The Zone Theorem

1. Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2. Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3. Proof of the Zone Theorem
 - induction on the number of lines
The Zone Theorem

1 Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2 Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3 Proof of the Zone Theorem
 - induction on the number of lines
five lines in the plane induce a subdivision

The arrangement of lines is stored in a doubly connected edge list, within a bounding box.
an incremental algorithm

Algorithm \textsc{ConstructArrangement}(L)

Input: a set \(L \) of \(n \) lines.
Output: \(A(L) \), stored in doubly connected edge list, within a bounding box \(B(L) \).

1. compute \(B(L) \) enclosing all vertices of \(A(L) \)
2. construct a doubly connected edge list \(\mathcal{D} \) to store \(B(L) \)
3. for \(i \) from 1 to \(n \) do
4. find the edge \(e \) on \(B(L) \) that contains leftmost intersection point of \(\ell_i \) and \(A_{i-1} \)
5. let \(f \) be the bounded face incident to \(e \)
6. while \(f \) is not outside \(B(L) \) do
7. split \(f \), update \(\mathcal{D} \)
8. set \(f \) to the next face intersected by \(\ell_i \)
The Zone Theorem

1. Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2. Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3. Proof of the Zone Theorem
 - induction on the number of lines
the zone of a line – an example

The blue line intersects 5 of the 11 faces.
the zone of a line – definitions

Definition (the closure of a face in a subdivision)
Let f be a face in a subdivision. The closure \overline{f} of the face f is f and all its vertices and edges.

Definition (the zone of a line in an arrangement)
Let $A(L)$ be a line arrangement and ℓ be a line. The zone of the line ℓ in the arrangement $A(L)$ is

$$\{ f \text{ face of } A(L) \mid f \cap \ell \neq \emptyset \}.$$

Definition (the zone complexity)
Let $A(L)$ be a line arrangement and ℓ be a line. The zone complexity of ℓ in $A(L)$ is the sum of the number of vertices, the number of edges, and the number of faces in the zone of ℓ in $A(L)$.
The Zone Theorem

1. Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2. Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3. Proof of the Zone Theorem
 - induction on the number of lines
The zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement $A(L)$ is $O(m)$.

By the zone theorem, the cost of the incremental algorithm is quadratic.

Theorem (cost of $\text{CONSTRUCT}\text{ARRANGEMENT}$)

A doubly connected edge list for the arrangement induced by a set of n lines in the plane can be constructed in $O(n^2)$ time.
The Zone Theorem

1. Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2. Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3. Proof of the Zone Theorem
 - induction on the number of lines
the dual of the discrepancy problem

Given a line ℓ, we want to count all points below ℓ.

Given the point ℓ^*, count the lines below ℓ^*.
the level of a point in an arrangement

Definition (level of a point in an arrangement)
Given an arrangement $A(L)$ of lines and a point p, the *level of the point p in $A(L)$* is the number of lines strictly above p.

![Diagram showing points and lines with their respective levels labeled 0, 1, 2, 3, and 4.](image-url)
The Zone Theorem

1. Arrangements of Lines
 - an incremental algorithm
 - the zone of a line
 - the zone theorem

2. Levels and Discrepancy
 - counting the number of lines
 - computing the level at vertices

3. Proof of the Zone Theorem
 - induction on the number of lines
For any line \(\ell \) do the following:

1. compute the level at the leftmost vertex,
2. while not at the rightmost vertex on \(\ell \) do
3. walk to the next vertex \(v \) on \(\ell \) and compute the level of \(v \).
In an arrangement of \(n \) lines, and a given line \(\ell \), computing the level of the leftmost vertex on \(\ell \) runs in \(O(n) \).

→ for the vertex \(v \) on \(\ell \) with the smallest \(x \)-coordinate, check all other \(n - 1 \) lines to see whether \(v \) lies below.
computing the level of the next vertex

In an arrangement of n lines, and a given line ℓ, computing the level of the next vertex on ℓ also runs in $O(n)$.

→ in the walk from one vertex to the next, we follow the edges in the doubly connected edge list and update the level as follows:

$+1$ if the edge we follow goes down,

-1 if the edge we follow goes up.
computing the discrete measure in quadratic time

The discrete measure of S in U is $\mu_S(h) = \#(S \cap U)/\#S$.

The dual of the sample set S of points is the set of lines S^*. We count the levels of the vertices in the arrangement $A(S^*)$.

Theorem (cost of half plane discrepancy)

The half plane discrepancy of a set S of n points in the unit square U can be computed in $O(n^2)$ time.
Arrangements of Lines
- an incremental algorithm
- the zone of a line
- the zone theorem

Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

Proof of the Zone Theorem
- induction on the number of lines
Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement $A(L)$ is $O(m)$.

Outline of the proof:

- Choose the coordinate system so that ℓ is the x-axis.
- Each edge in $A(L)$ bounds two faces.
 - An edge is a left bounding face for the face to its right.
 - An edge is a right bounding face for the face to its left.
- In the zone of ℓ, the number of left bounding edges $\leq 5m$.

The theorem follows from the last statement.
The number of left bounding edges

Lemma (the number of left bounding edges)

Let \(L \) be a set of \(m \) lines and \(\ell \) be the x-axis. In the zone of \(\ell \) in \(A(L) \), the number of left bounding edges \(\leq 5m \).

The lemma is proven by induction on \(m \).

- **The base case:** \(m = 1 \), only one line in \(L \), 5 is indeed an upper bound to the number of left bounding edges.

- **The general case.**
 Let \(\ell_1 \) be the line in \(L \) that has the rightmost intersection with \(\ell \).

 We apply the induction hypothesis to \(A(L \setminus \{\ell_1\}) \):
 in \(A(L \setminus \{\ell_1\}) \), the number of left bounding edges \(\leq 5(m - 1) \).

 Need to show:
 no more than 5 new left bounding edges when \(\ell_1 \) is added.
the general case

We first assume \(\ell_1 \) intersects \(\ell \) only at one point \(v \):

We see 5 new edges.

1. The edge on \(\ell_1 \), spanned by \((u, v)\).
2. The edge on \(\ell_1 \), spanned by \((v, w)\).
3. The edge on \(\ell_2 \), starting at \(u \).
4. The edge on \(\ell \), starting at \(v \).
5. The edge on \(\ell_3 \), starting at \(w \).
We first assume ℓ_1 intersects ℓ only at one point v:

The 5 new edges may not the only new edges. However, other new edges are above the vertex u or below w and therefore do not belong to the zone of ℓ.

\[\ell \]
We first assumed \(\ell_1 \) intersects \(\ell \) only at one point \(v \), but the degree of the vertex \(v \) may be much higher, for example: \(u \) and/or \(w \) may collide with \(v \).

Exercise 1: Examine the case \(u \) collides with \(v \). How many new edges appear in this case?

Exercise 2: Examine the case \(u \) and \(w \) collide with \(v \). How many new edges appear in this case?
recommended assignments

We finished chapter 8 in the textbook.

Consider the following activities, listed below.

1. Write the solutions to exercises 1 and 2.
2. Consult the CGAL documentation and example code on arrangements of lines.
3. Consider the exercises 10, 12, 13 in the textbook.