Approximate Factorization

1. The Ruppert Matrix
 - a criterion for irreducibility

2. an Open Problem
 - polynomial time in symbolic-numeric computing

3. The Kernel of the Ruppert Matrix
 - relation between rank and greatest common divisor

4. SVD and Approximate GCD
 - symbolic-numeric algorithm for approximate factorization

MCS 563 Lecture 30
Analytic Symbolic Computation
Jan Verschelde, 31 March 2014
The Ruppert Matrix
- a criterion for irreducibility

an Open Problem
- polynomial time in symbolic-numeric computing

The Kernel of the Ruppert Matrix
- relation between rank and greatest common divisor

SVD and Approximate GCD
- symbolic-numeric algorithm for approximate factorization
taking derivatives

Suppose \(f = f(x, y) \) is reducible: \(f = f_1 f_2 \).

Applying the product rule for derivatives gives

\[
\frac{\partial f}{\partial x} = \frac{\partial f_1}{\partial x} f_2 + f_1 \frac{\partial f_2}{\partial x} = g_1 + g_2
\]

and

\[
\frac{\partial f}{\partial y} = \frac{\partial f_1}{\partial y} f_2 + f_1 \frac{\partial f_2}{\partial y} = h_1 + h_2.
\]

defining \(g_1 = \frac{\partial f_1}{\partial x} f_2, \ g_2 = f_1 \frac{\partial f_2}{\partial x}, \ h_1 = \frac{\partial f_2}{\partial y} f_2, \) and \(h_2 = f_1 \frac{\partial f_2}{\partial y} \).

Then we write the derivatives of \(\log(f_1) \) as

\[
\frac{\partial}{\partial x} (\log(f_1)) = \frac{1}{f_1} \frac{\partial f_1}{\partial x} = \frac{g_1}{f} \text{ and } \frac{\partial}{\partial y} (\log(f_1)) = \frac{1}{f_1} \frac{\partial f_1}{\partial y} = \frac{h_1}{f}.
\]
a partial differential equation

For any \(p \) with continuous derivatives, the identity

\[
\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} p \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} p \right)
\]

holds and we apply it to \(p = \log(f_1) \) and \(\log(f_2) \) to find

\[
\frac{\partial}{\partial x} \left(\frac{h_1}{f} \right) = \frac{\partial}{\partial y} \left(\frac{g_1}{f} \right) \quad \text{and} \quad \frac{\partial}{\partial x} \left(\frac{h_2}{f} \right) = \frac{\partial}{\partial y} \left(\frac{g_2}{f} \right).
\]

The partial differential equation

\[
\frac{\partial}{\partial y} \left(\frac{g}{f} \right) = \frac{\partial}{\partial x} \left(\frac{h}{f} \right)
\]

has nonzero solutions \(\Leftrightarrow f \) is reducible.
a criterion for irreducibility

Denote $\deg_x(f)$ (respectively $\deg_y(f)$) as the degree of f when viewed as a polynomial only in x (respectively y).

Theorem (Ruppert’s criterion)

A polynomial $f(x, y) \in \mathbb{C}[x, y]$ is irreducible if and only if

$$\frac{\partial}{\partial y} \left(\frac{g}{f} \right) = \frac{\partial}{\partial x} \left(\frac{h}{f} \right)$$

has no nonzero solutions for all polynomial $g, h \in \mathbb{C}[x, y]$, with

$\deg_x(g) \leq \deg_x(f) - 1$, $\deg_y(g) \leq \deg_y(f)$,

and $\deg_x(h) \leq \deg_x(f)$, $\deg_y(h) \leq \deg_y(f) - 2$.

If the condition $\deg_y(h) \leq \deg_y(f) - 2$ on h is changed into $\deg_y(h) \leq \deg_y(f) - 1$, then $g = f_x$ and $h = f_y$ is a solution to the PDE regardless whether f is irreducible or not.

Degree bounds on g_1, g_2, h_1, h_2 give the Ruppert matrix.
Consider for example $f(x, y) = x^2 + y^2 - 1$. Then
g(x, y) = a_{00} + a_{10}x + a_{01}y + a_{11}xy + a_{02}y^2 + a_{12}xy^2
and $h(x, y) = b_{00} + b_{10}x + b_{20}x^2$ are
the general forms of the polynomials to satisfy the PDE.

The sequence of commands in Maple generates the Ruppert matrix for f:

```maple
> f := x^2 + y^2 - 1;
> g := sum(sum(a[i,j]*x^i*y^j, i=0..degree(f,x)-1), j=0..degree(f,y));
> h := sum(sum(b[i,j]*x^i*y^j, i=0..degree(f,x)), j=0..degree(f,y)-2);
```
Maple session continued

We setup the Ruppert matrix from the PDE:

```maple
> eq := diff(g/f,y) - diff(h/f,x);
> nq := normal(eq);
> p := numer(nq);
> s := coeffs(p, [x,y]);
> sys := {seq(s[i]=0,i=1..nops([s]))};
> var := indets(sys);
> R := LinearAlgebra[GenerateMatrix](sys,var)[1];
> LinearAlgebra[Rank](R);
```

The rank of the matrix R equals 9, which equals the number of columns, so f is indeed irreducible.
Approximate Factorization

1. The Ruppert Matrix
 - a criterion for irreducibility

2. an Open Problem
 - polynomial time in symbolic-numeric computing

3. The Kernel of the Ruppert Matrix
 - relation between rank and greatest common divisor

4. SVD and Approximate GCD
 - symbolic-numeric algorithm for approximate factorization
an open problem

Polynomial factorization is important in computer algebra.

One open problem in symbolic-numeric computing is

“Given is a polynomial \(f(x, y) \in \mathbb{Q}[x, y] \) and \(\epsilon \in \mathbb{Q} \). Decide in polynomial time

- in the degree
- and coefficient size

if there is a factorizable \(\bar{f}(x, y) \in \mathbb{C}[x, y] \) with \(||f - \bar{f}|| \leq \epsilon \),

for a reasonable coefficient vector norm \(||.|| \).”

In Maple, we apply `implicitplot3d` on p directly and execute `factor(p, sqrt(2))` before plotting the factors.

$$p = (9x^2 + 4y^2 + 18\sqrt{2}z^2 - 36)(9x^2 + 4y^2 - 18\sqrt{2}z^2 - 36).$$
Approximate Factorization

1. The Ruppert Matrix
 - a criterion for irreducibility

2. an Open Problem
 - polynomial time in symbolic-numeric computing

3. The Kernel of the Ruppert Matrix
 - relation between rank and greatest common divisor

4. SVD and Approximate GCD
 - symbolic-numeric algorithm for approximate factorization
relaxation of the PDE

We assume the polynomial \(f \) we have to factor is square free, i.e.:
\[\text{GCD}(f, f_x) = 1. \]

In the PDE, the condition on \(h \) is relaxed to \(\deg_y(h) \leq \deg_y(f) - 1 \) and the PDE is rewritten into
\[
f \cdot \left(\frac{\partial g}{\partial y} - \frac{\partial h}{\partial x} \right) + h \cdot \frac{\partial f}{\partial x} - g \cdot \frac{\partial f}{\partial y} = 0.
\]

The relaxation of the condition on \(h \) implies that the system of linear equations will have at least one solution; one in the case \(f \) is irreducible.
Moreover, the dimension of the solution space equals the number of irreducible factors of \(f \).

Abusing notation, \(R(f) \) will still be called the Ruppert matrix, for the matrix resulting of the relaxation on the degree of \(h \).
using the GCD

Given a basis of the null space of the Ruppert matrix, how do we recover the irreducible factors?

Proposition 1

Let \(f = f(x, y) \), \(f = f_1 f_2 \cdots f_s \), and \(g_i = \frac{\partial f_i}{\partial x} f_i \), \(i = 1, 2, \ldots, s \).

\[
v = \sum_{i=1}^{s} \gamma_i g_i, \quad \gamma_i \neq \gamma_j, \ i \neq j
\]

\[\Rightarrow \quad f_i = \text{GCD} \left(f, v - \gamma_i \frac{\partial f}{\partial x} \right), \quad i = 1, 2, \ldots, s.\]
proof of Proposition 1

Proof. To avoid dot dot dots, we assume $s = 3$. The g_i’s are defined as $g_1 + g_2 + g_3 = \frac{\partial f}{\partial x}$. Then:

$$v - \gamma_1 \frac{\partial f}{\partial x} = \gamma_1 g_1 + \gamma_2 g_2 + \gamma g_3 - \gamma_1 (g_1 + g_2 + g_3)$$

$$= (\gamma_2 - \gamma_1) g_2 + (\gamma_3 - \gamma_1) g_3$$

$$= (\gamma_2 - \gamma_1) \frac{\partial f_2}{\partial x} f_1 f_3 + (\gamma_3 - \gamma_1) \frac{\partial f_3}{\partial x} f_1 f_2.$$

Because $\gamma_2 \neq \gamma_1$ and $\gamma_3 \neq \gamma_1$ we find

$$\text{GCD} \left(f, v - \gamma_1 \frac{\partial f}{\partial x} \right) = \text{GCD} \left(f_1 f_2 f_3, \right.$$

$$\left. (\gamma_2 - \gamma_1) \frac{\partial f_2}{\partial x} f_1 f_3 + (\gamma_3 - \gamma_1) \frac{\partial f_3}{\partial x} f_1 f_2 \right)$$

$$= f_1.$$

The derivations are similar for f_2 and f_3.
form of the basis

The form of the basis elements of the kernel of the Ruppert matrix is described next:

Proposition 2

Consider \(f = f(x, y) \) and \(f = f_1 f_2 \cdots f_s \). Denote by \(R(f) \) the Ruppert matrix of the relaxed system linear in the coefficient vectors of the polynomials \(g \) and \(h \) with \(\deg(g) \leq (\deg_x(f) - 1, \deg_y(f)) \) and \(\deg(h) \leq (\deg_x(f), \deg_y(f) - 1) \). Let \(u : R(f)u = 0 \), then \(u = (v, w) \), where \(v \) and \(w \) are coefficient vectors of the respective polynomials \(g \) and \(h \). Identifying the coefficient vector \(v \) with the polynomial \(v(x, y) \) we have:

\[
v(x, y) = \sum_{i=1}^{s} \gamma_i g_i(x, y), \quad g_i = \frac{\partial f_i}{\partial x} \frac{f}{f_i}, \quad i = 1, 2, \ldots, s,
\]

for some constants \(\gamma_i \in \mathbb{C} \).
proof of Proposition 2

Proof. Assuming f is monic, we write f as a function of y, expressing the values for the x-coordinates of f as $x_i(y)$, $i = 1, 2, \ldots, d$, where $d = \deg_x(f)$:

$$f(x(y), y) = \prod_{i=1}^{d} (x - x_i(y)).$$

Since $\deg_x(v) < \deg_x(f)$, we have a partial fraction decomposition

$$\frac{v}{f} = \sum_{i=1}^{d} \frac{a_i(y)}{x - x_i(y)}, \quad a_i(y) = \frac{v(x_i(y), y)}{\prod_{j\neq i} (x - x_i(y))} = \frac{v(x_i(y), y)}{\frac{\partial f}{\partial x}(x_i(y), y)}.$$

We obtain the expression for $a_i(y)$ by equating numerators in the partial fraction decomposition identity for v/f.
partial fraction decompositions

For the polynomial $w(x, y)$ with coefficient vector \mathbf{w}, we also set up a partial fraction decomposition:

$$\frac{w}{f} = \sum_{i=1}^{d} \frac{b_i(y)}{x - x_i(y)} + b_0, \quad b_0 \in \mathbb{C}.$$

Because $\mathbf{u} = (\mathbf{v}, \mathbf{w}) \in \text{kernel}(R(f))$: \[
\frac{\partial}{\partial y} \left(\frac{\mathbf{v}}{f} \right) = \frac{\partial}{\partial x} \left(\frac{\mathbf{w}}{f} \right).
\]

Applying this property to the partial fraction decompositions:

\[
\frac{\partial}{\partial y} \left(\frac{w}{f} \right) = \sum_{i=1}^{d} \frac{-b_i^2}{(x - x_i(y))^2},
\]

\[
\frac{\partial}{\partial x} \left(\frac{v}{f} \right) = \sum_{i=1}^{d} \frac{1}{x - x_i(y)} \frac{\partial a_i}{\partial y} + \sum_{i=1}^{d} \frac{a_i}{(x - x_i(y))^2} \left(-\frac{\partial x_i}{\partial y} \right).
\]

So we find that $\frac{\partial}{\partial y} \left(\frac{\mathbf{v}}{f} \right) = \frac{\partial}{\partial x} \left(\frac{\mathbf{w}}{f} \right)$ implies $\frac{\partial a_i}{\partial y} = 0$.

The constant coefficients a_i belonging to the same factor f_k of f are all conjugated and are all equal, say to γ_k. So we may write

$$\frac{v}{f} = \sum_{k=1}^{s} \gamma_k \prod_{j} (x - x_j(y)) = \sum_{k=1}^{s} \gamma_k \frac{\partial f_k}{\partial x} \frac{1}{f_k}.$$

Therefore $v = \sum_{k=1}^{s} \gamma_k \frac{\partial f_k}{\partial x} f = \sum_{k=1}^{s} \gamma_k g_k$.

\square
an eigenvalue problem
To recover the \(g_i \)'s from the linear combinations:

Proposition 3

Let the matrix \(V = [v_1 v_2 \cdots v_s] \) collect the components of the basis vectors of the kernel of the Ruppert matrix \(R(f) \), i.e.: \(R(f)u = 0 \), \(u = (v, w) \), \(v \) contains the coefficient vectors of the polynomials \(g \) of Ruppert's criterion. For any \(v \) in the span of \(V \), there is a unique \(A \in \mathbb{C}^{s \times s} \):

\[
v v_i = \sum_{j=1}^{s} a_{ij} v_j \frac{\partial f}{\partial x} \mod f.
\]

Moreover: \(f = \prod_{\lambda \in \mathbb{C}} \) GCD \(\left(f, v - \lambda \frac{\partial f}{\partial x} \right) \),

\[
det(A - \lambda I) = 0
\]

i.e.: the \(i \)th irreducible factor of \(f \), \(f_i = \text{GCD} \left(f, v - \lambda_i \frac{\partial f}{\partial x} \right) \), where \(\lambda_i \) is the \(i \)th eigenvalue of \(A \).
Proof of Proposition 3

Because \(\mathbf{v} = \gamma_1 \mathbf{g}_1 + \gamma_2 \mathbf{g}_2 + \cdots + \gamma_s \mathbf{g}_s \), with \(g_i = \frac{f_i \partial f}{f_i \partial x} \),

the second statement of the proposition follows immediately if \(\gamma_i = \lambda_i \), as \(f_i \) divides \(\mathbf{v} - \lambda_i \frac{\partial f}{\partial x} \).

Since \(\mathbf{V} \) is a basis for the null space of the Ruppert matrix, there exists an \(s \)-by-\(s \) matrix \(\mathbf{B} \) such that

\[
\begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_s
\end{bmatrix}
= \mathbf{B}
\begin{bmatrix}
g_1 \\
g_2 \\
\vdots \\
g_s
\end{bmatrix}.
\]
computing mod f

We have that $g_i g_j = \left(\frac{\partial f_i}{\partial x} \prod_{k=1}^{s} f_k \right) \left(\frac{\partial f_j}{\partial x} \prod_{k=1}^{s} f_k \right)$ is a multiple of f for $i \neq j$, so $g_i g_j \equiv 0 \mod f$. Then we can write

$$v \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_s \end{bmatrix} \equiv B \begin{bmatrix} vg_1 \\ vg_2 \\ \vdots \\ vg_s \end{bmatrix} \equiv B \begin{bmatrix} \lambda_1 g_1^2 \\ \lambda_2 g_2^2 \\ \vdots \\ \lambda_s g_s^2 \end{bmatrix} \equiv B \begin{bmatrix} g_1^2 \\ g_2^2 \\ \vdots \\ g_s^2 \end{bmatrix} \mod f.$$

with $\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_s \end{bmatrix}$.
computing mod f continued

The multiplication of $\frac{\partial f}{\partial x}$ with V leads to

$$\begin{bmatrix} \frac{\partial f}{\partial x} g_1 \\ \frac{\partial f}{\partial x} g_2 \\ \vdots \\ \frac{\partial f}{\partial x} g_s \end{bmatrix} \equiv B \begin{bmatrix} g_1^2 \\ g_2^2 \\ \vdots \\ g_s^2 \end{bmatrix} \mod f,$$

as $\frac{\partial f}{\partial x} = \sum_{i=1}^{s} g_i$.

So we substitute

$$\begin{bmatrix} g_1^2 \\ g_2^2 \\ \vdots \\ g_s^2 \end{bmatrix} \equiv B^{-1} \frac{\partial f}{\partial x} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_s \end{bmatrix} \mod f$$

into the previous derivation for vv_i and find that $A = B \Lambda B^{-1}$ has eigenvalues λ_i, $i = 1, 2, \ldots, s$.

□
Approximate Factorization

1. The Ruppert Matrix
 - a criterion for irreducibility

2. an Open Problem
 - polynomial time in symbolic-numeric computing

3. The Kernel of the Ruppert Matrix
 - relation between rank and greatest common divisor

4. SVD and Approximate GCD
 - symbolic-numeric algorithm for approximate factorization
outline of the method

1. remove multiple factors with gcd

2. compute $s := \text{Rank}(\text{Null}(R(f)))$
 and a basis for $\text{Null}(R(f))$

 return if $s = 1$

3. compute matrix A and its eigenvalues λ_i

4. $f_i := \text{GCD} \left(f, v - \lambda_i \frac{\partial f}{\partial x} \right)$ for $i = 1, 2, \ldots, s$
 and for any $v \in \text{Null}(R(f))$

5. apply Gauss-Newton on $f - f_1 f_2 \cdots f_s$
Approximate Bivariate Factorization

Input: \(f \in \mathbb{C}[x, y] \), \(\gcd(f, \frac{\partial f}{\partial x}) = 1 \),
\(f \) has no approximate factors in \(\mathbb{C}[y] \);
\(S \subset \mathbb{C} \) and \(\# S \geq \deg_x(f) \times \deg_y(f) \).

Output: list of approximate factors of \(f \).

Stage 1: form the Ruppert matrix \(R(f) \);
find the last \(\deg(f) + 1 \) singular values \(\sigma_i \) of \(R(f) \),
\(\sigma_n \geq \sigma_{n-1} \geq \cdots \geq \sigma_2 \geq \sigma_1 \);
let \(s \) be the index so \(\sigma_{s+1}/\sigma_s \) is maximal;
if \(s = 1 \), then return \(f \);
form a basis \(\mathbf{v}_1, \mathbf{v}_1, \ldots, \mathbf{v}_s \) from the last \(s \) right singular vectors of \(R(f) \);
stages 2 and 3

Stage 2: \(\mathbf{v} := \sum_{s_i \in S} s_i \mathbf{v}_i \), with coefficients \(s_i \)
selected uniformly and independently;

for \(y = \alpha \), compute \(a_{ij} \) that minimize

\[
\left\| \text{remainder} \left(\mathbf{v} \mathbf{v}_i - \sum_{j=1}^{s} a_{ij} \mathbf{v}_j \frac{\partial f}{\partial x}, f \right) \right\|_2
\]

compute the eigenvalues \(\lambda_i \) of \(A = [a_{ij}] \);

Stage 3: \(f_i := \text{GCD} \left(f, \mathbf{v} - \lambda_i \frac{\partial f}{\partial x} \right) \), for \(i = 1, 2, \ldots, s \),
where \(\text{GCD} \) is an approximate GCD.
Summary + Exercises

Numerical rank via SVD, least squares, eigenvalues, and approximate GCD are key to a symbolic-numeric algorithm for approximate bivariate factorization.

Exercises:

1. Find a general formula for the size of the Ruppert matrix, in terms of the degrees $\deg_x(f)$ and $\deg_y(f)$.

2. Show that for $f = f(x, y)$, $f = f_1 f_2$, $g_1 = \frac{\partial f_1}{\partial x} f_2$, $g_2 = f_1 \frac{\partial f_2}{\partial x}$, $h_1 = \frac{\partial f_2}{\partial y} f_2$, and $h_2 = f_1 \frac{\partial f_2}{\partial y}$:

$$f \left(\frac{\partial g_1}{\partial y} - \frac{\partial h_1}{\partial x} \right) + h_1 \frac{\partial f}{\partial x} - g_1 \frac{\partial f}{\partial y} = 0.$$
more exercises

3 Download the Maple code at
http://www4.ncsu.edu/~kaltofen/software/appfac/issac04_mws/multifac_1.3.mpl and use it to factor

\[f(x, y) = 9 + 23y^2 + 13yx^2 + 6y + 7y^3 + 13y^2x^2 + x^4 + 6yx^4 + x^6. \]

4 Download ApaTools available via the homepage of Zhonggang Zeng and use it to factor \(f \) from the previous exercise.

5 Consider \(f \) from above, but now add some random errors to the coefficients, of magnitude \(10^{-k} \), for \(k \) ranging from 1 to 14. For \(k = 1 \), \(f \) is irreducible, while for \(k = 14 \), the numerical algorithm should return the same factorization as in the exact case. For which \(k \) is \(f \) no longer irreducible?