Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
grids, blocks, and threads

The code that runs on the GPU is defined in a function, the kernel. A kernel launch

- creates a grid of blocks, and
- each block has one or more threads.

The organization of the grids and blocks can be 1D, 2D, or 3D.

During the running of the kernel:

- Threads in the same block are executed simultaneously.
- Blocks are scheduled by the streaming multiprocessors.

The NVIDIA Tesla C2050 has 14 streaming multiprocessors and threads are executed in groups of 32 (the warp size). This implies: $14 \times 32 = 448$ threads can run simultaneously. For the K20c the numbers are respectively 13, 192, and 2496; and for the P100, we have 56, 64, and 3584.
a scalable programming model

multithreaded CUDA program

GPU with 2 cores

GPU with 4 cores

Introduction to Supercomputing (MCS 572) Thread Organization & Matrix Multiplication L-33 7 November 2016 4 / 30
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
identifying threads

All threads execute the same code, defined by the kernel.

The builtin variable \texttt{threadIdx}

- identifies every thread in a block uniquely; and
- defines the data processed by the thread.

The builtin variable \texttt{blockDim} holds the number of threads in a block.

In a one dimensional organization, we use only \texttt{threadIdx.x} and \texttt{blockDim.x}. For 2D and 3D, the other components

- \texttt{threadIdx.y} belongs to the range \texttt{0..blockDim.y};
- \texttt{threadIdx.z} belongs to the range \texttt{0..blockDim.z}.
data for each thread

The grid consists of N blocks, with $\text{blockIdx}.x \in \{0, N - 1\}$.

Within each block, $\text{threadIdx}.x \in \{0, \text{blockDim}.x - 1\}$.

```
int threadId = blockIdx.x * blockDim.x + threadIdx.x

...  
float x = input[threadID]
float y = f(x)
output[threadID] = y
...  
```
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using `threadIdx` and `blockIdx`
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of `matrixMul`
setting the execution configuration parameters

Suppose the kernel is defined by the function F with input arguments x and output arguments y, then

```c
dim3 dimGrid(128,1,1);
dim3 dimBlock(32,1,1);
F<<<dimGrid,dimBlock>>>(x,y);
```

launches a grid of 128 blocks. The grid is a one dimensional array. Each block in the grid is also one dimensional and has 32 threads.
multidimensional thread organization

Limitations of the Tesla C2050/C2070:

- Maximum number of threads per block: 1,024.
- Maximum sizes of each dimension of a block: $1,024 \times 1,024 \times 64$. Because 1,024 is the upper limit for the number of threads in a block, the largest square 2D block is 32×32, as $32^2 = 1,024$.
- Maximum sizes of each dimension of a grid: $65,535 \times 65,535 \times 65,535$. 65,535 is the upper limit for the builtin variables `gridDim.x`, `gridDim.y`, and `gridDim.z`.

Limitations of the K20c and the P100:

- Maximum number of threads per block: 1,024.
- Maximum dimension size of a thread block: $1,024 \times 1,024 \times 64$.
- Maximum dimension size of a grid size: $2,147,483,647 \times 65,535 \times 65,535$
a 3D example

Suppose the function F defines the kernel, with argument x, then

```c
    dim3 dimGrid(3, 2, 4);
    dim3 dimBlock(5, 6, 2);
    F<<<dimGrid, dimBlock>>>(x);
```

launches a grid with

- $3 \times 2 \times 4$ blocks; and
- each block has $5 \times 6 \times 2$ threads.
1. **Thread Organization**
 - grids, blocks, and threads
 - using `threadIdx` and `blockIdx`
 - setting the execution configuration parameters

2. **Matrix Matrix Multiplication**
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of `matrixMul`
Consider a grid of dimension $2 \times 2 \times 1$ to store a 4-by-4 matrix in tiles of dimensions $2 \times 2 \times 1$:
mapping threads to entries in the matrix

A kernel launch with a grid of dimensions $2 \times 2 \times 1$ where each block has dimensions $2 \times 2 \times 1$ creates 16 threads.
A kernel launch with a grid of dimensions $2 \times 2 \times 1$ where each block has dimensions $2 \times 2 \times 1$ creates 16 threads.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>

$\times [0] [0] [0] [0] [0] [0] [0] = 0$
$\times [0] [0] [0] [0] [0] [1] [0] = 1$
$\times [0] [0] [0] [0] [1] [0] [0] = 2$
$\times [0] [0] [0] [1] [1] [1] [0] = 3$
$\times [0] [1] [0] [0] [0] [0] [0] = 4$
$\times [0] [1] [0] [0] [0] [1] [0] = 5$
$\times [0] [1] [1] [1] [0] [0] [0] = 6$
$\times [0] [1] [1] [1] [1] [0] [0] = 7$
$\times [1] [0] [0] [0] [0] [0] [0] = 8$
$\times [1] [0] [0] [0] [0] [1] [0] = 9$
$\times [1] [0] [0] [0] [1] [0] [0] = 10$
$\times [1] [0] [0] [1] [1] [0] [0] = 11$
$\times [1] [1] [0] [0] [0] [0] [0] = 12$
$\times [1] [1] [0] [0] [0] [1] [0] = 13$
$\times [1] [1] [0] [0] [1] [1] [0] = 14$
$\times [1] [1] [1] [1] [1] [1] [0] = 15$
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
int main (int argc, char* argv[])
{
 const int xb = 2; /* gridDim.x */
 const int yb = 2; /* gridDim.y */
 const int zb = 1; /* gridDim.z */
 const int xt = 2; /* blockDim.x */
 const int yt = 2; /* blockDim.y */
 const int zt = 1; /* blockDim.z */
 const int n = xb*yb*zb*xt*yt*zt;

 printf("allocating array of length %d...\n",n);

 /* allocating and initializing on the host */
 int *xhost = (int*)calloc(n,sizeof(int));
 for(int i=0; i<n; i++) xhost[i] = -1.0;
int *xdevice;
size_t sx = n*sizeof(int);
cudaMalloc((void**)&xdevice,sx);
cudaMemcpy(xdevice,xhost,sx,cudaMemcpyHostToDevice);

/* set the execution configuration for the kernel */
dim3 dimGrid(xb,yb,zb);
dim3 dimBlock(xt,yt,zt);
matrixFill<<<dimGrid,dimBlock>>>(xdevice);
__global__ void matrixFill (int *x)

/*
 * Fills the matrix using blockIdx and threadIdx. */
{
 int bx = blockIdx.x;
 int by = blockIdx.y;
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;
 int dim = blockDim.x*blockDim.x;
 int i = row*dim + col;
 x[i] = i;
}
/* copy data from device to host */
cudaMemcpy(xhost,xdevice,sx,cudaMemcpyDeviceToHost);
cudaFree(xdevice);

int *p = xhost;
for(int i1=0; i1 < xb; i1++)
 for(int i2=0; i2 < yb; i2++)
 for(int i3=0; i3 < zb; i3++)
 for(int i4=0; i4 < xt; i4++)
 for(int i5=0; i5 < yt; i5++)
 for(int i6=0; i6 < zt; i6++)
 printf("x[%d][%d][%d][%d][%d][%d] = %d\n",
 i1,i2,i3,i4,i5,i6,* (p++));

return 0;
}
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
thread synchronization

In a block all threads run independently.

CUDA allows threads in the same block to coordinate their activities using a barrier synchronization function:

```c
__syncthreads();
```

The thread executing `__syncthreads()` will be held at the calling location in the code until every thread in the block reaches the location.

Placing a `__syncthreads()` ensures that all threads in a block have completed a task before moving on.
applied to matrix multiplication with shared memory

\[C_{i,j} = \sum_{k=1}^{m/w} A_{i,k} \cdot B_{k,j} \]

\[
\begin{bmatrix}
A
\end{bmatrix}
\begin{bmatrix}
B
\end{bmatrix}
\]

\[
\begin{bmatrix}
C
\end{bmatrix}
\]

\[m \quad p \quad n \]
application of \texttt{__syncthreads()} \\

With tiled matrix matrix multiplication using shared memory, all threads in the block collaborate to copy the tiles $A_{i,k}$ and $B_{k,j}$ from global memory to shared memory.

\textarrow{Before the calculation of the inner products, all threads must finish their copy statement: they all execute the \texttt{__syncthreads()}.}

Every thread computes one inner product.

\textarrow{Before moving on to the next tile, all threads must finish, therefore, they all execute the \texttt{__syncthreads()} after computing their inner product and moving on to the next phase.}
Thread Organization and Matrix Multiplication

1. Thread Organization
 - grids, blocks, and threads
 - using threadIdx and blockIdx
 - setting the execution configuration parameters

2. Matrix Matrix Multiplication
 - accessing submatrices with thread identifiers
 - CUDA code for thread organization
 - thread synchronization
 - revisiting the kernel of matrixMul
the kernel of \texttt{matrixMul}

template <int BLOCK_SIZE> __global__ void matrixMul(float* C, float* A, float* B, int wA, int wB) {
 int bx = blockIdx.x; // Block index
 int by = blockIdx.y;
 int tx = threadIdx.x; // Thread index
 int ty = threadIdx.y;
 // Index of the first sub-matrix of A processed by the block
 int aBegin = wA * BLOCK_SIZE * by;
 // Index of the last sub-matrix of A processed by the block
 int aEnd = aBegin + wA - 1;
 // Step size used to iterate through the sub-matrices of A
 int aStep = BLOCK_SIZE;
 // Index of the first sub-matrix of B processed by the block
 int bBegin = BLOCK_SIZE * bx;
 // Step size used to iterate through the sub-matrices of B
 int bStep = BLOCK_SIZE * wB;
the submatrices

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
 a <= aEnd;
 a += aStep, b += bStep) {

 // Declaration of the shared memory array As used to
 // store the sub-matrix of A
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Declaration of the shared memory array Bs used to
 // store the sub-matrix of B
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
loading and multiplying

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
}

Recommended reading:
summary and exercises

We covered more of chapter 4 in the book of Kirk & Hwu.

1. Find the limitations of the grid and block sizes for the graphics card on your laptop or desktop.

2. Extend the simple code with the three dimensional thread organization to a tiled matrix-vector multiplication for numbers generated at random as 0 or 1.