
Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

MCS 572 Lecture 18

Introduction to Supercomputing

Jan Verschelde, 3 October 2016

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 1 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 2 / 32

the linear barrier

A barrier has two phases:

1 the arrival or trapping phase;

2 the departure or release phase.

The manager maintains a counter: only when all workers have sent to

the manager, does the manager send messages to all workers.

manager worker

for i from 1 to p − 1 do

receive from i send to manager

for i from 1 to p − 1 do

send to i receive from manager

The counter implementation of a barrier or linear barrier is effective

but it takes O(p) steps.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 3 / 32

the linear barrier for p = 8

❄time

P0 P1 P2 P3 P4 P5 P6 P7

P0 P7 P6 P5 P4 P3 P2 P1

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡✟✟✙ ✟✟✟✟✙
✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✟✟✟✟✟✙

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✙

❡

❡

❡

❡

❡

❡

❡

❡❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥

❡❍❍❍❍❍❍❍❍❍❍❍❍❥

❡❍❍❍❍❍❍❍❍❍❍❥

❡❍❍❍❍❍❍❍❍❥

❡❍❍❍❍❍❍❥

❡❍❍❍❍❥
❡❍❍❥❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 4 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 5 / 32

the tree barrier for p = 8

❄time

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡

❡ ❡

❡

❡

❡ ❡

❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

�
�✠

�
�✠

�
�✠

�
�✠

✟✟✟✟✙
✟✟✟✟✙✘✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳❳③❍❍❍❍❥
❍❍❍❍❥

❅
❅❘

❅
❅❘

❅
❅❘

❅
❅❘

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 6 / 32

implementing a tree barrier
The trapping phase, for p = 2k (recall the fan in gather):

for i from k − 1 down to 0 do

for j from 2i to 2i+1 do

node j sends to node j − 2i ;

node j − 2i receives from node j .

The release phase, for p = 2k (recall the fan out scatter):

for i from 0 to k − 1 do

for j from 0 to 2i
− 1 do

node j sends to j + 2i ;

node j + 2i receives from node j .

The tree barrier needs 2 log2(p) stages.

Number of messages: 2

k−1
∑

i=0

2i = 2

(

2k
− 1

2 − 1

)

= 2k+1
− 2 = 2p − 2.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 7 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 8 / 32

the butterfly barrier for p = 8

Two processors can synchronize

in one step:

P0 P1
❡ ❡

❡ ❡

P0 P1

❅
❅❘
�

�✠

Applied to p = 4 and p = 8, observe there are no idle processors:

❄time

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

❍❍❍❍❥
❍❍❍❍❥
✟✟✟✟✙

✟✟✟✟✙
❍❍❍❍❥

❍❍❍❍❥
✟✟✟✟✙

✟✟✟✟✙

❅
❅❘
�

�✠
❅
❅❘
�

�✠
❅
❅❘
�

�✠
❅
❅❘
�

�✠

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 9 / 32

the algorithm for a butterfly barrier, for p = 2k

for i from 0 to k − 1 do

s := 0;

for j from 0 to p − 1 do

if (j mod 2i+1 = 0) s := j ;

node j sends to node ((j + 2i) mod 2i+1) + s;

node ((j + 2i) mod 2i+1) + s receives from node j .

❄time

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

i = 2

i = 1

i = 0

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

❍❍❍❍❥
❍❍❍❍❥
✟✟✟✟✙

✟✟✟✟✙
❍❍❍❍❥

❍❍❍❍❥
✟✟✟✟✙

✟✟✟✟✙

❅
❅❘
�

�✠
❅
❅❘
�

�✠
❅
❅❘
�

�✠
❅
❅❘
�

�✠

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 10 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 11 / 32

avoiding deadlock with sendrecv

Pi−1 Pi Pi+1

recv(Pi) ✛

send(Pi) ✲

send(Pi−1)

send(Pi+1)

recv(Pi−1)

recv(Pi+1) ✛

✲ recv(Pi)

send(Pi)

is equivalent to

Pi−1 Pi Pi+1

sendrecv(Pi) ✲✛ sendrecv(Pi−1)

sendrecv(Pi+1) ✲✛ sendrecv(Pi)

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 12 / 32

the sendrecv in MPI

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,

recvbuf,recvcount,recvtype,source,recvtag,

comm,status)

where the parameters are

sendbuf initial address of send buffer

sendcount number of elements in send buffer
sendtype type of elements in send buffer

dest rank of destination

sendtag send tag

recvbuf initial address of receive buffer
recvcount number of elements in receive buffer

sendtype type of elements in receive buffer

source rank of source or MPI_ANY_SOURCE
recvtag receive tag or MPI_ANY_TAG

comm communicator

status status object

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 13 / 32

a simple illustration

We use MPI_Sendrecv to synchronize two nodes:

$ mpirun -np 2 /tmp/use_sendrecv

Node 0 will send a to 1

Node 0 received b from 1

Node 1 will send b to 0

Node 1 received a from 0

$

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 14 / 32

using MPI_Sendrecv

#include <stdio.h>

#include <mpi.h>

#define sendtag 100

int main (int argc, char *argv[])

{

int i,j;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&i);

j = (i+1) % 2; /* the other node */

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 15 / 32

a bidirectional data transfer

Processors 0 and 1 swap characters:

{

char c = ’a’ + (char)i; /* send buffer */

printf("Node %d will send %c to %d\n",i,c,j);

char d; /* receive buffer */

MPI_Sendrecv(&c,1,MPI_CHAR,j,sendtag,

&d,1,MPI_CHAR,MPI_ANY_SOURCE,

MPI_ANY_TAG,MPI_COMM_WORLD,&status);

printf("Node %d received %c from %d\n",i,d,j);

}

MPI_Finalize();

return 0;

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 16 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 17 / 32

data parallel computations

A data parallel computation is a computation where the same

operations are preformed on different data simultaneously.

Benefits:

easy to program,

scales well,

fit for SIMD computers.

Problem: compute

n−1
∑

i=0

ai for n = p = 2k .

Related problem: composite trapezoidal rule.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 18 / 32

the prefix sum for n = p = 8

a0 a1 a2 a3 a4 a5 a6 a7

step 1
❄
❅
❅❅❘ ❄

❅
❅❅❘ ❄

❅
❅❅❘ ❄

❅
❅❅❘

❅
❅❅❘❄

❅
❅❅❘❄

❅
❅❅❘❄

0
∑

i=0

1
∑

i=0

2
∑

i=1

3
∑

i=2

4
∑

i=3

5
∑

i=4

6
∑

i=5

7
∑

i=6

step 2
❄ ❄ ❄ ❄ ❄ ❄

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥

❍❍❍❍❍❥
0

∑

i=0

1
∑

i=0

2
∑

i=0

3
∑

i=0

4
∑

i=1

5
∑

i=2

6
∑

i=3

7
∑

i=4

step 3
❄ ❄ ❄ ❄

❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳③
0

∑

i=0

1
∑

i=0

2
∑

i=0

3
∑

i=0

4
∑

i=0

5
∑

i=0

6
∑

i=0

7
∑

i=0

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 19 / 32

the prefix sum algorithm

For n = p = 2k , processor i executes:

s := 1; x := ai ;

for j from 0 to k − 1 do

if (j < p − s + 1) send x to processor i + s;

if (j > s − 1) receive y from processor i − s;

add y to x : x := x + y ;

s := 2 ⋆ s.

The speedup:
p

log2(p)
.

Communication overhead: one send/recv in every step.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 20 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 21 / 32

MPI code

#include <stdio.h>

#include "mpi.h"

#define tag 100 /* tag for send/recv */

int main (int argc, char *argv[])

{

int i,j,nb,b,s;

MPI_Status status;

const int p = 8; /* run for 8 processors */

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&i);

nb = i+1; /* node i holds number i+1 */

s = 1; /* shift s will double in every step */

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 22 / 32

the prefix sum loop

for(j=0; j<3; j++) /* 3 stages, as log2(8) = 3 */

{

if(i < p - s) /* every one sends, except last s ones */

MPI_Send(&nb,1,MPI_INT,i+s,tag,MPI_COMM_WORLD);

if(i >= s) /* every one receives, except first s ones */

{

MPI_Recv(&b,1,MPI_INT,i-s,tag,MPI_COMM_WORLD,&status);

nb += b; /* add received value to current number */

}

MPI_Barrier(MPI_COMM_WORLD); /* synchronize computations */

if(i < s)

printf("At step %d, node %d has number %d.\n",j+1,i,nb);

else

printf("At step %d, Node %d has number %d = %d + %d.\n",

j+1,i,nb,nb-b,b);

s *= 2; /* double the shift */

}

if(i == p-1) printf("The total sum is %d.\n",nb);

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 23 / 32

running the code

$ mpirun -np 8 /tmp/prefix_sum

At step 1, node 0 has number 1.

At step 1, Node 1 has number 3 = 2 + 1.

At step 1, Node 2 has number 5 = 3 + 2.

At step 1, Node 3 has number 7 = 4 + 3.

At step 1, Node 7 has number 15 = 8 + 7.

At step 1, Node 4 has number 9 = 5 + 4.

At step 1, Node 5 has number 11 = 6 + 5.

At step 1, Node 6 has number 13 = 7 + 6.

At step 2, node 0 has number 1.

At step 2, node 1 has number 3.

At step 2, Node 2 has number 6 = 5 + 1.

At step 2, Node 3 has number 10 = 7 + 3.

At step 2, Node 4 has number 14 = 9 + 5.

At step 2, Node 5 has number 18 = 11 + 7.

At step 2, Node 6 has number 22 = 13 + 9.

At step 2, Node 7 has number 26 = 15 + 11.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 24 / 32

running the code continued

At step 3, node 0 has number 1.

At step 3, node 1 has number 3.

At step 3, node 2 has number 6.

At step 3, node 3 has number 10.

At step 3, Node 4 has number 15 = 14 + 1.

At step 3, Node 5 has number 21 = 18 + 3.

At step 3, Node 6 has number 28 = 22 + 6.

At step 3, Node 7 has number 36 = 26 + 10.

The total sum is 36.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 25 / 32

Barriers for Synchronizations

1 Synchronizing Computations

the linear barrier

the tree barrier

the butterfly barrier

the sendrecv method of MPI

2 the Prefix Sum Algorithm

data parallel computations

the prefix sum algorithm in MPI

3 Barriers in Shared Memory Parallel Programming

an example illustrating the pthread_barrier_t

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 26 / 32

barriers and Pthreads

Recall Pthreads and the work crew model.

Often all threads must wait till on each other.

int count = 3;

pthread_barrier_t our_barrier;

p_thread_barrier_init(&our_barrier, NULL, count);

In the example above, we initialized the barrier that will cause

as many threads as the value of count to wait.

A thread remains trapped waiting as long as fewer than count many

threads have reached pthread_barrier_wait(&our_barrier);

and the pthread_barrier_destroy(&our_barrier) should only

be executed after all threads have finished.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 27 / 32

running an illustrative program

The shared data is the time each thread sleeps.

$ /tmp/pthread_barrier_example

Give the number of threads : 5

Created 5 threads ...

Thread 0 has slept 2 seconds ...

Thread 2 has slept 2 seconds ...

Thread 1 has slept 4 seconds ...

Thread 3 has slept 5 seconds ...

Thread 4 has slept 6 seconds ...

Thread 4 has data : 24256

Thread 3 has data : 24256

Thread 2 has data : 24256

Thread 1 has data : 24256

Thread 0 has data : 24256

$

Each thread prints only after all data is ready.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 28 / 32

headers and global variables

#include <stdlib.h>

#include <stdio.h>

#include <pthread.h>

int size; /* size equals the number of threads */

int *data; /* shared data, as many ints as size */

pthread_barrier_t our_barrier; /* to synchronize */

The global variables will be initialized in the main program:

the user is prompted to enter size, the number of threads;

the array data is allocated with size elements;

the barrier our_barrier is initialized.

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 29 / 32

code executed by each thread

void *fun (void *args)

{

int *id = (int*) args;

int r = 1 + (rand() % 6);

int k;

char strd[size+1];

sleep(r);

printf("Thread %d has slept %d seconds ...\n", *id, r);

data[*id] = r;

pthread_barrier_wait(&our_barrier);

for(k=0; k<size; k++) strd[k] = ’0’ + ((char) data[k]);

strd[size] = ’\0’;

printf("Thread %d has data : %s\n", *id, strd);

}

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 30 / 32

the main function

int main (int argc, char* argv[])

{

printf("Give the number of threads : "); scanf("%d", &size);

data = (int*) calloc(size, sizeof(int));

{

pthread_t t[size];

pthread_attr_t a;

int id[size], i;

pthread_barrier_init(&our_barrier, NULL, size);

for(i=0; i<size; i++)

{

id[i] = i;

pthread_attr_init(&a);

if(pthread_create(&t[i], &a, fun, (void*)&id[i]) != 0)

printf("Unable to create thread %d!\n", i);

}

printf("Created %d threads ...\n", size);

for(i=0; i<size; i++) pthread_join(t[i], NULL);

pthread_barrier_destroy(&our_barrier);

}

return 0;

}

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 31 / 32

Summary + Exercises

We started chapter 6 in the book of Wilkinson and Allen.

Exercises:

1 Write code using MPI_sendrecv for a butterfly barrier.

Show that your code works for p = 8.

2 Rewrite prefix_sum.c using MPI_sendrecv.

3 Consider the composite trapezoidal rule for the approximation of π

(see lecture 13), doubling the number of intervals in each step.

Can you apply the prefix sum algorithm so that at the end,

processor i holds the approximation for π with 2i intervals?

Introduction to Supercomputing (MCS 572) Barriers for Synchronizations L-18 3 October 2016 32 / 32

	Synchronizing Computations
	the linear barrier
	the tree barrier
	the butterfly barrier
	the sendrecv method of MPI

	the Prefix Sum Algorithm
	data parallel computations
	the prefix sum algorithm in MPI

	Barriers in Shared Memory Parallel Programming
	an example illustrating the pthread_barrier_t

