Introduction to CUDA

1. Our first GPU Program
 - running Newton’s method in complex arithmetic
 - examining the CUDA Compute Capability

2. CUDA Program Structure
 - steps to write code for the GPU
 - code to compute complex roots
 - the kernel function and main program
 - a scalable programming model

3. using CUDA.jl
 - vector addition with thread organization

MCS 572 Lecture 19
Introduction to Supercomputing
Jan Verschelde, 22 February 2023
Introduction to CUDA

1. Our first GPU Program
 - running Newton’s method in complex arithmetic
 - examining the CUDA Compute Capability

2. CUDA Program Structure
 - steps to write code for the GPU
 - code to compute complex roots
 - the kernel function and main program
 - a scalable programming model

3. using CUDA.jl
 - vector addition with thread organization
computing complex square roots

To compute \sqrt{c} for $c \in \mathbb{C}$, we apply Newton’s method on $x^2 - c = 0$:

$$x_0 := c, \quad x_{k+1} := x_k - \frac{x_k^2 - c}{2x_k}, \quad k = 0, 1, \ldots$$

Five iterations suffice to obtain an accurate value for \sqrt{c}.

Suitable on GPU?
- Finding roots is relevant for scientific computing.
- Data parallelism: compute for many different c’s.

Application: complex root finder for polynomials in one variable.
Introduction to CUDA

1. Our first GPU Program
 - running Newton’s method in complex arithmetic
 - examining the CUDA Compute Capability

2. CUDA Program Structure
 - steps to write code for the GPU
 - code to compute complex roots
 - the kernel function and main program
 - a scalable programming model

3. using CUDA.jl
 - vector addition with thread organization
CUDA Compute Capability

The compute capability of an NVIDIA GPU
- is represented by a version number in the format x.y,
- identifies the features supported by the hardware.

What does it mean for the programmer? Some examples:
- 1.3 : double-precision floating-point operations
- 2.0 : synchronizing threads
- 3.5 : dynamic parallelism
- 5.3 : half-precision floating-point operations
- 6.0 : atomic addition operation on 64-bit floats

The compute capability is not the same as the CUDA version.
checking the card with deviceQuery on pascal

$ /usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery
/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla P100-PCIE-16GB"
 CUDA Driver Version / Runtime Version: 11.0 / 8.0
 CUDA Capability Major/Minor version number: 6.0
 Total amount of global memory: 16276 MBytes (17066885120 bytes)
 (56) Multiprocessors, (64) CUDA Cores/MP: 3584 CUDA Cores
 GPU Max Clock rate: 405 MHz (0.41 GHz)
 Memory Clock rate: 715 Mhz
 Memory Bus Width: 4096-bit
 L2 Cache Size: 4194304 bytes
 Maximum Texture Dimension Size (x,y,z): 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
 Maximum Layered 1D Texture Size, (num) layers: 1D=(32768), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers: 2D=(32768, 32768), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 2048
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 2 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0
 Compute Mode: "< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >"
running bandwidthTest on pascal

$ /usr/local/cuda/samples/1_Utilsities/bandwidthTest/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: Tesla P100-PCIE-16GB
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11530.1

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 12848.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 444598.8

Result = PASS

$
Introduction to CUDA

1. Our first GPU Program
 - running Newton’s method in complex arithmetic
 - examining the CUDA Compute Capability

2. CUDA Program Structure
 - steps to write code for the GPU
 - code to compute complex roots
 - the kernel function and main program
 - a scalable programming model

3. using CUDA.jl
 - vector addition with thread organization
steps to write code for the GPU

Five steps to get GPU code running:

1. C and C++ functions are labeled with CUDA keywords __device__, __global__, or __host__.
2. Determine the data for each thread to work on.
3. Transferring data from/to host (CPU) to/from the device (GPU).
4. Statements to launch data-parallel functions, called kernels.
5. Compilation with nvcc.
step 1: CUDA extensions to functions

Three keywords before a function declaration:
- __host__ : The function will run on the host (CPU).
- __device__ : The function will run on the device (GPU).
- __global__ : The function is called from the host but runs on the device. This function is called a kernel.

CUDA extensions to C function declarations:

<table>
<thead>
<tr>
<th>device double D()</th>
<th>executed on</th>
<th>callable from</th>
</tr>
</thead>
<tbody>
<tr>
<td>global void K()</td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td>host int H()</td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>
step 2: data for each thread

The grid consists of N blocks, with $\text{blockIdx.x} \in \{0, N - 1\}$. Within each block, $\text{threadIdx.x} \in \{0, \text{blockDim.x} - 1\}$.

```
int threadId = blockIdx.x * blockDim.x + threadIdx.x
...
float x = input[threadID]
float y = f(x)
output[threadID] = y
...```
step 3: allocating and transferring data

cudaDoubleComplex *xhost = new cudaDoubleComplex[n];

// we copy n complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**) &xdevice, s);

cudaMemcpy(xdevice, xhost, s, cudaMemcpyHostToDevice);

// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**) &ydevice, s);

// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];

cudaMemcpy(yhost, ydevice, s, cudaMemcpyDeviceToHost);
step 4: launching the kernel

The kernel is declared as

__global__ void squareRoot
    ( int n, cudaDoubleComplex *x, cudaDoubleComplex *y )
// Applies Newton’s method to compute the square root
// of the n numbers in x and places the results in y.
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    ...
}

For frequency $f$, dimension $n$, and block size $w$, we do:

// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)
    squareRoot<<<n/w,w>>>(n,xdevice,ydevice);
step 5: compiling with \texttt{nvcc}

If the \texttt{makefile} contains

\begin{verbatim}
runCudaComplexSqrt:
    nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt \
        runCudaComplexSqrt.cu
\end{verbatim}

typing \texttt{make runCudaComplexSqrt} at the command prompt does

\begin{verbatim}
nvcc -ccbin /usr/bin/gcc -o run_cmpsqrt runCudaComplexSqrt.cu
\end{verbatim}

With \texttt{-ccbin} we define the location of the C compiler.
Introduction to CUDA

1. Our first GPU Program
   - running Newton’s method in complex arithmetic
   - examining the CUDA Compute Capability

2. CUDA Program Structure
   - steps to write code for the GPU
   - code to compute complex roots
   - the kernel function and main program
   - a scalable programming model

3. using CUDA.jl
   - vector addition with thread organization
We use the **double2** of **vector_types.h** to define complex numbers because **double2** is a native CUDA type allowing for coalesced memory access.
random complex numbers

__host__ cudaDoubleComplex randomDoubleComplex()
// Returns a complex number on the unit circle
// with angle uniformly generated in [0,2*pi].
{
    cudaDoubleComplex result;
    int r = rand();
    double u = double(r)/RAND_MAX;
    double angle = 2.0*M_PI*u;
    result.x = cos(angle);
    result.y = sin(angle);
    return result;
}
__device__ double radius ( const cudaDoubleComplex c )
// Returns the radius of the complex number.
{
    double result;
    result = c.x*c.x + c.y*c.y;
    return sqrt(result);
}
overloading for output

```cpp
__host__ std::ostream& operator<<
 (std::ostream& os, const cudaDoubleComplex& c)
// Writes real and imaginary parts of c,
// in scientific notation with precision 16.
{
 os << std::scientific << std::setprecision(16)
 << c.x << " " << c.y;
 return os;
}
```
defining complex addition

```c
__device__ cudaDoubleComplex operator+(const cudaDoubleComplex a, const cudaDoubleComplex b)
// Returns the sum of a and b.
{
 cudaDoubleComplex result;
 result.x = a.x + b.x;
 result.y = a.y + b.y;
 return result;
}
```

The rest of the arithmetical operations are defined in a similar manner.

All definitions related to complex numbers are stored in the file `cudaDoubleComplex.cu`. 
Introduction to CUDA

1. Our first GPU Program
   - running Newton’s method in complex arithmetic
   - examining the CUDA Compute Capability

2. CUDA Program Structure
   - steps to write code for the GPU
   - code to compute complex roots
   - the kernel function and main program
   - a scalable programming model

3. using CUDA.jl
   - vector addition with thread organization
the kernel function

```c
#include "cudaDoubleComplex.cu"

__global__ void squareRoot
(int n, cudaDoubleComplex *x, cudaDoubleComplex *y)
// Applies Newton's method to compute the square root
// of the n numbers in x and places the results in y.
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 cudaDoubleComplex inc;
 cudaDoubleComplex c = x[i];
 cudaDoubleComplex r = c;
 for(int j=0; j<5; j++)
 {
 inc = r + r;
 inc = (r*r - c)/inc;
 r = r - inc;
 }
 y[i] = r;
}
```
```cpp
int main (int argc, char*argv[])
{
 if(argc < 5)
 {
 cout << "call with 4 arguments : " << endl;
 cout << "dimension, block size, frequency, and check (0 or 1)" << endl;
 }
 else
 {
 int n = atoi(argv[1]); // dimension
 int w = atoi(argv[2]); // block size
 int f = atoi(argv[3]); // frequency
 int t = atoi(argv[4]); // test or not
 // we generate n random complex numbers on the host
 cudaDoubleComplex *xhost = new cudaDoubleComplex[n];
 for(int i=0; i<n; i++) xhost[i] = randomDoubleComplex();
 }
}
```

The main program generates $n$ random complex numbers with radius 1.
transferring data and launching the kernel

// copy the n random complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);
cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);
// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);
// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)
    squareRoot<<<n/w,w>>>(n,xdevice,ydevice);
// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];
cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);
if(t == 1) // test the result
{
    int k = rand() % n;
    cout << "testing number " << k << endl;
    cout << " x = " << xhost[k] << endl;
    cout << " sqrt(x) = " << yhost[k] << endl;
    cudaDoubleComplex z = Square(yhost[k]);
    cout << "sqrt(x)^2 = " << z << endl;
}
return 0;
Introduction to CUDA

1. Our first GPU Program
   - running Newton’s method in complex arithmetic
   - examining the CUDA Compute Capability

2. CUDA Program Structure
   - steps to write code for the GPU
   - code to compute complex roots
   - the kernel function and main program
   - a scalable programming model

3. using CUDA.jl
   - vector addition with thread organization
a scalable programming model

multithreaded CUDA program

GPU with 2 cores

GPU with 4 cores

Introduction to Supercomputing (MCS 572)
running the code on pascal

A test on the correctness:

$ ./run_cmpsqrt 1 1 1 1

testing number 0

x = 5.3682227446949737e-01 -8.4369535119816541e-01
sqrt(x) = 8.7659063264145631e-01 -4.8123680528950746e-01
sqrt(x)^2 = 5.3682227446949726e-01 -8.4369535119816530e-01

On 64,000 numbers, 32 threads in a block, doing it 10,000 times:

$ time ./run_cmpsqrt 64000 32 10000 1

testing number 50325

x = 7.9510606509728776e-01 -6.0647039931517477e-01
sqrt(x) = 9.4739275517002119e-01 -3.2007337822967424e-01
sqrt(x)^2 = 7.9510606509728765e-01 -6.0647039931517477e-01

real 0m0.302s
user 0m0.095s
sys 0m0.207s
$
changing #threads in a block

$ time ./run_cmpsqrt 128000 32 100000 0

real 0m1.639s
user 0m0.989s
sys 0m0.650s

$ time ./run_cmpsqrt 128000 64 100000 0

real 0m1.640s
user 0m1.001s
sys 0m0.639s

$ time ./run_cmpsqrt 128000 128 100000 0

real 0m1.652s
user 0m0.952s
sys 0m0.700s
Introduction to CUDA

1. Our first GPU Program
   - running Newton’s method in complex arithmetic
   - examining the CUDA Compute Capability

2. CUDA Program Structure
   - steps to write code for the GPU
   - code to compute complex roots
   - the kernel function and main program
   - a scalable programming model

3. using CUDA.jl
   - vector addition with thread organization
division of the work per thread

From the CUDA.jl tutorial:

\[ \text{gridDim.x} = 4096 \]

\( \text{threadIdx.x} \)

0 1 2 3 ... 255

blockIdx.x = 0

0 1 2 3 ... 255

blockIdx.x = 1

0 1 2 3 ... 255

blockIdx.x = 2

... 0 1 2 3 ... 255

blockIdx.x = 4095

\[ \text{index} = \text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x} \]

\[ \text{index} = \ (2) \times \ (256) \ + \ (3) \ = \ 515 \]

Which is taken from the technical blog at
https://developer.nvidia.com/blog/even-easier-introduction-cuda

An Even Easier Introduction to CUDA, by Mark Harris.
copyied from the CUDA.jl tutorial


using CUDA
using Test

function gpu_add3!(y, x)
    index = (blockIdx().x - 1) * blockDim().x
           + threadIdx().x
    stride = blockDim().x * blockDim().x
    for i = index:stride:length(y)
        @inbounds y[i] += x[i]
    end
    return
end
launching the kernel with 256 threads per block

\[ N = 2^{20} \]

\[
x_d = \text{CUDA}.\text{fill}(1.0f0, N) \quad \# \text{N Float32 1.0 on GPU}
\]

\[
y_d = \text{CUDA}.\text{fill}(2.0f0, N) \quad \# \text{N Float32 2.0}
\]

# run with 256 threads per block

\[
\text{n umblocks } = \text{ceil}(\text{Int, } N/256)
\]

\[
\text{@cuda threads=256 blocks= numbblocks gpu_add3!(y_d, x_d)}
\]

\[
\text{result } = (\text{@test all(Array(y_d) } .== 3.0f0))
\]

\[
\text{println(result)}
\]

prints Test Passed
summary and references

In five steps we wrote our first complete CUDA program in C.

We started chapter 3 of the textbook by Kirk & Hwu, covering more of the CUDA Programming Guide.

Available in /usr/local/cuda/doc are

- CUDA C Best Practices Guide
- CUDA Programming Guide

Also available online at nvidia.com.

Many examples of CUDA applications are available in /usr/local/cuda/samples.

Julia solves the two languages problem.
exercises

1. Instead of 5 Newton iterations in `runCudaComplexSqrt.cu` use $k$ iterations where $k$ is entered by the user at the command line. What is the influence of $k$ on the timings?

2. Modify the kernel for the complex square root so it takes on input an array of complex coefficients of a polynomial of degree $d$. Then the root finder applies Newton’s method, starting at random points. Test the correctness and experiment to find the rate of success, i.e.: for polynomials of degree $d$ how many random trials are needed to obtain $d/2$ roots of the polynomial?

3. Use the kernel in a python script with PyCUDA.

4. Use CUDA.jl for the square roots example.