Data Parallelism and Matrix Multiplication

0 Data Parallelism
@ matrix-matrix multiplication
@ CUDA program structure

e Code for Matrix-Matrix Multiplication
@ linear address system for 2-dimensional array
@ defining the kernel
@ the main program
@ using threadIdx.x and threadIdx.y

© Examining Performance
@ counting flops

@ using CUDA jl and Metal.jl
@ a plain matrix matrix multiplication in Julia

MCS 572 Lecture 19
Introduction to Supercomputing
Jan Verschelde, 9 October 2024

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 1/35

Data Parallelism and Matrix Multiplication

Q Data Parallelism
@ matrix-matrix multiplication

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 2/35

data parallelism

Many applications process large amounts of data.

Data parallelism refers to the property where many arithmetic
operations can be safely performed on the data simultaneously.

Consider the multiplication of matrices Aand B: C = A- B, with
A= [a,-’,-] € Rnxm’ B = [b,'J] S Rmxp’ C= [C,'}j] € R™P,

cij is the inner product of the ith row of A with the jth column of B:

m
Cij =) @ik bij
k=1

All ¢;;'s can be computed independently from each other.

For n=m = p = 1,024 we have 1,048,576 inner products.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 3/35

data parallelism in matrix multiplication

/
r M T A
B
m
Cij =) @ik br;
k=1 m
_ aF - o]
A C N ‘
Il
I
I
Il
1|l —_-Z-Z-ZZO n
L JL 4
m p

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 4/35

matrix-matrix multiplication on a GPU

Code for a device (the GPU) is defined in functions using the keyword
_ _global__ before the function definition.

Data parallel functions are called kernels.
Kernel functions generate a large number of threads.

In matrix-matrix multiplication, the computation can be implemented as
a kernel where each thread computes one element in the result matrix.

To multiply two 1,024-by-1,024 matrices, the kernel using one thread to
compute one element generates 1,048,576 threads when invoked.

CUDA threads are much lighter weight than CPU threads: they take
very few cycles to generate and schedule thanks to efficient hardware
support whereas CPU threads may require thousands of cycles.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 5/35

Data Parallelism and Matrix Multiplication

Q Data Parallelism

@ CUDA program structure

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 6/35

CUDA program structure

A CUDA program consists of several phases, executed on
@ the host: if no data parallelism,
@ the device: for data parallel algorithms.

The NVIDIA C compiler nvcc separates phases at compilation:

@ Code for the host is compiled on host’s standard C compilers
and runs as ordinary CPU process.

@ The device code is written in C with keywords for data parallel
functions and further compiled by nvcec.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 7/35

execution of a CUDA program

CPU code
kernel<<<numb_blocks, numb_threads_per_block>>> (args)
CPU code

grid
block 0 block 1 block N — 1

%%%%%%%%%%%%%% %%%%%%%%%%%%

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 8/35

stages in a CUDA program

For the matrix multiplication C = A - B:
@ Allocate device memory for A, B, and C.
© Copy A and B from the host to the device.
© Invoke the kernel to have device do C = A- B.

© Copy C from the device to the host.

© Free memory space on the device.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 9/35

Data Parallelism and Matrix Multiplication

9 Code for Matrix-Matrix Multiplication
@ linear address system for 2-dimensional array

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 10/35

linear address system

Consider a 3-by-5 matrix stored row-wise (as in C):

40,0/90,1|40,2|40,3|40,4

aij,0/a1,1|a1,2|a1,3|a1,4

a2,0|82,1|82,2|82,3|82 4

4L

‘ao,o d0,1|80,2|80,3|40,4|@1,0|@1,1|81,2|@1,3|81,4|82,0|82,1|82,2|82 3|82 4|

o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

We will store a matrix as a one dimensional array.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024

11/35

generating a random matrix

#include <stdlib.h>

__host__ void randomMatrix (int n, int m, float *x, int mode)
/ *

« Fills up the n-by-m matrix x with random

* values of zeroes and ones i1if mode == 1,

* or random floats if mode == 0. =/

int 1,3, x;
float *p = x;

for (i=0; i<n; i++)
for (j=0; Jj<m; J++)
{

if (mode == 1)

r = rand() % 2;
else

r = ((float) rand())/RAND_MAX;
* (p++) = (float) r;

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 12/35

writing a matrix

#include <stdio.h>

__host_ void writeMatrix (int n, int m, float *x)
/%
* Writes the n-by-m matrix x to screen. x/
{
int 1i,3;
float *»p = x;

for (i=0; i<n; i++,printf ("\n"))

for (3=0; Jj<m; J++)
printf (" %d", (int)*(p++));

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 13/35

Data Parallelism and Matrix Multiplication

9 Code for Matrix-Matrix Multiplication

@ defining the kernel

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 14/35

assigning inner products to threads

Consider a 3-by-4 matrix A and a 4-by-5 matrix B:

bo,0/0,1|b0,2/b0 3 bo 4
ap,0|40,1/40,2|0,3 b1 0|b1,1|b1 2|b1 3| b1 4
ay 0\a1,1|a1,2/a@1,3 b2 o|b2,1{D2,2|D2 3 D2 4
ap,0|82,1|82,2|82 3 b3 0|b3,1|b3,2|b3 3| b3 4

’00,0‘00,1‘00,2‘00,3‘00,4‘01,0‘01,1‘01,2‘01,3‘01,4‘02,0‘02,1‘02,2‘02,3‘02,4‘
01 2 3 4 5 6 7 8 9 10 11 12 13 14

The i = blockIdx.x*blockDim.x + threadIdx.x
determines what entry in C = A - B will be computed:

@ the row index in Cis i divided by 5 and
@ the column index in C is the remainder of i divided by 5.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024

15/35

the kernel function

__global___ void matrixMultiply

(int n, int m, int p, float *A, float B, float *C

/%
* Multiplies the n-by-m matrix A

* with the m-by-p matrix B into the matrix C.

* The i-th thread computes the i-th element of C.

int i = blockIdx.x*blockDim.x + threadIdx.x;

C[i] = 0.0;

int rowC = 1i/p;

int colC = 1i%p;

float *pA = &A[rowCxm];
float *pB = &B[colC];
for (int k=0; k<m; k++)

pPB = &B[colC+kxp];
Cli] += (x(pA+t)) = (*pB);

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication

L-19 9 October 2024

*/

16/35

Data Parallelism and Matrix Multiplication

e Code for Matrix-Matrix Multiplication

@ the main program

Introduction to Supercomputing (MCS 572)

Data Parallelism & Matrix Multiplication

running the program

$./matmatmul 3 4 5 1

a random 3-by-4 0/1 matrix A
1011

1111

1010

a random 4-by-5 0/1 matrix B

R P o o
PR e e
= o o o

the resulting 3-by-5 matrix C

O O0h O O rFr O

4
1
0
0
0
t
1
1
1

_ NN
N W
o

Uy

u]
]
I
ul
it
<

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication

the main program — command line arguments

int main (int argc,
{

if (argc < 4)

{

printf ("call with 3 arguments

charxargv([])

:\n");

printf ("dimensions n, m, and p\n");

}

else

{
int n = atoi(argv([1l]); / *
int m = atoi(argv([2]); / *

/ *
int p = atoi(argv([3]); /*
int mode = atoi(argv[4]); /=
if (mode == 0)
srand (20140331)

else

srand (time (0));

Introduction to Supercomputing (MCS 572)

number of rows of A x/
number of columns of A */
and number of rows of B x/
number of columns of B */
0 no output, 1 show output

Data Parallelism & Matrix Multiplication L-19 9 October 2024

*/

19/35

allocating memories

float *Ahost = (floatx)calloc (n*m,sizeof (float));
float *Bhost = (floatx)calloc (mxp,sizeof (float));
float *Chost = (floatx)calloc (n*p,sizeof (float));
randomMatrix (n, m, Ahost,mode) ;
randomMatrix (m, p, Bhost, mode) ;
if (mode == 1)
{
printf ("a random %d-by-%d 0/1 matrix A :\n",n,m);
writeMatrix (n,m, Ahost);
printf ("a random %d-by-%d 0/1 matrix B :\n",m,p);
writeMatrix (m, p,Bhost);
}
/+ allocate memory on the device for A, B, and C */
float xAdevice;
size_t sA = nxm*sizeof (float);
cudaMalloc ((voidx) &Adevice, sA) ;
float *Bdevice;
size_t sB = mxpsxsizeof (float);
cudaMalloc ((voidx«) &Bdevice, sB) ;
float xCdevice;
size_t sC = nxpxsizeof (float);
cudaMalloc ((voidx«) &Cdevice, sC) ;

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 20/35

copying and kernel invocation

/+ copy matrices A and B from host to the device x/
cudaMemcpy (Adevice, Ahost, sA, cudaMemcpyHostToDevice) ;
cudaMemcpy (Bdevice, Bhost, sB, cudaMemcpyHostToDevice) ;

/+ kernel invocation launching n*p threads =/
matrixMultiply<<<nxp, 1>>>(n,m,p,
Adevice,Bdevice, Cdevice);

/* copy matrix C from device to the host =/

cudaMemcpy (Chost, Cdevice, sC, cudaMemcpyDeviceToHost) ;

/* freeing memory on the device */

cudaFree (Adevice); cudaFree (Bdevice); cudaFree (Cdevice);

if (mode == 1)

{
printf ("the resulting %d-by-%d matrix C :\n",n,p);
writeMatrix (n,p,Chost);

}

return 0;

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 21/35

Data Parallelism and Matrix Multiplication

9 Code for Matrix-Matrix Multiplication

@ using threadIdx.x and threadIdx.y

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 22/35

using threadIdx.x and threadIdx.y

Instead of a one dimensional organization of the threads in a block
we can make the (/, j)-th thread compute ¢; ;.

The main program is then changed into

/+ kernel invocation launching n*p threads =/

dim3 dimGrid(1,1);

dim3 dimBlock (n,p);

matrixMultiply<<<dimGrid,dimBlock>>>
(n,m,p,Adevice,Bdevice, Cdevice);

The above construction creates a grid of one block.
The block has n x p threads:

@ threadIdx.x will range between 0 and n— 1, and
@ threadIdx.y will range between O and p — 1.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 23/35

the new kernel

__global__ void matrixMultiply
(int n, int m, int p, float A, float xB, float xC)
/ *
* Multiplies the n-by-m matrix A
* with the m-by-p matrix B into the matrix C.
* The (i, j)-th thread computes the (i, j)-th element of C.

int i threadIdx.x;
int j = threadIdx.y;
int ell = ixp + J;
Clell] = 0.0;
float =pB;
for (int k=0; k<m; k++)
{
pPB = &B[Jj+k*pl;
Clell] += A[ixmtk]=* (*pB);

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 24/35

Data Parallelism and Matrix Multiplication

e Examining Performance
@ counting flops

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication

performance analysis

Performance is often expressed in terms of flops.
@ 1 flops = one floating-point operation per second;
@ use perf: Performance analysis tools for Linux
@ run the executable, with perf stat

$ perf stat ./matmatmulO 1024 1024 1024 0

@ with the events following the —e flag
we count the floating-point operations.

$ perf stat —-e fp_arith_inst_retired.scalar_single \
./matmatmul0 1024 1024 1024 0

Executables are compiled with the option -02.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 26/35

on one Intel Xeon E5-2699v4 Broadwell core

on pascal

S perf stat -e fp_arith_inst_retired.scalar_single \
./matmatmul0 768 768 768 0

Performance counter stats for ’./matmatmulO 768 768 768 0':
905,969, 664 fp_arith_inst_retired.scalar_single:u
1.039681742 seconds time elapsed

1.036818000 seconds user
0.002999000 seconds sys

$
Did 905,969,664 operations in 1.037 seconds:
= (905, 969,664,/1.037)/(2%) = 0.81GFlops.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 27/35

performance on the P100

$ perf stat -e fp_arith_inst_retired.scalar_single
./matmatmull 768 768 768 0

Performance counter stats for ’./matmatmull 768 768 768 0':
6,123 fp_arith_inst_retired.scalar_single:u
0.207871212 seconds time elapsed
0.039441000 seconds user

0.167880000 seconds sys

$
Drop from 1.037 seconds to 0.28 seconds is not impressive.
The dimension 768 is too small for the GPU to be able to improve much.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 28/35

running for larger dimensions

$ perf stat -e fp_arith_inst_retired.scalar_single
./matmatmul0 4096 4096 4096 0

Performance counter stats for ’./matmatmulO 4096 4096 4096 0':
137,438,953,472 fp_arith_inst_retired.scalar_single:u
416.494934403 seconds time elapsed
416.466205000 seconds user

0.047003000 seconds sys

$ perf stat ./matmatmull 4096 4096 4096 O
shows

0.569705088 seconds time elapsed

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 29/35

speedup and performance

Seconds time elapsed on CPU: 416.495.
Seconds time elapsed on GPU: 0.570.

Speedup: 416.495/0.570 = 730.
Counting flops, f = 137,438,953,472, the performance is:
@ t, = 415.495: f/t,,/(2%°) = 0.3 GFlops.
@ typy = 0.570: f/ty,/(2%°) = 224.5 GFlops.
The performance is far from optimal, both for CPU and GPU.

To be continued ...

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 30/35

Data Parallelism and Matrix Multiplication

@ using CUDA jl and Metal. |
@ a plain matrix matrix multiplication in Julia

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 31/35

a plain matrix matrix multiplication

using CUDA

function matmul! (C, A, B)
i threadIdx () .x
j threadIdx () .y
for k=1l:size (A, 2)
@inbounds C[i, j] = C[i, J]1 + A[i, k1*Bl[k, Jjl
end

end

o}
=}
|

= 272

= rand(dim, dim)

= rand (dim, dim)

= A_h * B_h

CuArray (A_h)

= CuArray (B_h)

= CuArray (zeros (dim, dim))

i

OUJD’IOlwll'J’
[oFRN o PR o = =
Il

@cuda threads=(dim, dim) matmul! (C_d, A_d, B_d)

println(C_h)
println(C_d)

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024

32/35

on a macOS GPU using Apple’s Metal framework

The equivalent code for execution on an M1 MacBook air:

using Metal

function matmul! (C, A, B)
threadpos = thread_position_in_grid_2d()
i = threadpos|[1]
J = threadpos[2]
for k=l:size (A, 2)
@inbounds C[i, j] = C[i, j] + A[i, kl1*Blk, 7JjI
end
end

Observe the threadpos to work
with the two dimensional grid of threads.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 33/35

the code continues

The GPU in an M1 MacBook Air does not support 64-bit floats.
Use Float32 instead of the default F1oat 64:

dim = 272

A_h = rand(Float32, dim, dim)

B_h = rand(Float32, dim, dim)

C_h =A2A_h B_h

A_d = MtlArray(A_h)

B_d = MtlArray (B_h)

C_d = MtlArray (zeros (Float32, dim, dim))

@metal threads=(dim, dim) matmul! (C_d, A_d, B_d)

println (C_h)
println (C_d)

Observe the launching of the kernel.

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 34/35

summary and exercises

We covered more of chapter 3 in the book of Kirk & Hwu.

@ The perf was illustrated on on older computer.
Redo the illustrations on ampere.

© Modify matmatmul0.c and matmatmull.cu to work with
doubles instead of floats. Examine the performance.

© Modify matmatmul2 . cu to use double indexing of matrices,
€.g.:C[1][3] += A[i][k]*B[k][J].

© Compare the performance of matmatmull.cu and
matmatmul?2. cu, taking larger and larger values for n, m, and p.
Which version scales best?

@ Compare the performance of matmatmull.cu and
mmmulcudaZ2 . jl. Does the Julia code achieve the same
performance as the C CUDA program?

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-19 9 October 2024 35/35

	Data Parallelism
	matrix-matrix multiplication
	CUDA program structure

	Code for Matrix-Matrix Multiplication
	linear address system for 2-dimensional array
	defining the kernel
	the main program
	using threadIdx.x and threadIdx.y

	Examining Performance
	counting flops

	using CUDA.jl and Metal.jl
	a plain matrix matrix multiplication in Julia

