
Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

MCS 481 Lecture 31
Computational Geometry

Jan Verschelde, 2 April 2025

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 1 / 27



Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 2 / 27



windowing queries

Given a map, we zoom in on a window⇒ windowing query.

We focus on points, although the points are end points of segments.

Motivation: reduce the storage from O(n log(n)) to O(n).

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 3 / 27



problem statement

Input: P = { p1,p2, . . . ,pn }, a set of n points in the plane; and
a query window W = (−∞ : qx ]× [qy : q′

y ].
Output: P ∩W .

Using a 2D range tree requires O(n log(n)) storage
because of the associated binary search trees.

How to integrate the information about y -coordinates into one
structure, without associated structures?

Motivation: reduce the storage from O(n log(n)) to O(n).

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 4 / 27



Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 5 / 27



the heap
The heap or priority queue is a binary tree
where every node has a higher priority than its children.

top
?

90
�
�

H
H

65

� @
21 60

70

� @
27 17

bottom
6

17

27

60

21

70

65

90

6

5

4

3

2

1

0
-

�

-

�

-

�

For node at p: left child is at 2p + 1, right child is at 2p + 2.
Parent of node at p is at (p − 1)/2. Storage cost is O(n).

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 6 / 27



the construction of a heap to store points

Construct a heap to store points as follows:
take the leftmost point,
split the other points on their median y -coordinate, and
continue the construction recursively on the splitted halves.

5

3

1

6

2

4

5

3

1

6

2

4

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 7 / 27



the construction of a heap continued

Construct a heap to store points as follows:
take the leftmost point,
split the other points on their median y -coordinate, and
continue the construction recursively on the splitted halves.

5

3

1

6

2

4

5

3

1

6

2

4

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 8 / 27



a heap for six points

5

3

1

6

2

4

5
�� HH

3

� @
6 4

1

� @
2

The heap integrates information about x- and y -coordinates.
Points towards the top are more to the left.
Points in the left child are in the lower half.
Points in the right child are in the upper half.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 9 / 27



Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 10 / 27



definition of a priority search tree

Let P be a set of n points in the plane.

1 pmin ∈ P has the smallest x-coordinate.
2 ymid is the median of the y -coordinates of P \ {pmid}.
3 With pmin and ymid, define

I Pbelow = { p ∈ P \ {pmin} | py < ymid }, and
I Pabove = { p ∈ P \ {pmin} | py > ymid }.

Definition (priority search tree)
The priority search tree T for P is defined recursively as

1 if P = ∅, then T is an empty leaf, otherwise
2 the root v of T stores (pmin, ymid)

I the left child of v is a priority search tree for Pbelow, and
I the right child of v is a priority search tree for Pabove.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 11 / 27



making a priority search tree
Algorithm MAKEPRIORITYSEARCHTREE(P)

Input: P = {p1,p2, . . . ,pn}, a set of n points in the plane.
Output: the root of the priority search tree for P.

1 if P = ∅ then return empty leaf
else

2 let pmin be the leftmost point of P: pmin = p ∈ P, px = min
q∈P

qx

3 ymid is the median of the y -coordinates of P \ {pmid}
4 v = NODE(pmin, ymid)

5 Pbelow = { p ∈ P \ {pmin} | py < ymid }
6 Pabove = { p ∈ P \ {pmin} | py > ymid }
7 LEFTCHILD(v) = MAKEPRIORITYSEARCHTREE(Pbelow)
8 RIGHTCHILD(v) = MAKEPRIORITYSEARCHTREE(Pabove)
9 return v

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 12 / 27



the cost of making a priority search tree

Lemma (cost of making a priority search tree)
For a set P of n points,
algorithm MAKEPRIORITYSEARCHTREE has running time O(n log(n)).
If the points in P are sorted on their y-coordinate,
then the priority search tree can be constructed in O(n) time.

Exercise 1: Consider the set of 15 random points: P = { (46,32),
(63,73), (87,66), (83,92), (44,41), (64,74), (46,35), (45,24),
(27,43), (52,54), (90,84), (78,84), (72,28), (38,65), (61,57) }.

Construct the priority search tree for P.
Sort the points in P on their y -coordinate.
Does the construction of the priority tree go faster after sorting?
Formulate the algorithm to construct a priority search tree for a
list P, of points sorted on their y -coordinate.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 13 / 27



points with the same x- or y -coordinates

Taking the leftmost point and splitting the set of other points on the
median y -coordinate leads to a tree.
However, our points are end points of line segments.

What if points
• have the same x-coordinate?
• have the same y-coordinate?

Exercise 2:
Does the technique of composite coordinates solve the problem?
Consider eight points on the boundary of a square:

(0,0), (1,0), (2,0), (0,1), (2,1), (0,2), (1,2), (2,2).

Define a heap for this set of points.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 14 / 27



Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 15 / 27



a query window

Input: P = { p1,p2, . . . ,pn }, a set of n points in the plane; and
a query window W = (−∞ : qx ]× [qy : q′

y ].
Output: P ∩W .

5

3

1

6

2

4

qy

q′
y

qx

5
�� HH

3

� @
6 4

1

� @
2

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 16 / 27



reporting in subtrees

Given the query window W = (−∞ : qx ]× [qy : q′
y ], we report the

points p = (px ,py ) with py ∈ [qy : q′
y ] if they pass the test px ≤ qx .

Algorithm REPORTINSUBTREE(v ,qx)

Input: root v of a priority search tree,
qx is the right bound on x of a query window.

Output: all points p with px ≤ qx .

1 if not ISLEAF(v ) and p(v)x ≤ qx then
2 REPORT p(v)
3 REPORTINSUBTREE(LEFTCHILD(v),qx)

4 REPORTINSUBTREE(RIGHTCHILD(v),qx)

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 17 / 27



the cost of reporting in subtrees

Lemma (cost of reporting in subtrees)
Algorithm REPORTINSUBTREE(v ,qx) takes O(1 + kv ) time
to report kv points p with px ≤ qx .

By the definition of the heap,
nodes closer to the root are more to the left.
Therefore, as soon as p(v)x > qx ,
the children of v are also to the right of qx and need not be visited.
At any node v , we spend O(1) time:

1 We test: if not ISLEAF(v ) and p(v)x ≤ qx .
2 If the test passes, then report and visit the children.

By the test p(v)x ≤ qx all reported points lie to the left of qx .
Every reported point has at most two children. We visit at most
twice as many nodes as the number of reported ones.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 18 / 27



a split vertex

At each node we store
pmin the leftmost point, and
ymid the median of the y -coordinates of the remaining points.

The points below ymid are in the left child,
The points above ymid are in the right child.

With the query window W = (−∞ : qx ]× [qy : q′
y ],

if ymid < qy , then we do not visit the left child,
if ymid > q′

y , then we do not visit the right child.
As long as ymid < qy or ymid > q′

y ,
the search path is one single branch of the priority search tree.

The node where both children must be visited is a split vertex.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 19 / 27



an example of a split vertex

Consider our running example with the query window in yellow:

5

3

1

6

2

4

qy

q′
y

qx

5
�� HH

3

� @
6 4

1

� @
2

What is the split vertex?

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 20 / 27



query a priority search tree
Algorithm QUERYPRIORITYSEARCHTREE(T ,W )

Input: T , a priority search tree,
W = (−∞ : qx ]× [qy : q′

y ], a query window.
Output: all points of T ∩W .

1 let vsplit be the split vertex
2 for each node v on the search path from qy to q′

y do
3 if p(v) ∈W , then REPORT p(v)
4 for each node v on path of qy in LEFTCHILD(vsplit) do
5 if path goes left at v then

REPORTINSUBTREE(RIGHTCHILD(v),qx)

6 for each node v on path of q′
y in RIGHTCHILD(vsplit) do

7 if path goes right at v then
REPORTINSUBTREE(LEFTCHILD(v),qx)

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 21 / 27



illustrate the query algorithm

Exercise 3: Consider the set of 15 random points: P = { (46,32),
(63,73), (87,66), (83,92), (44,41), (64,74), (46,35), (45,24),
(27,43), (52,54), (90,84), (78,84), (72,28), (38,65), (61,57) }.

Exercise 1 asks to construct a priority search tree for P.

1 Illustrate algorithm QUERYPRIORITYSEARCHTREE with
a well chosen example of a query window.

2 Run algorithm QUERYPRIORITYSEARCHTREE step by step
on the priority search tree for P and your chosen query window.

In running the algorithm, identify vsplit and
refer to the steps in the algorithm.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 22 / 27



the cost to query a priority search tree

Lemma (cost to query a priority search tree)
The algorithm QUERYPRIORITYSEARCHTREE on a search tree for n
points reports k points in the query window in O(log(n) + k) time.

All reported points lie in the query window.
The algorithm will report all points, none are missed.
The algorithm is output sensitive.
The depth of the heap is O(log(n)),
because of the split on the median.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 23 / 27



the cost of priority search trees

We summarize the results in the following.

Theorem (cost of priority search trees)
A priority search tree for n points

uses O(n) storage, and
takes O(n log(n)) time to construct.

The query time is O(log(n) + k),
where k is the number of reported points.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 24 / 27



Priority Search Trees

1 Storing Points in the Plane
data structures for windowing queries
windowing queries using a heap

2 Priority Search Trees
definition and construction
query a priority search tree
running an example of CGAL

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 25 / 27



running an example of CGAL

On a Window Subsystem for Linux (WSL), running Ubuntu:

1 Run sudo apt-get install followed
by libgmp-dev, libmpfr-dev, libcgal-dev.

2 Download CGAL-5.6-examples.zip.
3 Compile nearest_neighbor_searching.cpp

from the Spatial_searching folder.

This example constructs a tree and then queries the tree
for the nearest point.

Exercise 4: Construct trees for sufficiently large point sets.
Report the observed times for the construction of the data structure.
Do you observe the O(n log(n)) as n grows?

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 26 / 27



summary and exercises

Storing n points in a heap has storage cost O(n),
construction cost O(n log(n)) and query time O(log(n) + k),
where k is the size of the output.

We covered section 10.2 in the textbook.

Consider the following activities, listed below.

1 Write the solutions to exercise 1, 2, 3, and 4.
2 Read the CGAL documentation on the dD Spatial Searching.
3 Consider the exercises 10.2, 10.3, 10.10 in the textbook.

Computational Geometry (MCS 481) Priority Search Trees L-31 2 April 2025 27 / 27


	Storing Points in the Plane
	data structures for windowing queries
	windowing queries using a heap

	Priority Search Trees
	definition and construction
	query a priority search tree
	running an example of CGAL


