Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for π
Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for π
To turn a sequential algorithm into a parallel one, we distinguish between functional and domain decomposition:

Functional decomposition: distribute arithmetical operations among several processors.

Example: Monte Carlo simulations.

Domain decomposition: distribute data among several processors.

Example: Mandelbrot set computation.

Problem solving by parallel computers: the entire data set is often too large to fit into the memory of one computer.

Example: game tree for four in a row.
divide-and-conquer methods

Divide and conquer used to solve problems:
- break the problem in smaller parts,
- solve the smaller parts,
- assemble the partial solutions.

Often, divide and conquer is applied in a recursive setting where the smallest nontrivial problem is the base case.

Examples in sorting: mergesort and quicksort.
Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for π
summing numbers with divide and conquer

\[
\sum_{k=0}^{7} x_k = (x_0 + x_1 + x_2 + x_3) + (x_4 + x_5 + x_6 + x_7)
\]
\[
= (((x_0 + x_1) + (x_2 + x_3)) + ((x_4 + x_5) + (x_6 + x_7)))
\]

With 4 processors, the summation of 8 numbers is done in 3 steps.
making partial sums

The size of the problem is n, where $S = \sum_{k=0}^{n-1} x_k$.

Assume we have 8 processors to make 8 partial sums:

$$S = (S_0 + S_1 + S_2 + S_3) + (S_4 + S_5 + S_6 + S_7)$$
$$= (((S_0 + S_1) + (S_2 + S_3)) + ((S_4 + S_5) + (S_6 + S_7)))$$

where $m = \frac{n-1}{8}$ and $S_i = \sum_{k=0}^{m} x_{k+im}$

The communication pattern goes along divide and conquer:
- the numbers x_k are scattered in a \textit{fan out} fashion,
- summing the partial sums happens in a \textit{fan in} mode.
Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for π
fanning out data

Algorithm: at step k, 2^k processors have data, and execute:

for j from 0 to $2^k - 1$ do

 processor j sends $\frac{\text{data}}{2^{k+1}}$ to processor $j + 2^k$;

 processor $j + 2^k$ receives $\frac{\text{data}}{2^{k+1}}$ from processor j.

\hspace{1em} node 0 1 2 3
\hspace{1em} step
\hspace{1em} 0 [0...7] [0...3] [0...1] [0]
\hspace{1em} 1 [4...7] [4...5] [4]
\hspace{1em} 2 [2...3] [2]
\hspace{1em} 3 [6...7] [6]
\hspace{1em} 4 [1]
\hspace{1em} 5 [5]
\hspace{1em} 6 [3]
\hspace{1em} 7 [7]

\hspace{1em} time

\hspace{1em} 0
\hspace{1em} 1
\hspace{1em} 2
\hspace{1em} 3
\hspace{1em} 4
\hspace{1em} 5
\hspace{1em} 6
\hspace{1em} 7
refining the algorithm

In fanning out, we want to use the same array for all nodes, and use only one send/recv statement.

Observe the bit patterns in nodes and data locations:

<table>
<thead>
<tr>
<th>node</th>
<th>step 0</th>
<th>step 1</th>
<th>step 2</th>
<th>step 3</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>[0...7]</td>
<td>[0...3]</td>
<td>[0...1]</td>
<td>[0]</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>[4...7]</td>
<td>[4...5]</td>
<td>[4]</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>[2...3]</td>
<td>[2]</td>
<td>010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>[6...7]</td>
<td>[6]</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>[1]</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>[5]</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>[3]</td>
<td>011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>[7]</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At step 3, the node with label in binary expansion $b_2 b_1 b_0$ has data starting at index $b_0 b_1 b_2$.
Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for \(\pi \)
on dual core Mac OS X with 8 processes

$ mpirun -np 8 /tmp/fan_out_integers
stage 0, d = 1 :
0 sends 40 integers to 1 at 40, start 40
1 received 40 integers from 0 at 40, start 40

stage 1, d = 2 :
0 sends 20 integers to 2 at 20, start 20
1 sends 20 integers to 3 at 60, start 60
2 received 20 integers from 0 at 20, start 20
3 received 20 integers from 1 at 60, start 60

stage 2, d = 4 :
0 sends 10 integers to 4 at 10, start 10
1 sends 10 integers to 5 at 50, start 50
2 sends 10 integers to 6 at 30, start 30
3 sends 10 integers to 7 at 70, start 70
4 received 10 integers from 0 at 10, start 10
6 received 10 integers from 2 at 30, start 30
7 received 10 integers from 3 at 70, start 70
data at all nodes:
5 received 10 integers from 1 at 50, start 50
2 has 10 integers starting at 20 with 20, 21, 22
7 has 10 integers starting at 70 with 70, 71, 72
0 has 10 integers starting at 0 with 0, 1, 2
1 has 10 integers starting at 40 with 40, 41, 42
3 has 10 integers starting at 60 with 60, 61, 62
4 has 10 integers starting at 10 with 10, 11, 12
6 has 10 integers starting at 30 with 30, 31, 32
5 has 10 integers starting at 50 with 50, 51, 52
MPI_Barrier to synchronize printing

To synchronize across all members of a group we apply

\[
\text{MPI_Barrier}(\text{comm})
\]

where \(\text{comm} \) is the communicator (\text{MPI_COMM_WORLD}).

\text{MPI_Barrier} blocks the caller until all group members have called the statement.

The call returns at any process only after all group members have entered the call.
computing the offset

```c
int parity_offset ( int n, int s );
/* returns the offset of node with label n
 * for data of size s based on parity of n */

int parity_offset ( int n, int s )
{
    int offset = 0;
    s = s/2;
    while(n > 0)
    {
        int d = n % 2;
        if(d > 0) offset += s;
        n = n/2;
        s = s/2;
    }
    return offset;
}
```
*/ include headers omitted */
#define size 80 /* size of the problem */
#define tag 100 /* tag of send/recv */
#define v 1 /* verbose flag */

int main (int argc, char *argv[])
{
 int myid,p,s,i,j,d,b;
 int A[size];

 MPI_Status status;
 MPI_Init (&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&p);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if(myid == 0) /* manager initializes */
 for(i=0; i<size; i++) A[i] = i;
the main loop

s = size;
for(i=0, d=1; i<3; i++, d*=2) /* A is fanned out */
{
 s = s/2;
 if(v>0) MPI_Barrier(MPI_COMM_WORLD);
 if(myid == 0)
 if(v > 0) printf("stage %d, d = %d :\n", i, d);
 if(v>0) MPI_Barrier(MPI_COMM_WORLD);
 for(j=0; j<d; j++)
 {
 b = parity_offset(myid, size);
the inner loop

for(j=0; j<d; j++){
 b = parity_offset(myid, size);
 if(myid == j){
 if(v>0)
 printf("%d sends %d integers to %d at %d, \n start %d\n", j, s, j+d, b+s, A[b+s]);
 MPI_Send(&A[b+s], s, MPI_INT, j+d, tag, MPI_COMM_WORLD);
 }
 else if(myid == j+d){
 MPI_Recv(&A[b], s, MPI_INT, j, tag, MPI_COMM_WORLD, &status);
 if(v>0)
 printf("%d received %d integers from %d at %d, \n start %d\n", j+d, s, j, b, A[b]);
 }
}

Data Partitioning
the end of the program

}
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
if(v > 0) if(myid == 0) printf("data at all nodes :\n");
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
printf("%d has %d integers starting at %d with %d, %d, %d\n", myid, size/p, b, A[b], A[b+1], A[b+2]);
MPI_Finalize();
return 0;
}
Data Partitioning

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for π
Algorithm: at step k, 2^k processors send results and execute:

for j from 0 to $2^k - 1$ do
 processor $j + 2^k$ sends the result to processor j;
 processor j receives the result from processor $j + 2^k$.

We run the algorithm for decreasing values of k: $k = 2, 1, 0$.

1. Data Partitioning
 - functional and domain decomposition

2. Parallel Summation
 - applying divide and conquer
 - fanning out an array of data
 - fanning out with MPI
 - fanning in the results

3. An Application
 - computing hexadecimal expansions for \(\pi \)
the BBP algorithm for π

Computing π to trillions of digits is a benchmark problem for supercomputers.

One of the remarkable discoveries made by the PSLQ Algorithm (PSLQ = Partial Sum of Least Squares, or integer relation detection) is a simple formula that allows to calculating any binary digit of π without calculating the digits preceding it:

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i + 1} - \frac{2}{8i + 4} - \frac{1}{8i + 5} - \frac{1}{8i + 6} \right).$$

BBP stands for Bailey, Borwein and Plouffe.

Instead of adding numbers, we concatenate strings.
Some Readings on calculations for π

We started chapter 4 in the text book by Wilkinson and Allen.

Exercises:

1. Adjust the fanning out of the array of integers so it works for any number \(p \) of processors where \(p = 2^k \) for some \(k \). You may take the size of the array as an integer multiple of \(p \). To illustrate your program, provide screen shots for \(p = 8, 16, \) and 32.

2. Complete the summation and the fanning in of the partial sums, extending the program. You may leave \(p = 8 \).