
MCS 507 Project One Mathematical, Statistical and Scientific Software due Mon 24 Sep 2012

MCS 507 Project One : the Fast Fourier Transform

The Fourier transform takes a signal from the time into the frequency domain. One application of the
Fourier transform is that we can recover the amplitudes and frequencies of a sampled signal.

We will use the package numpy.fft. The underlying code for these functions is an f2c-translated and
modified version of the FFTPACK routines. FFTPACK [1] is a package of Fortran subprograms for the fast
Fourier transform of periodic and other symmetric sequences. It includes complex, real, sine, cosine, and
quarter-wave transforms.

For example, consider the signal 2 · cos(4 · 2πt) + 5 · sin(10 · 2πt) composed of a cosine with amplitude 2,
frequency 4, and a sine with amplitude 5 and frequency 10. Using rfft of the package numpy.fft, the script
below computes the discrete Fourier transform on the real array of samples via the efficient Fast Fourier
Transform algorithm. We recover the amplitudes and corresponding frequencies of the components of our
signal. With matplotlib we plot the spectrum.

import numpy as np

f = lambda t: 2*np.cos(4*2*np.pi*t) + 5*np.sin(10*2*np.pi*t)

n = 256

r = np.arange(0.0,1.0,1.0/n)

s = f(r)

F = np.fft.rfft(s)

m = n/2

p = lambda z: (abs(np.real(z))/m,abs(np.imag(z))/m)

t = p(F)

tol = 1.0e-8

for i in range(0,len(t[0])):

if(t[0][i] > tol):

print str(t[0][i]) + ’*cos(’ + str(i) + ’*2*pi*t)’

if(t[1][i] > tol):

print str(t[1][i]) + ’*sin(’ + str(i) + ’*2*pi*t)’

import matplotlib.pyplot as plt

plt.plot(abs(F)/m)

plt.show()

The script prints

2.0*cos(4*2*pi*t)

5.0*sin(10*2*pi*t)

and a window pops up showing the spectrum.

Assignment One: measuring the CPU time

The cost of the Fast Fourier Transform algorithm on a data set of dimension n is proportional to n log
2
(n).

The purpose of this assignment is to experimentally determine whether the running time of the implementa-
tion of the FFT algorithm in the package numpy.fft is indeed O(n log

2
(n)).

To measure the elapsed CPU time in Python programs, we can use the time module as follows:

import time

start_time = time.clock()

insert code to time here

stop_time = time.clock()

cpu_time = stop_time - start_time

print ’cpu time :’, cpu_time, ’seconds’

University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science page 1

MCS 507 Project One Mathematical, Statistical and Scientific Software due Mon 24 Sep 2012

Write a Python script to run the FFT algorithm on random data of increasing size n (doubling the value
for n each time), taking into account the size of the random access memory on your computer. Eventually
you may have to execute the same call multiple times in a loop to get times that are sufficiently large to
notice. Report the observed execution times in a table. Do you see the n log

2
(n) formula in the observed

execution times?

Assignment Two: denoising of signals

One application of the FFT is to remove low amplitude noise from signals. In this assignment, you will
write a Python script to simulate the denoising with the FFT. The steps in the script are as follows:

1. take samples of an exact signal;
2. to the sampled signal, add small numbers;
3. apply the Fourier transform and remove those components that have low amplitudes;
4. apply the inverse Fourier transform after removing low amplitude components;
5. compare the result with the original exact signal.

You can try your script on any random data. For a more realistic experiment, you can use the sound

module of scitools and compare the original, the noisy, and the reconstructed signal by listening.

Assignment Three: fast convolution

The Fourier transform turns a convolution into a componentwise product. Interpreting the arrays as the
coefficient vectors of two polynomials (the ith entry is the coefficient of xi), the convolution of the coefficient
vectors gives the coefficient vector of the product of the two polynomials. Using the fast FFT, the O(n2)
operation becomes O(n log

2
(n)). The script below illustrates the convolution of two arrays padded with

enough zeroes:

import numpy as np

from numpy.fft import rfft, irfft

a = np.array([1,2,3,4,0,0,0,0])

b = np.array([3,4,9,8,0,0,0,0])

print np.convolve(a,b)

A = rfft(a); B = rfft(b)

C = A*B

print irfft(C)

what is printed is

[3 10 26 50 59 60 32 0 0 0 0 0 0 0 0]

[3. 10. 26. 50. 59. 60. 32. 0.]

Write a python script to demonstrate the benefit of performing a convolution using the FFT, using timings
on sufficiently large arrays. Note that signal package of scipy contains the function fftconvolve.

The deadline is Monday 24 September at 10AM

On the deadline, bring to class the answers to the assignments on paper. In addition, also send me by email
the scripts you wrote. You may work individually or in pairs on this project.

If you have questions or difficulties with the assignments, feel free to come to my office for help.

References

[1] P.N. Swarztrauber. Vectorizing the FFTs. In Parallel Computations, edited by G. Rodrigue, pages 51–83,
Academic Press, 1982.

University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science page 2

