We have to choose between two ways to produces watches. Watches produced by process A give after one month an average time of 12:01 with a standard deviation of 1 minute, while watches produced by process B show 12:00 on average, but with a standard deviation of 2 minutes. Which process is best?
QLF: L(X,theta) = k*(X-theta)^2
as the loss is $10 when the deviation >= 3 minutes,
we can determine k: 10 = k*3^2 => k = 10/9
10 2
L(X,theta) = ---- ( X - theta )
9
E[L(X,theta)] = k*sigma^2 + k*(mu-theta)^2,
where mu and sigma are mean and standard deviation
Process A: mu = 1201, sigma = 1
10 2 10 2 20
E[L(X,theta)] = ---- 1 + ---- 1 = ----
9 9 9
Process B: mu = 1200, sigma = 2
10 2 10 2 40
E[L(X,theta)] = ---- 2 + ---- 0 = ----
9 9 9
The process A is best because it gives
a lower expected loss than process B.
+--------+
| /20 |
+--------+
Athlete a runs a marathon on average in time mu(a) and with standard deviation sigma(a), a = 1,2,..,5. Let t = sample(mu(a),sigma(a)) samples running time for athlete a. We simulate the marathon N times and record each time the minimum time, which is the time of the winner.
run_min := 24 hours x 60 minutes x 60 seconds;
for i from 1 to N do
for a from 1 to 5 do
t(a) := sample(mu(a),sigma(a));
end for;
m = minimum(t(1),t(2),t(3),t(4),t(5));
if m < run_min
then run_min := m;
end if;
end for;
report run_min.
+--------+
| /20 |
+--------+
B(0) = 1000
( 0.2 )
B(n) = B(n-1)*( 1 + ----- ) - 50
( 12 )
( 61 )
B(n) = B(n-1)*(----) - 50
( 60 )
( 61 )
B(1) = 1000*(----) - 50
( 60 )
( 61 )
B(2) = B(1)*(----) - 50
( 60 )
( ( 61 ) ) ( 61 )
= ( 1000*(----) - 50 )*(----) - 50
( ( 60 ) ) ( 60 )
( 61 )2 ( 61 )
= 1000*(----) - 50*(----) - 50
( 60 ) ( 60 )
( 61 )3 ( 61 )2 ( 61 )
B(3) = 1000*(----) - 50*(----) - 50*(----) - 50
( 60 ) ( 60 ) ( 60 )
n-1
( 61 )n --- ( 61 )k
B(n) = 1000*(----) - 50 > (----)
( 60 ) --- ( 60 )
k=0
( 61 )n
(----) - 1
( 61 )n ( 60 )
= 1000*(----) - 50 * --------------
( 60 ) 61
---- - 1
60
( 61 )n
B(n) = 3000 - 2000 * (----)
( 60 )
Evaluate B(n) using a calculator:
n = 24 : B(24) = 26.17
n = 25 : B(25) = -23.39
So the last payment at n=25 is 50-23.39.
+--------+
| /20 |
+--------+
x * y -> xx . yydown for frames of four elements.
x = (x(0) x(1) x(2) x(3)) (x(0) x(1) x(2) x(3)) ...
y = (y(0) y(1) y(2) y(3)) (y(0) y(1) y(2) y(3)) ...
z = x*y = (z(0) z(1) z(2) z(3)) (z(0) z(1) z(2) z(3)) ...
zz = xx . yy, zz(k) = xx(k).yy(k), for k = 1,2,3,4.
w^(-9)*( z(3) = y(3)x(0) + y(2)x(1) + y(1)x(2) + y(0)x(3) )
w^(-0)*( z(0) = y(3)x(1) + y(2)x(2) + y(1)x(3) + y(0)x(0) )
w^(-3)*( z(1) = y(3)x(2) + y(2)x(3) + y(1)x(0) + y(0)x(1) )
+ w^(-6)*( z(2) = y(3)x(3) + y(2)x(0) + y(1)x(1) + y(0)x(2) )
----------------------------------------------------------------
z(0)*w^(-0) + z(1)*w^(-3) + z(2)*w^(-6) + z(3)*w^(-9) = zz(3)
Collecting the terms at the right of the sum:
x(0)*( y(0)w^(-0) + y(1)w^(-3) + y(2)w^(-6) + y(3)w^(-9) = yy(3) )
+ x(1)*( y(0)w^(-3) + y(1)w^(-6) + y(2)w^(-9) + y(3)w^(-0) = yy(3)w^(-3) )
+ x(2)*( y(0)w^(-6) + y(1)w^(-9) + y(2)w^(-0) + y(3)w^(-3) = yy(3)w^(-6) )
+ x(3)*( y(0)w^(-9) + y(1)w^(-0) + y(2)w^(-3) + y(3)w^(-6) = yy(3)w^(-9) )
which equals
zz(3) = x(0)yy(3)w^(-0) + x(1)yy(3)w^(-3)
+ x(2)yy(3)w^(-6) + x(3)yy(3)w^(-9) = xx(3).yy(3)
The same holds for zz(0), zz(1), and zz(2).
+--------+
| /20 |
+--------+
We are obliged to produce at least 20 units of A and to offer at least 10 units of B. Our storage capacity is limited to 250 units. We have only 600 man hours available, one unit of A requires two man hours, while one unit of B takes three man hours.
max 5 x1 + 7 x2
subject to -x1 <= -20
- x2 <= -10
x1 + x2 <= 250
2x1 + 3x2 <= 600
value at ( 20,186): 5 20 + 7 186 = 1402
at (150,100): 5 150 + 7 100 = 1450
at (240, 10): 5 240 + 7 10 = 1270
The optimum occurs when 150 units of A,
and 100 units of B are produced.
+--------+
| /20 |
+--------+
year || 1950 | 1960 | 1970 | 1980 | 1990
------++------+------+------+------+------
size || 151 | 179 | 203 | 226 | 249
We use P(t) = exp(a t + b) to model the size of
the population (in millions) at year t.
ln(P(t)) = a t + b
[ 1950 1 ] [ ln(151) ]
[ 1960 1 ] [ a ] [ ln(179) ]
[ 1970 1 ] [ ] = [ ln(203) ]
[ 1980 1 ] [ b ] [ ln(226) ]
[ 1990 1 ] [ ln(249) ]
X [a b]^T = P
We can either reduce the system to a 2-by-2 linear
system, as
X^T X [a b]^T = X^T P
or apply QR to X, X = QR, Q^T Q = I, R upper triangular
and solve a triangular system in a and b:
R [a b]^T = Q^T P.
+--------+
| /20 |
+--------+
The present value of the savings at r = 0.05 are
100,000*(exp(-r) + exp(-2r) + .. + exp(-12r))
1 - exp(-13r)
= 100,000 ---------------
1 - exp(-r)
= 980,005.30 < 1,000,000
So the investment is not worth doing.
1,000,000
savings = -----------------
( 1 - exp(-13r) )
(---------------)
( 1 - exp(-r) )
= 102,040.26
At this savings, the investment breaks even,
no profit and no loss.
+--------+
| /20 |
+--------+
D'(p) D(p) = 8 + 20*p^(-2)
e = - p ------
D(p) D'(p) = -40*p^(-3)
-40/p^3
= - p ------------
8 + 20/p^2
40
= -----------------
2 ( 20 )
p ( 8 + ---- )
( p^2 )
40
= ------------
8 p^2 + 20
The price where the revenue does not change occurs at e=1.
Thus the price the producer will charge for the product
satisfies the equation
40
1 = ------------ <=> 8 p^2 + 20 = 40
8 p^2 + 20
<=> 8 p^2 = 20
<=> 4 p^2 = 10
<=> p^2 = 10/4
=> p = 10/sqrt(2) is the price the producer will charge
+--------+
| /20 |
+--------+