tr>
<tr>
<td>3</td>
<td>4.25e-06</td>
<td>1.05e-04</td>
</tr>
<tr>
<td>4</td>
<td>8.47e-08</td>
<td>2.08e-06</td>
</tr>
</tbody>
</table>

The values agree with the expectations.
the test equation with a parameter

For some parameter λ, the initial value problem

$$\frac{dy}{dx} = \lambda y, \quad y(0) = 1$$

has $y(x) = \exp(\lambda x)$ as the exact solution.

Exercise 3:

1. Take $\lambda = 0.1$ and consider the interval $[0, 1]$. For $h = 0.1$, run the 2-stage Runge-Kutta method. Compare the local and global error with the errors on the test equation without parameter (or for $\lambda = 1$).

2. Take $\lambda = 0.01$ and consider the interval $[0, 1]$. For $h = 0.1$, run the 4-stage Runge-Kutta method. Compare the results with your findings of the previous part.
Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
the pendulum problem

The initial value problem to model a pendulum is

\[y'_1 = y_2, \]
\[y'_2 = -\frac{g}{\ell} \sin(y_1), \quad y_1 = \pi/4, \quad y_2 = 0. \]

We apply a vector version of a 2-stage Runge-Kutta method:

\[
\begin{cases}
 k_1 = f(x_n, y_n) \\
 k_2 = f(x_n + h, y_n + h k_1) \\
 y_{n+1} = y_n + \frac{h}{2} (k_1 + k_2)
\end{cases}
\]

where

\[
y_n = \begin{bmatrix} y_{n,1} \\ y_{n,2} \end{bmatrix}, \quad k_1 = \begin{bmatrix} k_{1,1} \\ k_{1,2} \end{bmatrix}, \quad k_2 = \begin{bmatrix} k_{2,1} \\ k_{2,2} \end{bmatrix}, \quad f = \begin{bmatrix} y_2 \\ (-g/\ell) \sin(y_1) \end{bmatrix}.
\]
a 2-stage Runge-Kutta method for the pendulum

\[
y_n = \begin{bmatrix} y_{n,1} \\ y_{n,2} \end{bmatrix}, \quad k_1 = \begin{bmatrix} k_{1,1} \\ k_{1,2} \end{bmatrix}, \quad k_2 = \begin{bmatrix} k_{2,1} \\ k_{2,2} \end{bmatrix}, \quad f = \begin{bmatrix} y_2 \\ (-g/\ell)\sin(y_1) \end{bmatrix}
\]

\[
\begin{align*}
k_1 &= f(x_n, y_n) \\
k_2 &= f(x_n + h, y_n + h k_1) \\
y_{n+1} &= y_n + \frac{h}{2} \left(k_1 + k_2 \right)
\end{align*}
\]

\[
\begin{bmatrix} k_{1,1} \\ k_{1,2} \end{bmatrix} = \begin{bmatrix} y_2 \\ (-g/\ell)\sin(y_1) \end{bmatrix}, \quad \begin{bmatrix} k_{2,1} \\ k_{2,2} \end{bmatrix} = \begin{bmatrix} y_2 + h k_{1,2} \\ (-g/\ell)\sin(y_1 + h k_{1,1}) \end{bmatrix},
\]

\[
\begin{bmatrix} y_{n+1,1} \\ y_{n+1,2} \end{bmatrix} = \begin{bmatrix} y_{n,1} \\ y_{n,2} \end{bmatrix} + \frac{h}{2} \left(\begin{bmatrix} k_{1,1} \\ k_{1,2} \end{bmatrix} + \begin{bmatrix} k_{2,1} \\ k_{2,2} \end{bmatrix} \right)
\]
running 24 steps

$ julia rkpend.jl
Running the modified Euler method ...

\[
\begin{array}{cccc}
1 & 0.00 & 7.853982e-01 & 0.000000e+00 \\
25 & 6.28 & 1.550520e+00 & 2.841312e+00 \\
\end{array}
\]

Running a 2-stage Runge-Kutta method ...

\[
\begin{array}{cccc}
1 & 0.00 & 7.853982e-01 & 0.000000e+00 \\
25 & 6.28 & 1.550520e+00 & 2.841312e+00 \\
\end{array}
\]

Running a 3-stage Runge-Kutta method ...

\[
\begin{array}{cccc}
1 & 0.00 & 7.853982e-01 & 0.000000e+00 \\
25 & 6.28 & 5.106470e-01 & -7.919150e-01 \\
\end{array}
\]

Running a 4-stage Runge-Kutta method ...

\[
\begin{array}{cccc}
1 & 0.00 & 7.853982e-01 & 0.000000e+00 \\
25 & 6.28 & 7.543960e-01 & -1.190943e-01 \\
\end{array}
\]

The columns are respectively the step number \(n \), the value for \(t_n, y_{n,1} \) (position), \(y_{n,2} \) (velocity), and the error.

As expected, the errors decrease as the order increases.
24 steps with a 4-stage Runge-Kutta method
Exercise 4:
Apply Runge-Kutta methods of order three and four to

\[
\begin{align*}
\frac{dx}{dt} &= -y + \cos(t)\sin(t) \\
\frac{dy}{dt} &= x + \sin^2(t)
\end{align*}
\]

for \(t \in [0, 2\pi] \). Its exact solution is the cardioid.

1. For both the order three and four Runge-Kutta methods, set \(h \) to be small enough so the plot of the computed points agrees with the plot of the exact solution.

2. Compare the accuracy of both runs. What is the largest \(h \) you can use with the fourth order method and achieve the same accuracy as with the third order?
Exercise 5:
Apply Runge-Kutta methods of order three and four to
\[
\begin{align*}
\frac{dx}{dt} &= -y + 3 \cos(3t) \cos(t) \\
\frac{dy}{dt} &= x + 3 \cos(3t) \sin(t)
\end{align*}
\]
for \(t \in [0, 2\pi] \). See the previous lecture for its exact solution.

1. For both the order three and four Runge-Kutta methods, set \(h \) to be small enough so the plot of the computed points agrees with the plot of the exact solution.

2. Compare the accuracy of both runs. What is the largest \(h \) you can use with the fourth order method and achieve the same accuracy as with the third order?
Runge-Kutta Methods

1. Local and Global Errors
 - truncation of Taylor series
 - errors of Euler’s method and the modified Euler method

2. Runge-Kutta Methods
 - derivation of the modified Euler method
 - application on the test equation
 - third and fourth order Runge-Kutta methods

3. Applications
 - the pendulum problem
 - the 3-body problem in celestial mechanics
the 3-body problem

We consider three bodies with respective masses m_1, m_2, m_3 in the plane with positions $(x_1(t), y_1(t))$, $(x_2(t), y_2(t))$, $(x_3(t), y_3(t))$ evolving over time t, governed by a system of second order differential equations, shown below for the movement of the first body:

\[
\frac{d^2 x_1(t)}{dt^2} = -\frac{m_2(x_1(t) - x_2(t))}{((x_1(t) - x_2(t))^2 + (y_1(t) - y_2(t))^2)^{3/2}} - \frac{m_3(x_1(t) - x_3(t))}{((x_1(t) - x_3(t))^2 + (y_1(t) - y_3(t))^2)^{3/2}}
\]

The equation for $y_1(t)$ is similar (replace x in numerator by y).

With four additional equations for the positions of the second and third body, our model consists of six second order equations.
a system of 12 first order equations

To turn this into a system of first order differential equations we introduce new variables u_i, v_i for the velocities of x_i, y_i so we have

\[
\frac{dx_1(t)}{dt} = u_1(t)
\]

\[
\frac{du_1(t)}{dt^2} = - \frac{m_2(x_1(t) - x_2(t))}{((x_1(t) - x_2(t))^2 + (y_1(t) - y_2(t))^2)^{3/2}} - \frac{m_3(x_1(t) - x_3(t))}{((x_1(t) - x_3(t))^2 + (y_1(t) - y_3(t))^2)^{3/2}}
\]

So we obtain 12 first order differential equations.

See the posted Julia program and Jupyter notebook.
a figure eight