Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decomposing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decomposing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
Consider $K[x]$, with $K^* = K \setminus \{0\}$.

Typically we will assume that K is algebraically closed, so $K = \mathbb{C}$ is our default coefficient field. Then

$$ I = \langle c_a x^a - c_b x^b \mid a, b \in \mathbb{N}^n, c_a, c_b \in K^* \rangle $$

is a binomial ideal. A polynomial is a binomial if it has exactly two monomials with a nonzero coefficient.

A binomial ideal is generated by binomials.

Definition

A *pure difference ideal* is an ideal generated by differences of monic monomials, i.e.: all generators are of the form $x^a - x^b$.
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decompositing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
Proposition

Let I be a zero dimensional pure difference ideal. There is a primitive root of unity ξ, such that all complex solutions of I are contained in the cyclotomic field $\mathbb{Q}(\xi)$.

Proof. Let \mathcal{G} be a lexicographic Gröbner basis.

- Because all S-polynomials are pure difference binomials, \mathcal{G} consists of pure difference binomials.

- As the ideal is zero dimensional and because a lexicographic order eliminates, at least one of the binomials in \mathcal{G} is univariate.

- The solutions of the univariable equations exists in a cyclotomic field. By substituting the solution for that variable in the other equations, an univariate equation in another variable is obtained.

- After extending the partial solutions, all roots of unity encountered during univariate solving define $\mathbb{Q}(\xi)$ where the solutions live. \qed
toric varieties

Because the exponents determine the structure of the ideal, we then define a toric ideal as

\[I_A = \langle x^u - x^v \mid u, v \in \mathbb{N}^n \text{ and } A u = A v \rangle. \]

The solution set of a toric ideal is a toric variety.

As an alternative to the ideal description, a toric variety over \(\mathbb{C} \) is defined as

- a complex algebraic variety with an action of \((\mathbb{C}^\ast)^n \) and
- a dense open subset isomorphic to \((\mathbb{C}^\ast)^n \) carrying the regular action.

That is: a toric variety is an algebraic torus closure.

In polyhedral homotopies: at \(\infty \) and at 0 are equivalent.
Binomial primary decompositions

Binomial ideals have special properties, for instance:

Theorem (Theorem 2.6 in [Eisenbud-Sturmfels, 1996])

\(K \) is algebraically closed and \(I \) is a binomial ideal in \(K[x] \), then every associated prime of \(I \) is generated by binomials.

The condition that \(K \) is algebraically closed is essential:

over \(\mathbb{Q} \): \(\langle x^3 - 1 \rangle = \langle x - 1 \rangle \cap \langle x^2 + x + 1 \rangle \).

If we extend \(\mathbb{Q} \) with \(w = e^{(2\pi \sqrt{-1})/3} \), then over \(\mathbb{Q}(w) \):

\(\langle x^3 - 1 \rangle = \langle x - 1 \rangle \cap \langle x + (1 - \sqrt{-3})/2 \rangle \cap \langle x + (1 + \sqrt{-3})/2 \rangle \).
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decomposing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
Commuting Birth-and-Death Processes

An application of combinatorics and algebraic statistics:

- Models arising in ecology and queuing theory study population sizes and numbers of individual waiting in a queue.

- Markov chains are described by tridiagonal transition matrices P, $P(i, j)$ is the probability of going from step i to j.

- In a higher-dimensional model the state space is a product of intervals in higher-dimensional lattices, e.g.:
 - ecology: keep track of the type of individuals in a population;
 - queuing: several servers have each their own set of customers.

- The mathematical tools are
 - one dimension: orthogonal polynomials;
 - higher dimension: binomial primary decomposition.
an example in dimension two

Define a grid \(E = \{0, 1, \ldots, m\} \times \{0, 1, \ldots, n\} \)
where \((i, j)\) is connected to \((k, \ell)\) \iff \(|i - k| + |j - \ell| = 1\).

The transition probabilities are

- **go left:** \(L_{i,j} = \text{prob}\{Z_{k+1} = (i - 1, j) \mid Z_k = (i, j)\} \)
- **go right:** \(R_{i,j} = \text{prob}\{Z_{k+1} = (i + 1, j) \mid Z_k = (i, j)\} \)
- **go down:** \(D_{i,j} = \text{prob}\{Z_{k+1} = (i, j - 1) \mid Z_k = (i, j)\} \)
- **go up:** \(U_{i,j} = \text{prob}\{Z_{k+1} = (i, j + 1) \mid Z_k = (i, j)\} \)

Commuting relations:

\[
\begin{align*}
U_{i,j} R_{i,j+1} &= R_{i,j} U_{i+1,j} & \text{(up-right)} \\
D_{i,j+1} R_{i,j} &= R_{i,j+1} D_{i+1,j+1} & \text{(down-right)} \\
D_{i+1,j+1} L_{i+1,j} &= L_{i+1,j+1} D_{i,j+1} & \text{(down-left)} \\
U_{i+1,j} L_{i+1,j+1} &= L_{i+1,j} U_{i,j} & \text{(up-left)}
\end{align*}
\]
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decompositing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
a system of quadratic polynomials

\[E = \{0, 1, \ldots, n_1\} \times \{0, 1, \ldots, n_2\} \times \ldots \times \{0, 1, \ldots, n_m\} \]

For all pairs \((i, j)\): \(1 \leq i < j \leq m\), the commuting requirement

\[
P(u, u + e_i)P(u + e_i, u + e_i + e_j) - P(u, u + e_j)P(u + e_j, u + e_i + e_j),
\]
\[
P(u, u + e_i)P(u + e_i, u + e_i - e_j) - P(u, u - e_j)P(u + e_j, u + e_i - e_j),
\]
\[
P(u, u - e_i)P(u - e_i, u - e_i + e_j) - P(u, u + e_j)P(u + e_j, u - e_i + e_j),
\]
\[
P(u, u - e_i)P(u - e_i, u - e_i - e_j) - P(u, u - e_j)P(u + e_j, u - e_i - e_j)
\]

is a system of quadratic polynomials in the unknowns \(P(u, v)\).
the ideal of commuting birth-and-death processes

Denote by $I^{(n_1,n_2,\ldots,n_m)}$ the ideal generated by the quadratic polynomials in the commuting requirement.

In the two dimensional case, $I^{(m,n)}$ is generated by $4mn$ quadratic binomials, for $(i,j): 0 \leq i < m$ and $0 \leq j < n$:

\[
\begin{align*}
U_{i,j}R_{i,j+1} - R_{i,j}U_{i+1,j} &= 0, \\
R_{i,j+1}D_{i+1,j+1} - D_{i,j+1}R_{i,j} &= 0, \\
D_{i+1,j+1}L_{i+1,j} - L_{i+1,j+1}D_{i,j+1} &= 0, \\
L_{i+1,j}U_{i,j} - U_{i+1,j}L_{i+1,j+1} &= 0.
\end{align*}
\]
the smallest example

The possibilities that

\[
\begin{pmatrix}
0 & 0 & R_{0,0} & 0 \\
0 & 0 & 0 & R_{0,1} \\
L_{1,0} & 0 & 0 & 0 \\
0 & L_{1,1} & 0 & 0
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
0 & U_{0,0} & 0 & 0 \\
D_{0,1} & 0 & 0 & 0 \\
0 & 0 & 0 & U_{1,0} \\
0 & 0 & D_{1,1} & 0
\end{pmatrix}
\]

commute are revealed by the primary decomposition of

\[
I^{(1,1)} = \langle U_{0,0} R_{0,1} - R_{0,0} U_{1,0}, R_{0,1} D_{1,1} - D_{0,1} R_{0,0}, D_{1,1} L_{1,0} - L_{1,1} D_{0,1}, L_{1,0} U_{0,0} - U_{1,0} L_{1,1} \rangle.
\]
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decomposing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
Consider $\mathcal{E} \subseteq \{1, 2, \ldots, n\}$ and denote the algebraic torus corresponding to \mathcal{E} by

$$(\mathbb{K}^*)^\mathcal{E} = \{ \mathbf{x} \in \mathbb{K}^n | x_i \neq 0 \text{ for } i \in \mathcal{E} \text{ and } x_j = 0 \text{ for } j \notin \mathcal{E} \}.$$

The central definition is

Definition

A proper binomial ideal I in $\mathbb{K}[\mathbf{x}]$ is *cellular* if each variable x_i is either a nonzerodivisor or nilpotent modulo I.

Primary ideals I are cellular as every element in $\mathbb{K}[\mathbf{x}]/I$ is either nilpotent or a nonzerodivisor.
characterizing cellular ideals

We have a characterization for an ideal I being cellular in the following lemma.

Lemma

A proper binomial ideal I in $\mathbb{K}[x]$ is cellular if and only if there exists a set $\mathcal{E} \subseteq \{1, 2, \ldots, n\}$ of indices of variables in x such that

1. $I = \left(I : \left(\prod_{i \in \mathcal{E}} x_i \right)^\infty \right)$; and

2. For every $i \notin \mathcal{E}$, there exists an integer $d_i \geq 0$ such that $\langle x_i^{d_i} \mid i \notin \mathcal{E} \rangle$ is contained in I.
The Binomials package in Macaulay 2 provides an implementation of the following recursive algorithm:

Algorithm [cellular decomposition]

Input: a binomial ideal I.
Output: a cellular decomposition of I.

1. If I is cellular, then return I.
2. Choose x_i that is a zerodivisor but not nilpotent modulo I.
3. Determine the power m such that $(I : x_i^m) = (I : x_i^\infty)$.
4. Call the algorithm on $(I : x_i^m)$ and $I + \langle x_i^m \rangle$.
solving toric ideals

Input: a zero dimensional toric ideal \(I \).
Output: roots of unity to extend \(\mathbb{Q} \) and solutions in \(V(I) \).

1. Compute a cellular decomposition of \(I \).
2. For each cellular component do
 2.1 Set the noncell variables to zero and determine
 the product \(D := \prod_{i \notin \mathcal{E}} d_i \)
 of the minimal powers of the noncell variables.
 2.2 Compute a lexicographic Gröbner basis and
 solve the lattice ideal of the cellular component,
 adjoining roots of unity.
 2.3. Save each solution \(D \) times.
3. Compute the least common multiple \(m \) of the powers
 of the adjoined roots of unity
 and construct the cyclotomic field \(\mathbb{Q}(w_m) \).
4. Return the list of solutions as elements in \(\mathbb{Q}(w_m) \).
Binomial Systems

1. Binomial Ideals
 - definition and properties
 - solving a zero dimensional pure difference ideal

2. Commuting Birth-and-Death Processes
 - models from ecology and queuing theory
 - a system of quadratic polynomials

3. Cellular decompositions
 - decomposing binomial ideals

4. Using Macaulay2
 - running examples with the package Binomials
running Binomials

The package Binomials of Thomas Kahle is in Macaulay2.

i1 : S = QQ[x,y,z];
i2 : I = ideal(x^2-y,y^3-z,x*y-z);
i3 : loadPackage "Binomials";
i4 : binomialSolve I
BinomialSolve created a cyclotomic field of order 3

o4 = {{1, 1, 1}, {- \(ww \) - 1, \(ww\) , 1},
 3 3
 \(ww\), - \(ww\) - 1, 1},
 3 3
 {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
i5 : degree I
o5 = 6
binomial primary decomposition

i6 : BPD I
Running cellular decomposition:
cellular components found: 1
cellular components found: 2
Decomposing cellular components:
Decomposing cellular component: 1 of 2
1 monomial to consider for this cellular component
BinomialSolve created a cyclotomic field of order 3
done
Decomposing cellular component: 2 of 2
3 monomials to consider for this cellular component
done
Removing redundant components...
4 Ideals to check
3 Ideals to check
2 Ideals to check
1 Ideals to check
0 redundant ideals removed.
Computing mingens of result.
The primary decomposition of $\langle x^2 - y, y^3 - z, xy - z \rangle$ is

$$o6 = \{ \text{ideal} \ (z - 1, y - 1, x - 1),$$

$$\text{ideal} \ (z - 1, y - \text{ww}, x + \text{ww} + 1), \quad \text{ideal} \ (z - 1, y + \text{ww} + 1, x - \text{ww}),$$

$$\text{ideal} \ (z, y, x*y, x - y) \}$$
We consider the last ideal in the primary decomposition

```
i7 : I = ideal(z,y^2,x*y,x^2 - y);
i8 : binomialAssociatedPrimes I
3 monomials to consider for this cellular component

o8 = {ideal (z, y, x)}
```
cellular decompositions

```plaintext
i2 : S = QQ[x1,x2,x3,x4,x5];
i3 : I = ideal(x1*x4^2-x2*x5^2, x1^3*x3^3-x2^4*x4^2, x2*x4^8-x3^3*x5^6);
i4 : I
   2  2  3  3  4  2
o4 = ideal (x1 x4 - x2 x5 , x1 x3 - x2 x4 ,
             8  3  6
     x2 x4 - x3 x5 )

i5 : BCD I
```
cellular components found: 1
redundant component
redundant component

cellular components found: 2

\[
\begin{array}{cccccc}
2 & 2 & 3 & 3 & 4 & 2 \\
\end{array}
\]

\[
o_5 = \{ \text{ideal} \ (x_1 \cdot x_4 - x_2 \cdot x_5, \ x_1 \cdot x_3 - x_2 \cdot x_4, \\
3 & 4 & 2 & 3 & 2 \\
x_2 \cdot x_4 - x_1 \cdot x_3 \cdot x_5, \\
2 & 6 & 3 & 4 & 2 & 3 & 2 \\
x_2 \cdot x_4 - x_2 \cdot x_4 - x_1 \cdot x_3 \cdot x_5, \\
2 & 6 & 3 & 4 & 8 & 3 & 6 \\
x_2 \cdot x_4 - x_1 \cdot x_3 \cdot x_5, \ x_2 \cdot x_4 - x_3 \cdot x_5, \\
2 & 2 & 2 & 5 \\
\text{ideal} \ (x_1, \ x_1 \cdot x_4 - x_2 \cdot x_5, \ x_2, \\
6 & 4 & 2 & 8 \\
x_5, \ x_2 \cdot x_4, \ x_4) \}
\]
Summary + Exercises

Binomial ideals are an interesting class of problems.

Exercises:

1. Explore the package Binomials in Macaulay2.
2. Explore the capabilities in CoCoA for handling binomial ideals.
3. Explore the capabilities in Sage/Singular for binomial ideals.