The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

4. Proof of the Zone Theorem

- induction on the number of lines

MCS 481 Lecture 25
Computational Geometry Jan Verschelde, 18 October 2023

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality

2. Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices
(4) Proof of the Zone Theorem
- induction on the number of lines

finding collinear points via duality

In examples/Arrangements_on_surface_2 of the software CGAL, the program dual_lines.cpp illustrates an application of arrangements of lines.

Given a set of points, does the set contain three collinear points?
The points p_{1}, p_{2}, p_{3} lie on the line ℓ \Leftrightarrow the point ℓ^{*} lies on the lines $p_{1}^{*}, p_{2}^{*}, p_{3}^{*}$.

The file points. dat contains 100 points, no collinear ones.
Exercise 1: Run the code on a point set with collinear points.

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

4. Proof of the Zone Theorem

- induction on the number of lines

five lines in the plane induce a subdivision

The arrangement of lines is stored in a doubly connected edge list, within a bounding box.

an incremental algorithm

Algorithm ConstructArrangement(L)
Input: a set L of n lines.
Output: $A(L)$, stored in doubly connected edge list, within a bounding box $B(L)$.
(1) compute $B(L)$ enclosing all vertices of $A(L)$
(2) construct a doubly connected edge list \mathcal{D} to store $B(L)$
(3) for i from 1 to n do
(-) find the edge e on $B(L)$ that contains leftmost intersection point of ℓ_{i} and A_{i-1}
(0) let f be the bounded face incident to e
(- while f is not outside $B(L)$ do
split f, update \mathcal{D}
set f to the next face intersected by ℓ_{i}

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices
(4) Proof of the Zone Theorem
- induction on the number of lines

the zone of a line - an example

The blue line intersects 5 of the 11 faces.

the zone of a line - definitions

Definition (the closure of a face in a subdivision)
Let f be a face in a subdivision.
The closure \bar{f} of the face f is f and all its vertices and edges.
Definition (the zone of a line in an arrangement)
Let $A(L)$ be a line arrangement and ℓ be a line.
The zone of the line ℓ in the arrangement $A(L)$ is

$$
\{f \text { face of } A(L) \mid \bar{f} \cap \ell \neq \emptyset\} \text {. }
$$

Definition (the zone complexity)
Let $A(L)$ be a line arrangment and ℓ be a line.
The zone complexity of ℓ in $A(L)$ is the sum of the number of vertices, the number of edges, and the number of faces in the zone of ℓ in $A(L)$.

the zone theorem

Theorem (the zone theorem)
Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement $A(L)$ is $O(m)$.

By the zone theorem, the cost of the incremental algorithm is quadratic.
Theorem (cost of CONSTRUCTARRANGEMENT)
A doubly connected edge list for the arrangement induced by a set of n lines in the plane can be constructed in $O\left(n^{2}\right)$ time.

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

4. Proof of the Zone Theorem

- induction on the number of lines

dual lines and dual points

Definition (dual lines and dual points)

Given a point p with coordinates (p_{x}, p_{y}), the dual p^{*} of the point p is the line $y=p_{x} x-p_{y}$. Given the line ℓ with slope m and intercept $b, y=m x+b$, the dual ℓ^{*} of the line ℓ is the point with coordinates $(m,-b)$.

$$
\begin{aligned}
p_{1}:(-2,-2) & \Leftrightarrow p_{1}^{*}: y=-2 x+2 \\
p_{2}:(2,0) & \Leftrightarrow p_{2}^{*}: y=2 x \\
q_{1}:(0,-3 / 2) & \Leftrightarrow q_{1}^{*}: y=+3 / 2 \\
q_{2}:(2,-1) & \Leftrightarrow q_{2}^{*}: y=2 x+1 \\
\ell: y=(1 / 2) x-1 & \Leftrightarrow \ell^{*}:(1 / 2,+1) \\
q_{1} \text { is below } \ell & \Leftrightarrow \ell^{*} \text { is below } q_{1}^{*}
\end{aligned}
$$

the dual of the discrepancy problem

Given a line ℓ, we want to count all points below ℓ.
$\ell: y=(1 / 2) x-1$
$\ell^{*}:(1 / 2,1), q_{1}^{*}: y=3 / 2$
$p_{2}^{*}: y=2 x, q_{2}^{*}: y=2 x+1$
$p_{1}^{*}: y=-2 x+2$

Given the point ℓ^{*}, count the lines above ℓ^{*}.

the level of a point in an arrangement

Definition (level of a point in an arrangement)

Given an arrangement $A(L)$ of lines and a point p, the level of the point p in $A(L)$ is the number of lines strictly above p.

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

4. Proof of the Zone Theorem

- induction on the number of lines

walking a line and computing levels

For any line ℓ do the following:
(1) compute the level at the leftmost vertex,
(2) while not at the rightmost vertex on ℓ do
(3) walk to the next vertex v on ℓ and compute the level of v.

computing the level of the leftmost vertex

In an arrangement of n lines, and a given line ℓ, computing the level of the leftmost vertex on ℓ runs in $O(n)$.
\rightarrow for the vertex v on ℓ with the smallest x-coordinate, check all other $n-1$ lines to see whether v lies below.

computing the level of the next vertex

In an arrangement of n lines, and a given line ℓ, computing the level of the next vertex on ℓ also runs in $O(n)$.
\rightarrow in the walk from one vertex to the next, we follow the edges in the doubly connected edge list and update the level as follows:
+1 if the edge we follow goes down,
-1 if the edge we follow goes up.

computing the discrete measure in quadratic time

The discrete measure of S in U is $\mu_{S}(h)=\#(S \cap U) / \# S$.

The dual of the sample set S of points is the set of lines S^{*}. We count the levels of the vertices in the arrangement $A\left(S^{*}\right)$.

Theorem (cost of half plane discrepancy)
The half plane discrepancy of a set S of n points in the unit square U can be computed in $O\left(n^{2}\right)$ time.

The Zone Theorem

(1) An Example of the CGAL

- finding collinear points via duality
(2) Arrangements of Lines
- an incremental algorithm
- the zone of a line and the zone theorem
(3) Levels and Discrepancy
- counting the number of lines
- computing the level at vertices

4. Proof of the Zone Theorem

- induction on the number of lines

proving the zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line.
The zone complexity of a line ℓ in the arrangement $A(L)$ is $O(m)$.
Outline of the proof:

- Choose the coordinate system so that ℓ is the x-axis.
- Each edge in $A(L)$ bounds two faces.

An edge is a left bounding edge for the face to its right. An edge is a right bounding edge for the face to its left.

- In the zone of ℓ, the number of left bounding edges $\leq 5 \mathrm{~m}$.

The theorem follows from the last statement.

the number of left bounding edges

Lemma (the number of left bounding edges)

Let L be a set of m lines and ℓ be the x-axis.
In the zone of ℓ in $A(L)$, the number of left bounding edges $\leq 5 \mathrm{~m}$.
The lemma is proven by induction on m.

- The base case: $m=1$, only one line in L, 5 is indeed an upper bound to the number of left bounding edges.
- The general case.

Let ℓ_{1} be the line in L that has the rightmost intersection with ℓ.
We apply the induction hypothesis to $A\left(L \backslash\left\{\ell_{1}\right\}\right)$: in $A\left(L \backslash\left\{\ell_{1}\right\}\right)$, the number of left bounding edges $\leq 5(m-1)$. Need to show:
no more than 5 new left bounding edges when ℓ_{1} is added.

the general case

We first assume ℓ_{1} intersects ℓ only at one point v :

We see 5 new edges.
(1) The edge on ℓ_{1}, spanned by (u, v).
(2) The edge on ℓ_{1}, spanned by (v, w).
(3) The edge on ℓ_{2}, starting at u.
(4) The edge on ℓ, starting at v.
(5) The edge on ℓ_{3}, starting at w.

the general case - continued

We first assume ℓ_{1} intersects ℓ only at one point v :

The 5 new edges may not the only new edges. However, other new edges are above the vertex u or below w and therefore do not belong to the zone of ℓ.

outline of the proof continued

We first assumed ℓ_{1} intersects ℓ only at one point v, but the degree of the vertex v may be much higher, for example: u and/or w may collide with v.

Exercise 2: Examine the case u collides with v. How many new edges appear in this case?

Exercise 3: Examine the case u and w collide with v. How many new edges appear in this case?

summary and exercises

We closed chapter 8 in the textbook.
The zone theorem proves the $O\left(n^{2}\right)$ cost of an incremental algorithm to construct the subdivision defined by a set of n lines.
Consider the following activities, listed below.
(1) Write the solutions to exercises 1,2 , and 3 .
(3) Consult the CGAL documentation and example code on arrangements of lines.
(Consider the exercises $10,12,13$ in the textbook.

