

Triangulations

- triangulations in CGAL
- triangulating y-monotone polygons

An Incremental Triangulation Algorithm

- walking left and right boundary chains
- pseudo code for the algorithm

3 Linear Time

cost analysis

MCS 481 Lecture 8 Computational Geometry Jan Verschelde, 8 September 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Triangulations

- triangulations in CGAL
- triangulating y-monotone polygons

2 An Incremental Triangulation Algorithm

- walking left and right boundary chains
- pseudo code for the algorithm

3 Linear Time

cost analysis

triangulations in CGAL

The previous lecture considered the partitioning of nonconvex polygons into y-monotone pieces.

From http://doc.cgal.org/latest/Partition_2:

• The sweep line algorithm of our textbook is implemented by the function y_monotone_partition_2().

• Functions are provided to partition a polygon in convex pieces. In Python, run the Jupyter notebook for the cgal-swig-bindings, to construct a triangulation from a list of points.

This construction is documented in

http://doc.cgal.org/latest/Triangulation_2.

In C++, look at cgal/Partition_2/examples.

Triangulations

- triangulations in CGAL
- triangulating y-monotone polygons

An Incremental Triangulation Algorithm

- walking left and right boundary chains
- pseudo code for the algorithm

3 Linear Time

cost analysis

4 3 5 4 3 5

y-monotone polygons

Definition (y-monotone polygon)

A polygon *P* is *y*-monotone if for any line ℓ perpendicular to the *y*-axis the intersection $P \cap \ell$ is connected.

A strictly y-monotone polygon has no horizontal edges.

We will assume our polygons are strictly y-monotone.

adding diagonals

We can triangulate by recursively adding diagonals:

- Take the highest leftmost vertex v.
- 2 Try first to connect the neighbors *u* and *w*.
- If u and w cannot be connected, connect v to the vertex farthest from the edge (u, w) inside the triangle spanned by u, v, and w.

TH 161

asymptotic cost analysis

For a *y*-monotone polygon with *n* vertices, computing the next diagonal can take *n* steps, resulting in a O(n) cost per step.

While we may optimistically

- hope that every diagonal cuts the polygon in two equal halves;
- in the worst case (the normal case in an asymptotic analysis), every diagonal may leave a polygon with n 1 vertices,

and thus a total cost of $O(n^2)$.

We will derive an O(n) algorithm.

Sorting *n* points takes already $O(n \log(n))$ time, so we assume the vertices of the *y*-monotone polygon *P* are sorted.

specification of the input and output

The polygon *P* is given as a doubly connected edge list \mathcal{D} . The \mathcal{D} below stores 8 vertex records, 16 half edge records, and 2 face records.

The triangulation is also stored in a doubly connected edge list.

Triangulation

- triangulations in CGAL
- triangulating y-monotone polygons

An Incremental Triangulation Algorithm

- walking left and right boundary chains
- pseudo code for the algorithm

Linear Time

cost analysis

walking left and right boundary chains

For a strictly y-monotone polygon P,

- we start at the highest leftmost vertex,
- take vertices from the left or right boundary chain, and
- construct diagonals whenever possible.

We need to ensure all added diagonals are in P.

Definition (convex and reflex vertices)

A vertex is *convex* if its inner angle is less than π . A vertex that is not convex is *a reflex vertex*.

The highest leftmost vertex is a convex vertex.

If *P* is a convex polygon, then all vertices are convex and adding diagonals from the highest vertex v to all other vertices, those not adjacent to v, will give a triangulation in O(n) time.

< ロ > < 同 > < 回 > < 回 >

splitting off triangles

Invariant of the algorithm: the highest leftmost vertex is convex.

The two reflex vertices 4 and 5 cause no problems because the next vertex is on the opposite chain.

Computational Geometry (MCS 481)

Triangulating a Monotone Polygon

sequence of reflex vertices on the same chain

Consider the sequence of reflex vertices 2, 3, and 4:

We can add diagonals only when we get to the 5-th vertex:

a stack stores reflex vertices on the same chain

Reflex vertices 2, 3, and 4 are stored on a stack:

At the 5-th vertex, we pop 4, 3, and 2, and add diagonals:

Triangulation

- triangulations in CGAL
- triangulating y-monotone polygons

An Incremental Triangulation Algorithm walking left and right boundary chains

• pseudo code for the algorithm

Linear Time

cost analysis

4 3 5 4 3 5

pseudo code - the initialization and loop

Algorithm TRIANGULATEMONOTONEPOLYGON(P)

Input: a doubly connected edge list \mathcal{D} stores a strictly *y*-monotone polygon *P*. Output: the updated \mathcal{D} stores a triangulation of *P*.

- Merge vertices of the left and right chains in [u₁, u₂,..., u_n], sorted on their *y*-coordinate, leftmost breaks ties, in descending order.
- 2 Initialize the stack S, push u_1 and u_2 onto S.
- Sor *j* from 3 to *n* − 1 do
 - process vertex u_j.

The statement "process vertex u_i " is explained in the next two slides.

processing vertices on opposite chains

```
Image: Second systemImage: Second syste
```

The popping of all vertices and the removal of Bottom(S) corresponds to triangles splitting off.

Exercise 1: Explain why the diagonals (u_j, u) are inside *P*. In your proof, take into account that *P* is *y*-monotone and the processing order of the vertices.

3

processing vertices on the same chain

except for Top(S) and Bottom(S).

Exercise 2: Using your solution to Exercise 1 as a Lemma, prove the correctness of Algorithm TRIANGULATEMONOTONEPOLYGON.

10

else

A B b 4 B b

Triangulations

- triangulations in CGAL
- triangulating y-monotone polygons

An Incremental Triangulation Algorithm walking left and right boundary chains pseudo code for the algorithm

3 Linear Time• cost analysis

cost analysis of the initialization

The initialization of Algorithm TRIANGULATEMONOTONEPOLYGON:

 Locating the highest leftmost vertex in a doubly connected edge list takes O(n) time.

• Merge vertices of the left and right chains in $[u_1, u_2, ..., u_n]$, Merging two sorted lists takes O(n), where *n* is the length of the result.

• Then, consider:

2 Initialize the stack *S*, push u_1 and u_2 onto *S*. which runs in O(1).

< 回 > < 三 > < 三 >

```
cost analysis of the loop
```

The loop

③ For *j* from 3 to n - 1 do

is executed n - 3 times. However, there are inner loops:

for all
$$u \in S \setminus Bottom(S)$$
 do

and

```
(a) while the diagonal (u_j, u) \in P do
```

For all vertices, one of the two inner loops is executed, leading to a potential $O(n^2)$ running time.

- A TE N - A TE N

< 6 k

growth of the stack

How large can the stack get?

Let us count the push operations in the loop:

- Sor *j* from 3 to *n* − 1 do
- if u_j and Top(S) are on opposite chains then

$$\bigcirc$$
 push(S, u_{j-1}); push(S, u_j)

else

10

1 push(S, u_ℓ); push(S, u_j);

As the loop is executed n - 3 times, with two push operations per step, starting with 2 vertices after the initialization,

the stack size equals 2 + 2n - 6 = 2n - 4.

The 2n - 4 is an upper bound on the number of pop operations in the inner loops. Therefore, the number of times the instructions in the inner loops are executed is also bounded by 2n - 4, which is O(n).

linear time

We have proven the following theorem.

Theorem (time to triangulate a monotone polygon) It takes O(n) time to triangulate a stricly *y*-monotone polygon given as a doubly connected edge list of *n* vertices.

Exercise 3: Illustrate on a well chosen example the modifications to Algorithm TRIANGULATEMONOTONEPOLYGON to handle *y*-monotone polygons with horizontal edges.

Show that your modified algorithm runs in linear time.

A B b 4 B b

We closed the third chapter in the textbook.

Consider the following activities, listed below.

- Look at the examples provided by CGAL.
- Write the solutions to exercises 1, 2, and 3.
- Sonsider the exercises 10, 13, 14 in the textbook.

4 3 > 4 3