- An Example of the CGAL
 - finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices
- 4 Proof of the Zone Theorem
 - induction on the number of lines

MCS 481 Lecture 25 Computational Geometry Jan Verschelde, 18 October 2023

An Example of the CGAL

finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices

Proof of the Zone Theorem

finding collinear points via duality

In examples/Arrangements_on_surface_2 of the software CGAL, the program dual_lines.cpp illustrates an application of arrangements of lines.

Given a set of points, does the set contain three collinear points?

The points p_1 , p_2 , p_3 lie on the line ℓ \Leftrightarrow the point ℓ^* lies on the lines p_1^* , p_2^* , p_3^* .

The file points.dat contains 100 points, no collinear ones.

Exercise 1: Run the code on a point set with collinear points.

く 戸 と く ヨ と く ヨ と

An Example of the CGAL finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices

Proof of the Zone Theorem

five lines in the plane induce a subdivision

The arrangement of lines is stored in a doubly connected edge list, within a bounding box.

an incremental algorithm

Algorithm CONSTRUCTARRANGEMENT(L)

Input: a set *L* of *n* lines. Output: A(L), stored in doubly connected edge list, within a bounding box B(L).

- compute B(L) enclosing all vertices of A(L)
- ② construct a doubly connected edge list \mathcal{D} to store B(L)
- Ifor *i* from 1 to *n* do
- find the edge *e* on B(L)that contains leftmost intersection point of ℓ_i and A_{i-1}
- Iet f be the bounded face incident to e
- while f is not outside B(L) do
 - split f, update D
 - set f to the next face intersected by ℓ_i

7

8

伺 ト イ ヨ ト イ ヨ ト 二 ヨ

An Example of the CGAL finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices

4 Proof of the Zone Theorem

the zone of a line – an example

The blue line intersects 5 of the 11 faces.

- **A**

the zone of a line - definitions

Definition (the closure of a face in a subdivision) Let *f* be a face in a subdivision. The *closure* \overline{f} of the face *f* is *f* and all its vertices and edges.

Definition (the zone of a line in an arrangement) Let A(L) be a line arrangement and ℓ be a line. The *zone of the line* ℓ *in the arrangement* A(L) is

{ *f* face of $A(L) | \overline{f} \cap \ell \neq \emptyset$ }.

Definition (the zone complexity)

Let A(L) be a line arrangement and ℓ be a line. The *zone complexity of* ℓ *in* A(L) is the sum of the number of vertices, the number of edges, and the number of faces in the zone of ℓ in A(L).

・ロト ・ 四ト ・ ヨト ・ ヨト

the zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement A(L) is O(m).

By the zone theorem, the cost of the incremental algorithm is quadratic.

Theorem (cost of CONSTRUCTARRANGEMENT)

A doubly connected edge list for the arrangement induced by a set of n lines in the plane can be constructed in $O(n^2)$ time.

An Example of the CGA

finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

• counting the number of lines

computing the level at vertices

Proof of the Zone Theorem

dual lines and dual points

Definition (dual lines and dual points)

Given a point *p* with coordinates (p_x, p_y) , the dual p^* of the point *p* is the line $y = p_x x - p_y$. Given the line ℓ with slope *m* and intercept *b*, y = mx + b, the dual ℓ^* of the line ℓ is the point with coordinates (m, -b).

$$p_{1}: (-2, -2) \Leftrightarrow p_{1}^{*}: y = -2x + 2$$

$$p_{2}: (2, 0) \Leftrightarrow p_{2}^{*}: y = 2x$$

$$q_{1}: (0, -3/2) \Leftrightarrow q_{1}^{*}: y = +3/2$$

$$q_{2}: (2, -1) \Leftrightarrow q_{2}^{*}: y = 2x + 1$$

$$\ell: y = (1/2)x - 1 \Leftrightarrow \ell^{*}: (1/2, +1)$$

$$q_{1} \text{ is below } \ell \Leftrightarrow \ell^{*} \text{ is below } q_{1}^{*}$$

A B A A B A

the dual of the discrepancy problem

Given a line ℓ , we want to count all points below ℓ .

Given the point ℓ^* , count the lines above ℓ^* .

A (10) A (10)

the level of a point in an arrangement

Definition (level of a point in an arrangement)

Given an arrangement A(L) of lines and a point p, the *level of the point p in A*(*L*) is the number of lines strictly above p.

An Example of the CGA

finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices

Proof of the Zone Theorem

walking a line and computing levels

For any line ℓ do the following:

- compute the level at the leftmost vertex,
- 2 while not at the rightmost vertex on ℓ do
 - walk to the next vertex v on ℓ and compute the level of v.

3

computing the level of the leftmost vertex

In an arrangement of *n* lines, and a given line ℓ , computing the level of the leftmost vertex on ℓ runs in O(n).

 \rightarrow for the vertex *v* on ℓ with the smallest *x*-coordinate, check all other *n* – 1 lines to see whether *v* lies below.

computing the level of the next vertex

In an arrangement of *n* lines, and a given line ℓ , computing the level of the next vertex on ℓ also runs in O(n).

 \rightarrow in the walk from one vertex to the next, we follow the edges in the doubly connected edge list and update the level as follows:

- +1 if the edge we follow goes down,
- -1 if the edge we follow goes up.

computing the discrete measure in quadratic time

The discrete measure of *S* in *U* is $\mu_S(h) = \#(S \cap U)/\#S$.

The dual of the sample set *S* of points is the set of lines S^* . We count the levels of the vertices in the arrangement $A(S^*)$.

Theorem (cost of half plane discrepancy)

The half plane discrepancy of a set *S* of *n* points in the unit square *U* can be computed in $O(n^2)$ time.

An Example of the CGA

finding collinear points via duality

Arrangements of Lines

- an incremental algorithm
- the zone of a line and the zone theorem

Levels and Discrepancy

- counting the number of lines
- computing the level at vertices

Proof of the Zone Theorem

proving the zone theorem

Theorem (the zone theorem)

Let L be a set of m lines and ℓ be some line. The zone complexity of a line ℓ in the arrangement A(L) is O(m).

Outline of the proof:

- Choose the coordinate system so that ℓ is the *x*-axis.
- Each edge in A(L) bounds two faces.
 An edge is a *left bounding edge* for the face to its *right*.
 An edge is a *right bounding edge* for the face to its *left*.
- In the zone of ℓ , the number of left bounding edges $\leq 5m$.

The theorem follows from the last statement.

(B)

the number of left bounding edges

Lemma (the number of left bounding edges)

Let L be a set of m lines and ℓ be the x-axis. In the zone of ℓ in A(L), the number of left bounding edges $\leq 5m$.

The lemma is proven by induction on *m*.

- The base case: m = 1, only one line in L,
 5 is indeed an upper bound to the number of left bounding edges.
- The general case.

Let ℓ_1 be the line in L that has the rightmost intersection with ℓ .

We apply the induction hypothesis to $A(L \setminus {\ell_1})$: in $A(L \setminus {\ell_1})$, the number of left bounding edges $\leq 5(m - 1)$.

Need to show:

no more than 5 new left bounding edges when ℓ_1 is added.

the general case

We first assume ℓ_1 intersects ℓ only at one point *v*:

We see 5 new edges.

- The edge on ℓ_1 , spanned by (u, v).
- 2 The edge on ℓ_1 , spanned by (v, w).
- 3 The edge on ℓ_2 , starting at u.
- The edge on ℓ , starting at v.
- The edge on ℓ_3 , starting at w.

the general case - continued

We first assume ℓ_1 intersects ℓ only at one point *v*:

The 5 new edges may not the only new edges. However, other new edges are above the vertex *u* or below *w* and therefore do not belong to the zone of ℓ .

outline of the proof continued

We first assumed ℓ_1 intersects ℓ only at one point v, but the degree of the vertex v may be much higher, for example: u and/or w may collide with v.

Exercise 2: Examine the case *u* collides with *v*. How many new edges appear in this case?

Exercise 3: Examine the case u and w collide with v. How many new edges appear in this case?

(B)

summary and exercises

We closed chapter 8 in the textbook.

The zone theorem proves the $O(n^2)$ cost of an incremental algorithm to construct the subdivision defined by a set of *n* lines.

Consider the following activities, listed below.

- Write the solutions to exercises 1, 2, and 3.
- Consult the CGAL documentation and example code on arrangements of lines.
- Onsider the exercises 10, 12, 13 in the textbook.

4 3 5 4 3 5 5