
Introduction to Supercomputing
Release 1.2.5

Jan Verschelde

Nov 10, 2024

Contents

0 Preface 1
0.1 Three Different Types of Parallelism . 1
0.2 Programming Languages . 2
0.3 Bibliography . 2

1 Introduction to Parallel Computing 3
1.1 Introduction . 3

1.1.1 What is a Supercomputer? . 3
1.1.2 Measuring Performance . 6
1.1.3 Amdahl’s and Gustafson’s Law . 6
1.1.4 Bibliography . 8
1.1.5 Exercises . 9

1.2 Classifications and Scalability . 9
1.2.1 Types of Parallel Computers . 9
1.2.2 Clusters and Scalability . 9
1.2.3 Network Topologies . 10
1.2.4 Bibliography . 15
1.2.5 Exercises . 15

1.3 High Level Parallel Processing . 15
1.3.1 High-Level Parallel Programming . 16
1.3.2 Multiprocessing in Python . 16
1.3.3 Multithreading with Julia . 19
1.3.4 Tasking in Ada . 22
1.3.5 Performance Monitoring . 27
1.3.6 Bibliography . 27
1.3.7 Exercises . 27

2 Introduction to Message Passing 29
2.1 Basics of MPI . 29

2.1.1 One Single Program Executed by all Nodes . 29
2.1.2 Initialization, Finalization, and the Universe . 30
2.1.3 Broadcasting Data . 31
2.1.4 Moving Data from Manager to Workers . 32
2.1.5 MPI for Python . 35
2.1.6 MPI wrappers for Julia . 36
2.1.7 Bibliography . 36
2.1.8 Exercises . 37

i

2.2 Using MPI . 37
2.2.1 Scatter and Gather . 37
2.2.2 Send and Recv . 39
2.2.3 Reducing the Communication Cost . 41
2.2.4 Point-to-Point Communication with MPI for Python . 42
2.2.5 Point-to-Point Communication with the MPI wrappers in Julia 44
2.2.6 Bibliography . 45
2.2.7 Exercises . 45

2.3 Pleasingly Parallel Computations . 45
2.3.1 Ideal Parallel Computations . 45
2.3.2 Monte Carlo Simulations . 46
2.3.3 SPRNG: scalable pseudorandom number generator . 46
2.3.4 Bibliography . 52
2.3.5 Exercises . 53

2.4 Load Balancing . 53
2.4.1 the Mandelbrot set . 53
2.4.2 Granularity . 55
2.4.3 Static Work Load Assignment . 55
2.4.4 Static work load assignment with MPI . 55
2.4.5 an implementation with mpi4py . 58
2.4.6 Dynamic Work Load Balancing . 59
2.4.7 probing in Python and Julia . 61
2.4.8 Scalability . 63
2.4.9 Bibliography . 63
2.4.10 Exercises . 64

2.5 Handson Supercomputing . 64
2.5.1 working on a fast workstation . 64
2.5.2 using a real supercomputer . 64

2.6 Data Partitioning . 65
2.6.1 functional and domain decomposition . 65
2.6.2 parallel summation . 65
2.6.3 An Application . 72
2.6.4 Nonblocking Point-to-Point Communication . 73
2.6.5 Exercises . 75

3 Introduction to Threading and Tasking 77
3.1 Introduction to OpenMP . 77

3.1.1 programming shared memory parallel computers . 77
3.1.2 multithreading in Julia . 78
3.1.3 the OpenMP Application Program Interface . 81
3.1.4 using OpenMP . 81
3.1.5 Numerical Integration with OpenMP . 83
3.1.6 Bibliography . 85
3.1.7 Exercises . 85

3.2 The Crew of Threads Model . 86
3.2.1 Multithreaded Processes . 86
3.2.2 The Work Crew Model . 87
3.2.3 A Crew of Workers with Julia . 87
3.2.4 Processing a Job Queue . 89
3.2.5 Processing the Jobs with OpenMP . 92
3.2.6 The POSIX Threads Programming Interface . 93
3.2.7 Implementing a Critical Section with mutex . 96
3.2.8 The Dining Philosophers Problem . 98
3.2.9 Bibliography . 98

ii

3.2.10 Exercises . 98
3.3 Tasking with OpenMP . 99

3.3.1 Parallel Recursive Functions . 99
3.3.2 Parallel Recursive Quadrature . 101
3.3.3 Bernstein’s Conditions . 103
3.3.4 Task Dependencies . 103
3.3.5 Parallel Blocked Matrix Multiplication . 104
3.3.6 Bibliography . 106
3.3.7 Exercises . 106

3.4 Tasking with Julia . 106
3.4.1 Parallel Recursive Functions . 106
3.4.2 Parallel Recursive Quadrature . 108
3.4.3 Parallel Merge Sort . 109
3.4.4 Basic Linear Algebra Subprograms . 111
3.4.5 Exercises . 112

3.5 Evaluating Parallel Performance . 113
3.5.1 Metrics . 113
3.5.2 Isoefficiency . 114
3.5.3 Task Graph Scheduling . 115
3.5.4 The Roofline Model . 120
3.5.5 Bibliography . 121

3.6 Work Stealing . 121
3.6.1 Work Stealing Simulated by a Julia Program . 123
3.6.2 Multithreading in Python with Numba . 125
3.6.3 Multithreading in Python with Parsl . 126
3.6.4 the Intel Threading Building Blocks (TBB) . 126
3.6.5 using the parallel_for . 127
3.6.6 using the parallel_reduce . 131
3.6.7 Bibliography . 133
3.6.8 Exercises . 133

4 Acceleration with Graphics Processing Units 135
4.1 A Massively Parallel Processor: the GPU . 135

4.1.1 Introduction to General Purpose GPUs . 135
4.1.2 Graphics Processors as Parallel Computers . 138
4.1.3 Bibliography . 143
4.1.4 Exercises . 143

4.2 Programming GPUs with PyCUDA and Julia . 143
4.2.1 Data Parallelism . 143
4.2.2 Matrix Matrix Multiplication . 144
4.2.3 PyCUDA . 144
4.2.4 Vendor Agnostic GPU Computing in Julia . 150
4.2.5 Bibliography . 152
4.2.6 Exercises . 152

4.3 Introduction to CUDA . 153
4.3.1 Our first GPU Program . 153
4.3.2 CUDA Program Structure . 156
4.3.3 using CUDA.jl . 162
4.3.4 Exercises . 163

4.4 Data Parallelism and Matrix Multiplication . 163
4.4.1 Data Parallelism . 163
4.4.2 Code for Matrix-Matrix Multiplication . 164
4.4.3 Two Dimensional Arrays of Threads . 168
4.4.4 Examining Performance . 168

iii

4.4.5 using CUDA.jl and Metal.jl . 170
4.4.6 Exercises . 171

4.5 Device Memories and Matrix Multiplication . 171
4.5.1 Device Memories . 171
4.5.2 Matrix Multiplication . 175
4.5.3 using shared memory with CUDA.jl . 179
4.5.4 Bibliography . 180
4.5.5 Exercises . 180

4.6 Thread Organization and Matrix Multiplication . 180
4.6.1 Thread Organization . 180
4.6.2 Matrix Matrix Multiplication . 182
4.6.3 Submatrices with Threads in CUDA.jl . 185
4.6.4 Thread Synchronization . 186
4.6.5 Bibliography . 188
4.6.6 Exercises . 188

4.7 Warps and Reduction Algorithms . 188
4.7.1 More on Thread Execution . 188
4.7.2 Parallel Reduction Algorithms . 191
4.7.3 Julia Defined Kernels . 193
4.7.4 Bibliography . 196
4.7.5 Exercises . 197

5 Review for the Midterm Exam 199
5.1 Four Sample Questions . 199

5.1.1 Scaled Speedup . 199
5.1.2 Network Topologies . 199
5.1.3 Task Graph Scheduling . 201
5.1.4 Compute Bound or Memory Bound . 201

5.2 Fall 2024 Midterm Questions . 203
5.2.1 Question 1 : Isoefficiency . 203
5.2.2 Question 2 : the roofline model . 204
5.2.3 Question 3 : tasking for enumeration . 204
5.2.4 Question 4 : CGMA ratio . 206

6 Pipelining and Synchronized Computations 207
6.1 Pipelined Computations . 207

6.1.1 Functional Decomposition . 207
6.1.2 Loop Unrolling . 208
6.1.3 Pipeline Implementations . 211
6.1.4 Using MPI to implement a pipeline . 211
6.1.5 Exercises . 214

6.2 Pipelined Sorting, Sieving, Substitution . 215
6.2.1 Sorting Numbers . 215
6.2.2 Prime Number Generation . 218
6.2.3 Solving Triangular Systems . 219
6.2.4 Bibliography . 222
6.2.5 Exercises . 223

6.3 Solving Triangular Systems . 223
6.3.1 Ill Conditioned Matrices and Quad Doubles . 223
6.3.2 On a Parallel Shared Memory Computer with OpenMP . 225
6.3.3 Accelerated Back Substitution . 228
6.3.4 Bibliography . 232
6.3.5 Exercises . 232

6.4 Barriers for Synchronizations . 232

iv

6.4.1 Synchronizing Computations . 233
6.4.2 The Prefix Sum Algorithm . 236
6.4.3 Brent’s Theorem . 239
6.4.4 Bibliography . 240
6.4.5 Exercises . 240

6.5 Parallel Iterative Methods for Linear Systems . 240
6.5.1 Jacobi Iterations . 240
6.5.2 A Parallel Implementation with MPI . 242
6.5.3 Gather-to-All with MPI_Allgather . 243
6.5.4 Strip Partitioning and Reduce Barriers in Julia . 246
6.5.5 Exercises . 249

6.6 Domain Decomposition Methods . 249
6.6.1 Gauss-Seidel Relaxation . 249
6.6.2 Parallel Gauss-Seidel with OpenMP . 251
6.6.3 Solving the Heat Equation . 253
6.6.4 Solving the Heat Equation with PETSc . 256
6.6.5 Bibliography . 256
6.6.6 Exercises . 256

6.7 Memory Coalescing Techniques . 256
6.7.1 Accessing Global and Shared Memory . 256
6.7.2 Memory Coalescing Techniques . 261
6.7.3 Avoiding Bank Conflicts . 264
6.7.4 Exercises . 266

6.8 Introduction to Tensor Cores . 266
6.8.1 High Throughput Computing . 266
6.8.2 Volta, Ampere, Hopper Architectures . 266
6.8.3 Simple Matrix Multiplication . 270
6.8.4 Bibliography . 273
6.8.5 Exercises . 273

6.9 Performance Considerations . 273
6.9.1 Dynamic Partitioning of Resources . 274
6.9.2 The Compute Visual Profiler . 275
6.9.3 Data Prefetching and Instruction Mix . 279
6.9.4 Thread Coarsening . 280
6.9.5 Exercises . 283

7 Indices and tables 285

Index 287

v

vi

CHAPTER 0

Preface

This document contains the lecture notes for the course MCS 572, introduction to supercomputing, at the University
of Illinois at Chicago.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

The first runs of the course followed the book of Wilkinson and Allen. The book by Kirk, Hwu, and El Hajj is our main
reference for acceleration on Graphics Processing Units (GPUs).

The goal of the course is to study the design and analysis of parallel algorithms and their implementation using message
passing, multithreading, multitasking, and acceleration. We study the application of parallel programs to solve scientific
problems.

0.1 Three Different Types of Parallelism

We distinguish between three different types of parallel computers:

1. Distributed Memory Parallel Computers

2. Shared Memory Parallel Computers

3. General Purpose Graphics Processing Units

for which we have three corresponding programming models:

1. Message Passing

2. Multithreading and Multitasking

3. Data Staging Algorithms

Load balancing algorithms are introduced for distributed memory and shared memory parallel computers. Partitioning
and divide-and-conquer strategies are applied in the design of parallel algorithms. Tools and models to evaluate the
performance of parallel programs are the task graph, isoefficiency, and the roofline model. Pipelining is a common
technique to make parallel programs.

1

Introduction to Supercomputing, Release 1.2.5

0.2 Programming Languages

The course is not a programming course, but a computational course. Familiarity with computers and programming is
assumed.

1. Python allows for high level parallel programing The package mpi4py enables distributed memory parallel pro-
gramming via message passing. Kernels can be launched for GPU execution using PyCUDA.

2. Julia has a MATLAB-like syntax and offers support for message passing via the package MPI.jl, has tools for
multithreading and multitasking. One nice feature of the Julia ecosystem is the ability for vendor agnostic GPU
acceleration.

3. C++ achieves performance portability. Using C and C++ as a programming model requires greater attention to
the memory model.

It is important to emphasize that we are using programming languages to run short parallel programs, or to call code
from software libraries.

0.3 Bibliography

1. Barry Wilkinson and Michael Allen: Parallel Programming. Techniques and Applications Using Networked
Workstations and Parallel Computers Pearson Prentice Hall, second edition, 2005.

2. David B. Kirk, Wen-mei W. Hwu, Izzat El Hajj: Programming Massively Parallel Processors. A Hands-on
Approach Elsevier/Morgan Kaufmann Publishers, fourth edition, 2023.

2 Chapter 0. Preface

CHAPTER 1

Introduction to Parallel Computing

This chapter collects some notes on the first three lectures in the first week of the course. We introduce some terminol-
ogy and end with high level parallelism.

1.1 Introduction

In this first lecture we define supercomputing, speedup, and efficiency. Gustafson’s Law reevaluates Amdahl’s Law.

1.1.1 What is a Supercomputer?

Doing supercomputing means to use a supercomputer and is also called high performance computing.

Definition of Supercomputer

A supercomputer is a computing system (hardware, system & application software) that provides close to the best
currently achievable sustained performance on demanding computational problems.

The current classification of supercomputers can be found at the TOP500 Supercomputer Sites.

The list of the top 5 supercomputers as of June 2024 is shown in Fig. 1.1.

A flop is a floating point operation. Performance is often measured in the number of flops per second. If two flops can
be done per clock cycle, then a processor at 3GHz can theoretically perform 6 billion flops (6 gigaflops) per second.
All computers in the top 10 achieve more than 1 petaflop per second.

Some system terms and architectures are listed below:

• core for a CPU: unit capable of executing a thread, for a GPU: a streaming multiprocessor.

• Rmax maximal performance achieved on the LINPACK benchmark (solving a dense linear system) for problem
size Nmax, measured in Gflop/s.

• Rpeak theoretical peak performance measured in Gflop/s.

3

http://www.top500.org

Introduction to Supercomputing, Release 1.2.5

Fig. 1.1: Top 5 Supercomputers, as of June 2024.

4 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

• Power total power consumed by the system.

In Fig. 1.2 the evolution of the performance of the top 500 supercomputers is illustrated.

Fig. 1.2: Historical evolution of performance of supercomputers.

Concerning the types of architectures, we note the use of commodity leading edge microprocessors running at their
maximal clock and power limits. Alternatively supercomputers use special processor chips running at less than maximal
power to achieve high physical packaging densities. Thirdly, we observe mix of chip types and accelerators (GPUs).

1.1. Introduction 5

Introduction to Supercomputing, Release 1.2.5

1.1.2 Measuring Performance

The next definition links speedup and efficiency.

Definition of Speedup and Efficiency

By 𝑝 we denote the number of processors.

Speedup 𝑆(𝑝) =
sequential execution time
parallel execution time

.

Efficiency is another measure for parallel performance:

Efficiency 𝐸(𝑝) =
speedup

number of processors
=

𝑆(𝑝)

𝑝
× 100%.

In the best case, we hope: 𝑆(𝑝) = 𝑝 and 𝐸(𝑝) = 100%. If 𝐸 = 50%, then on average processors are idle for half of
the time.

While we hope for 𝑆(𝑝) = 𝑝, we may achieve 𝑆(𝑝) > 𝑝 and achieve superlinear speedup. Consider for example a
sequential search in an unsorted list. A parallel search by 𝑝 processors divides the list evenly in 𝑝 sublists.

Fig. 1.3: A search illustrates superlinear speedup.

The sequential search time depends on position in list. The parallel search time depends on position in sublist. We
obtain a huge speedup if the element we look for is for example the first element of the last sublist, as illustrated in Fig.
1.3.

1.1.3 Amdahl’s and Gustafson’s Law

Consider a job that takes time 𝑡 on one processor. Let 𝑅 be the fraction of 𝑡 that must be done sequentially, 𝑅 ∈ [0, 1].
Consider Fig. 1.4.

We then calculate the speedup on 𝑝 processors as

𝑆(𝑝) ≤ 𝑡

𝑅𝑡 + (1−𝑅)𝑡
𝑝

=
1

𝑅 + 1−𝑅
𝑝

≤ 1

𝑅
.

Amdahl’s Law (1967)

Let 𝑅 be the fraction of the operations which cannot be done in parallel. The speedup with 𝑝 processors is bounded
by

1

𝑅 + 1−𝑅
𝑝

.

6 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

Fig. 1.4: Illustration of Amdahl’s Law.

Corollary of Amdahl’s Law

𝑆(𝑝) ≤ 1

𝑅
as 𝑝 → ∞.

Example of Amdahl’s Law

Suppose 90% of the operations in an algorithm can be executed in parallel. What is the best speedup with 8 proces-
sors? What is the best speedup with an unlimited amount of processors?

𝑝 = 8 :
1

1
10 +

(︀
1 − 1

10

)︀
1
8

=
80

17
≈ 4.7

𝑝 = ∞ :
1

1/10
= 10.

In contrast to Ahmdahl’s Law, we can start with the observation that many results obtained on supercomputers cannot
be obtained one one processor. To derive the notion of scaled speedup, we start by considering a job that took time 𝑡
on 𝑝 processors. Let 𝑠 be the fraction of 𝑡 that is done sequentially. Consider Fig. 1.5.

The we computed the scaled speedup as follows:

𝑆𝑠(𝑝) ≤ 𝑠𝑡 + 𝑝(1 − 𝑠)𝑡

𝑡
= 𝑠 + 𝑝(1 − 𝑠) = 𝑝 + (1 − 𝑝)𝑠.

We observe that the problem size scales with the number of processors!

Gustafson’s Law (1988)

If 𝑠 is the fraction of serial operations in a parallel program run on 𝑝 processors, then the scaled speedup is bounded
by 𝑝 + (1 − 𝑝)𝑠.

1.1. Introduction 7

Introduction to Supercomputing, Release 1.2.5

Fig. 1.5: Illustration of Gustafson’s Law.

Example of Gustafson’s Law

Suppose benchmarking reveals that 5% of time on a 64-processor machine is spent on one single processor (e.g.:
root node working while all other processors are idle). Compute the scaled speedup.

𝑝 = 64, 𝑠 = 0.05 : 𝑆𝑠(𝑝) ≤ 64 + (1 − 64)0.05 = 64 − 3.15 = 60.85.

More processing power often leads to better results, and we can achieve quality up. Below we list some examples.

• Finer granularity of a grid; e.g.: discretization of space and/or time in a differential equation.

• Greater confidence of estimates; e.g.: enlarged number of samples in a simulation.

• Compute with larger numbers (multiprecision arithmetic); e.g.: solve an ill-conditioned linear system.

If we can afford to spend the same amount of time on solving a problem then we can ask how much better we can solve
the same problem with 𝑝 processors? This leads to the notion of quality up.

quality up 𝑄(𝑝) =
quality on 𝑝 processors
quality on 1 processor

𝑄(𝑝) measures improvement in quality using 𝑝 procesors, keeping the computational time fixed.

1.1.4 Bibliography

1. S.G. Akl. Superlinear performance in real-time parallel computation. The Journal of Supercomputing,
29(1):89–111, 2004.

2. J.L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM, 31(5):532-533, 1988.

3. P.M. Kogge and T.J. Dysart. Using the TOP500 to trace and project technology and architecture trends.
In SC’11 Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis. ACM 2011.

4. B. Wilkinson and M. Allen. Parallel Programming. Techniques and Applications Using Networked Workstations
and Parallel Computers. Prentice Hall, 2nd edition, 2005.

5. J.M. Wing. Computational thinking. Communications of the ACM, 49(3):33-35, 2006.

8 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

1.1.5 Exercises

1. How many processors whose clock speed runs at 3.0GHz does one need to build a supercomputer which achieves
a theoretical peak performance of at least 4 Tera Flops? Justify your answer.

2. Suppose we have a program where 2% of the operations must be executed sequentially. According to Amdahl’s
law, what is the maximum speedup which can be achieved using 64 processors? Assuming we have an unlimited
number of processors, what is the maximal speedup possible?

3. Benchmarking of a program running on a 64-processor machine shows that 2% of the operations are done se-
quentially, i.e.: that 2% of the time only one single processor is working while the rest is idle. Use Gustafson’s
law to compute the scaled speedup.

1.2 Classifications and Scalability

Parallel computers can be classified by instruction and data streams. Another distinction is between shared and dis-
tributed memory systems. We define clusters and the scalability of a problem. Network topologies apply both to
hardware configurations and algorithms to transfer data.

1.2.1 Types of Parallel Computers

In 1966, Flynn introduced what is called the MIMD and SIMD classification:

• SISD: Single Instruction Single Data stream

One single processor handles data sequentially. We use pipelining (e.g.: car assembly) to achieve parallelism.

• MISD: Multiple Instruction Single Data stream

This is called systolic arrays and has been of little interest.

• SIMD: Single Instruction Multiple Data stream

In graphics computing, one issues the same command for pixel matrix.

One has vector and arrays processors for regular data structures.

• MIMD: Multiple Instruction Multiple Data stream

This is the general purpose multiprocessor computer.

One model is SPMD: Single Program Multiple Data stream: All processors execute the same program. Branching
in the code depends on the identification number of the processing node. Manager worker paradigm fits the SPMD
model: manager (also called root) has identification zero; and workers are labeled 1, 2, . . . , 𝑝− 1.

The distinction between shared and distributed memory parallel computers is illustrated with an example in Fig. 1.6.

1.2.2 Clusters and Scalability

Definition of Cluster

A cluster is an independent set of computers combined into a unified system through software and networking.

1.2. Classifications and Scalability 9

Introduction to Supercomputing, Release 1.2.5

Fig. 1.6: A shared memory multicomputer has one single address space, accessible to every processor. In a distributed
memory multicomputer, every processor has its own memory accessible via messages through that processor. Most
nodes in a parallel computers have multiple cores.

Beowulf clusters are scalable performance clusters based on commodity hardware, on a private network, with open
source software.

Three factors drove the clustering revolution in computing. First is the availability of commodity hardware: choice
of many vendors for processors, memory, hard drives, etc. . . Second, concerning networking, Ethernet is dominating
commodity networking technology, supercomputers have specialized networks. The third factor consists of open source
software infrastructure: Linux and MPI.

We next discuss scalability as it relates to message passing in clusters.

total time = computation time + communication time⏟ ⏞
o v e r h e a d

Because we want to reduce the overhead, the

computation/communication ratio =
computation time

communication time

determines the scalability of a problem: The question is How well can we increase the problem size n, keeping p, the
number of processors fixed? We desire that the order of overhead ≪ order of computation, so ratio → ∞, Examples:
𝑂(log2(𝑛)) < 𝑂(𝑛) < 𝑂(𝑛2). One remedy is to overlap the communication with computation.

In a distributed shared memory computer: the memory is physically distributed with each processor; and each pro-
cessor has access to all memory in single address space. The benefits are that message passing often not attractive to
programmers; and while shared memory computers allow limited number of processors, distributed memory comput-
ers scale well. The disadvantage is that access to remote memory location causes delays and the programmer does not
have control to remedy the delays.

1.2.3 Network Topologies

We distinguish between static connections and dynamic network topologies enabled by switches. Below is some ter-
minology.

• bandwidth: number of bits transmitted per second

• on latency, we distinguish tree types:

– message latency: time to send zero length message (or startup time),

– network latency: time to make a message transfer the network,

– communication latency: total time to send a message including software overhead and interface delays.

10 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

• diameter of network: minimum number of links between nodes that are farthest apart

• on bisecting the network:

bisection width: number of links needed to cut network
in two equal parts,

bisection bandwidth: number of bits per second which can
be sent from one half of network to the other half.

Connecting 𝑝 nodes in complete graph is too expensive. Small examples of an array and ring topology are shown in
Fig. 1.7. A matrix and torus of 16 nodes is shown in Fig. 1.8.

Fig. 1.7: An array and ring of 4 notes.

Fig. 1.8: A matrix and torus of 16 nodes.

A hypercube network is defined as follows. Two nodes are connected ⇔ their labels differ in exactly one bit. Simple
examples are shown in Fig. 1.9.

Fig. 1.9: Two special hypercubes: a square and cube.

e-cube or left-to-right routing: flip bits from left to right, e.g.: going from node 000 to 101 passes through 100. In a
hypercube network with 𝑝 nodes, the maximum number of flips is log2(𝑝), and the number of connections is . . .?

Consider a binary tree. The leaves in the tree are processors. The interior nodes in the tree are switches. This gives
rise to a tree network, shown in Fig. 1.10.

Often the tree is fat: with an increasing number of links towards the root of the tree.

Dynamic network topologies are realized by switches. In a shared memory multicomputer, processors are usually
connected to memory modules by a crossbar switch. An example, for 𝑝 = 4, is shown in Fig. 1.11.

1.2. Classifications and Scalability 11

Introduction to Supercomputing, Release 1.2.5

Fig. 1.10: A binary tree network.

Fig. 1.11: Processors connected to memory modules via a crossbar switch.

Fig. 1.12: 2-by-2 swiches.

12 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

A 𝑝-processor shared memory computer requires 𝑝2 switches. 2-by-2 switches are shown in Fig. 1.12.

Changing from pass through to cross over configuration changes the connections between the computers in the network,
see Fig. 1.13.

Fig. 1.13: Changing switches from pass through to cross over.

The rules in the routing algorithm in a multistage network are the following:

1. bit is zero: select upper output of switch; and

2. bit is one: select lower output of switch.

The first bit in the input determines the output of the first switch, the second bit in the input determines the output of
the second switch. Fig. 1.14 shows a 2-stage network between 4 nodes.

Fig. 1.14: A 2-stage network between 4 nodes.

The communication between 2 nodes using 2-by-2 switches causes blocking: other nodes are prevented from com-
municating. The number of switches for 𝑝 processors equals log2(𝑝) × 𝑝

2 . Fig. 1.15 shows the application of circuit
switching for 𝑝 = 23.

We distinguish between circuit and packet switching. If all circuits are occupied, communication is blocked. Alternative
solution: packet switching: message is broken in packets and sent through network. Problems to avoid:

• deadlock: Packets are blocked by other packets waiting to be forwarded. This occurs when the buffers are full
with packets. Solution: avoid cycles using e-cube routing algorithm.

• livelock: a packet keeps circling the network and fails to find its destination.

The network in a typical cluster is shown in Fig. 1.16.

Modern workstations are good for software development and for running modest test cases to investigate scalability. We
give two examples. HP workstation Z800 RedHat Linux: two 6-core Intel Xeon at 3.47Ghz, 24GB of internal memory,
and 2 NVDIA Tesla C2050 general purpose graphic processing units. Microway whisperstation RedHat Linux: two 8-
core Intel Xeon at 2.60Ghz, 128GB of internal memory, and 2 NVDIA Tesla K20C general purpose graphic processing
units.

The Hardware Specs of the new UIC Condo cluster is at <http://rc.uic.edu/hardware-specs>:

• Two login nodes are for managing jobs and file system access.

1.2. Classifications and Scalability 13

http://rc.uic.edu/hardware-specs

Introduction to Supercomputing, Release 1.2.5

Fig. 1.15: A 3-stage Omega interconnection network.

Fig. 1.16: A cluster connected via ethernet.

14 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

• 160 nodes, each node has 16 cores, running at 2.60GHz, 20MB cache, 128GB RAM, 1TB storage.

• 40 nodes, each node has 20 cores, running at 2.50GHz, 20MB cache, 128GB RAM, 1TB storage.

• 3 large memory compute nodes, each with 32 cores having 1TB RAM giving 31.25GB per core. Total adds upto
96 cores and 3TB of RAM.

• Total adds up to 3,456 cores, 28TB RAM, and 203TB storage.

• 288TB fast scratch communicating with nodes over QDR infiniband.

• 1.14PB of raw persistent storage.

1.2.4 Bibliography

1. M.J. Flynn and K. W. Rudd. Parallel Architectures. ACM Computing Surveys 28(1): 67-69, 1996.

2. A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing. Pearson. Addison-Wesley.
Second edition, 2003.

3. G.K. Thiruvathukal. Cluster Computing. Guest Editor’s Introduction. Computing in Science and Engineer-
ing 7(2): 11-13, 2005.

4. B. Wilkinson and M. Allen. Parallel Programming. Techniques and Applications Using Networked Workstations
and Parallel Computers. Prentice Hall, 2nd edition, 2005.

1.2.5 Exercises

1. Derive a formula for the number of links in a hypercube with 𝑝 = 2𝑘 processors for some positive number 𝑘.

2. Consider a network of 16 nodes, organized in a 4-by-4 mesh with connecting loops to give it the topology of a
torus (or doughnut). Can you find a mapping of the nodes which give it the topology of a hypercube? If so, use
4 bits to assign labels to the nodes. If not, explain why.

3. We derived an Omega network for eight processors. Give an example of a configuration of the switches which
is blocking, i.e.: a case for which the switch configurations prevent some nodes from communicating with each
other.

4. Draw a multistage Omega interconnection network for 𝑝 = 16.

1.3 High Level Parallel Processing

In this lecture we give three examples of what could be considered high level parallel processing. First we see how
we may accelerate matrix-matrix multiplication using the computer algebra system Maple. Then we explore the mul-
tiprocessing module in Python and finally we show how multitasking in the object-oriented language Ada is effective
in writing parallel programs.

In high level parallel processing we can use an existing programming environment to obtain parallel implementations of
algorithms. In this lecture we give examples of three fundamentally different programming tools to achieve parallelism:
multi-processing (distributed memory), multi-threading (shared memory), and use of accelerators (general purpose
graphics processing units).

There is some sense of subjectivity with the above description of what high level means. If unfamiliar with Python,
Julia, or Ada, then the examples in this lecture may also seem too technical. What does count as high level is that we
do not worry about technical issues as communication overhead, resource utilitization, synchronization, etc., but we
ask only two questions. Is the parallel code correct? Does the parallel code run faster?

1.3. High Level Parallel Processing 15

Introduction to Supercomputing, Release 1.2.5

1.3.1 High-Level Parallel Programming

In an attempt to define high-level parallel programming, we list some characteristics:

• familiar: no new language needed,

• interactive: receive quick feedback,

• personal: no supercomputer needed.

Rapid prototyping can help to decide if parallelism is feasible for a particular computation in an application.

The 17th international symposium on High-Level Parallel Programming and Applications (HLPP 2024), was held in
Pisa, Italy, July 4-5, 2024.

Some of the topics include

• high-level programming and performance models,

• software synthesis, automatic code generation,

• applications using high-level languages and tools,

• formal models of verification.

While high-level also covers abstract and formal, there is a need for practical software and tools, so the high-level
is not the opposite of technical.

1.3.2 Multiprocessing in Python

Some advantages of the scripting language Python are: educational, good for novice programmers, modules for scientfic
computing: NumPy, SciPy, SymPy. Sage, a free open source mathematics software system, uses Python to interface

many free and open source software packages. Our example:
∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥 =

𝜋

4
. We will use the Simpson rule

(available in SciPy) as a relatively computational intensive example.

We develop our scripts in an interactive Python shell:

$ python
Python 2.6.1 (r261:67515, Jun 24 2010, 21:47:49)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from scipy.integrate import simps
>>> from scipy import sqrt, linspace, pi
>>> f = lambda x: sqrt(1-x**2)
>>> x = linspace(0,1,1000)
>>> y = f(x)
>>> I = simps(y,x)
>>> 4*I
3.1415703366671113

The script simpson4pi.py is below:

from scipy.integrate import simps
from scipy import sqrt, linspace, pi
f = lambda x: sqrt(1-x**2)
x = linspace(0,1,100); y = f(x)
I = 4*simps(y,x); print '10^2', I, abs(I - pi)
x = linspace(0,1,1000); y = f(x)

(continues on next page)

16 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

I = 4*simps(y,x); print '10^3', I, abs(I - pi)
x = linspace(0,1,10000); y = f(x)
I = 4*simps(y,x); print '10^4', I, abs(I - pi)
x = linspace(0,1,100000); y = f(x)
I = 4*simps(y,x); print '10^5', I, abs(I - pi)
x = linspace(0,1,1000000); y = f(x)
I = 4*simps(y,x); print '10^6', I, abs(I - pi)
x = linspace(0,1,10000000); y = f(x)
I = 4*simps(y,x); print '10^7', I, abs(I - pi)

To run the script simpson4pi.py, We type at the command prompt $:

$ python simpson4pi.py
10^2 3.14087636133 0.000716292255311
10^3 3.14157033667 2.23169226818e-05
10^4 3.1415919489 7.04691599296e-07
10^5 3.14159263131 2.2281084977e-08
10^6 3.14159265289 7.04557745479e-10
10^7 3.14159265357 2.22573071085e-11

The slow convergence makes that this is certainly not a very good way to approximate 𝜋, but it fits our purposes. We
have a slow computationally intensive process that we want to run in parallel.

We measure the time it takes to run a script as follows. Saving the content of

from scipy.integrate import simps
from scipy import sqrt, linspace, pi
f = lambda x: sqrt(1-x**2)
x = linspace(0,1,10000000); y = f(x)
I = 4*simps(y,x)
print I, abs(I - pi)

into the script simpson4pi1.py, we use the unix time command.

$ time python simpson4pi1.py
3.14159265357 2.22573071085e-11

real 0m2.853s
user 0m1.894s
sys 0m0.956s

The real is the so-called wall clock time, user indicates the time spent by the processor and sys is the system time.

Python has a multiprocessing module. The script belows illustrates its use.

from multiprocessing import Process
import os
from time import sleep

def say_hello(name,t):
"""
Process with name says hello.
"""
print 'hello from', name

(continues on next page)

1.3. High Level Parallel Processing 17

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

print 'parent process :', os.getppid()
print 'process id :', os.getpid()
print name, 'sleeps', t, 'seconds'
sleep(t)
print name, 'wakes up'

pA = Process(target=say_hello, args = ('A',2,))
pB = Process(target=say_hello, args = ('B',1,))
pA.start(); pB.start()
print 'waiting for processes to wake up...'
pA.join(); pB.join()
print 'processes are done'

Running the script shows the following on screen:

$ python multiprocess.py
waiting for processes to wake up...
hello from A
parent process : 737
process id : 738
A sleeps 2 seconds
hello from B
parent process : 737
process id : 739
B sleeps 1 seconds
B wakes up
A wakes up
processes are done

Let us do numerical integration with multiple processes, with the script simpson4pi2.py listed below.

from multiprocessing import Process, Queue
from scipy import linspace, sqrt, pi
from scipy.integrate import simps

def call_simpson(fun, a,b,n,q):
"""
Calls Simpson rule to integrate fun
over [a,b] using n intervals.
Adds the result to the queue q.
"""
x = linspace(a, b, n)
y = fun(x)
I = simps(y, x)
q.put(I)

def main():
"""
The number of processes is given at the command line.
"""
from sys import argv
if len(argv) < 2:

(continues on next page)

18 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

print 'Enter the number of processes at the command line.'
return

npr = int(argv[1])
crc = lambda x: sqrt(1-x**2)
nbr = 20000000
nbrsam = nbr/npr
intlen = 1.0/npr
queues = [Queue() for _ in range(npr)]
procs = []
(left, right) = (0, intlen)
for k in range(1, npr+1):

procs.append(Process(target=call_simpson, \
args = (crc, left, right, nbrsam, queues[k-1])))

(left, right) = (right, right+intlen)
for process in procs:

process.start()
for process in procs:

process.join()
app = 4*sum([q.get() for q in queues])
print app, abs(app - pi)

To check for speedup we run the script as follows:

$ time python simpson4pi2.py 1
3.14159265358 8.01003707807e-12

real 0m2.184s
user 0m1.384s
sys 0m0.793s
$ time python simpson4pi2.py 2
3.14159265358 7.99982302624e-12

real 0m1.144s
user 0m1.382s
sys 0m0.727s
$

We have as speedup 2.184/1.144 = 1.909.

1.3.3 Multithreading with Julia

Julia offers a fresh approach to numerical computing. The picture in Fig. 1.17 is taken from the Software Engineering
Daily web site.

We apply multithreading in a Jupyter notebook, in a kernel installed with the environment variable set to 16 threads.

julia> using IJulia
julia> installkernel("Julia (16 threads)",

env = Dict("JULIA_NUM_THREADS"=>"16"))

The matrix-matrix multiplication is executed by mul!() of BLAS, where BLAS stands for the Basic Linear Algebra
Subroutines. Two issues we must consider:

1.3. High Level Parallel Processing 19

Introduction to Supercomputing, Release 1.2.5

Fig. 1.17: What makes Julia a great language.

20 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

1. Choose the size of the matrices large enough.

2. The time should not include the compilation time.

The instructions in code cells of a Jupyter notebook:

using LinearAlgebra
n = 8000
A = rand(n, n);
B = rand(n, n);
C = rand(n, n);
BLAS.set_num_threads(2)
@time mul!(C, A, B)

which reports 10.722 seconds (2.87 M allocations, 5.13% compilation time)

Redo, and the second time: 10.359 seconds.

BLAS.set_num_threads(4)
@time mul!(C, A, B)

which prints 6.080 seconds.

To illustrate parallel numerical integration, we can estimate 𝜋, via the area of the unit disk:∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥 =

𝜋

4

using the following steps:

1. Generate random uniformly distributed points with coordinates (𝑥, 𝑦) ∈ [0,+1] × [0,+1].

2. We count a success when 𝑥2 + 𝑦2 ≤ 1.

By the law of large numbers, the average of the observed successes converges to the expected value or mean, as the
number of experiments increases.

Let us code this in Julia.

A dedicated random number generator is applied:

myrand(x::Int64) = (1103515245x + 12345) % 2^31

The function to estimate 𝜋 is below:

"""
function estimatepi(n)

Runs a simple Monte Carlo method
to estimate pi with n samples.
"""
function estimatepi(n)

r = threadid()
count = 0
for i=1:n

r = myrand(r)
x = r/2^31
r = myrand(r)
y = r/2^31

(continues on next page)

1.3. High Level Parallel Processing 21

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

count += (x^2 + y^2) <= 1
end
return 4*count/n

end

In a Jupyter notebook with 16 threads, we run a parallel for loop

nt = nthreads()
estimates = zeros(nt)
import Statistics
timestart = time()

@threads for i=1:nt
estimates[i] = estimatepi(10_000_000_000/nt)

end

estpi = Statistics.mean(estimates)
elapsed16 = time() - timestart

The value for elapsed16 is printed as 5.387.

Running version 1.4.0-DEV.364 (2019-10-22) on two 22-core 2.2 GHz Intel Xeon E5-2699 processors in a CentOS
Linux workstation with 256 GB RAM, produces the following table of timings.

Table 1.1: Running times with Julia multithreading.

p wall clock time elapsed time
1 1m 2.313s 62.060s
2 32.722s 32.418s
3 22.471s 22.190s
4 17.343s 17.042s
5 14.170s 13.896s
6 12.300s 11.997s
7 10.702s 10.442s

1.3.4 Tasking in Ada

Ada is a an object-oriented standardized language. Strong typing aims at detecting most errors during compile time.
The tasking mechanism implements parallelism. The gnu-ada compiler produces code that maps tasks to threads. The
main point is that shared-memory parallel programming can be done in a high level programming language as Ada.

The Simpson rule as an Ada function is shown below:

type double_float is digits 15;

function Simpson
(f : access function (x : double_float)

return double_float;
a,b : double_float) return double_float is

-- DESCRIPTION :
-- Applies the Simpson rule to approximate the

(continues on next page)

22 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

-- integral of f(x) over the interval [a,b].

middle : constant double_float := (a+b)/2.0;
length : constant double_float := b - a;

begin
return length*(f(a) + 4.0*f(middle) + f(b))/6.0;

end Simpson;

Calling Simpson in a main program:

with Ada.Numerics.Generic_Elementary_Functions;

package Double_Elementary_Functions is
new Ada.Numerics.Generic_Elementary_Functions(double_float);

function circle (x : double_float) return double_float is

-- DESCRIPTION :
-- Returns the square root of 1 - x^2.

begin
return Double_Elementary_Functions.SQRT(1.0 - x**2);

end circle;

v : double_float := Simpson(circle'access,0.0,1.0);

The composite Simpson rule is written as

function Recursive_Composite_Simpson
(f : access function (x : double_float)

return double_float;
a,b : double_float; n : integer) return double_float is

-- DESCRIPTION :
-- Returns the integral of f over [a,b] with n subintervals,
-- where n is a power of two for the recursive subdivisions.

middle : double_float;

begin
if n = 1 then
return Simpson(f,a,b);

else
middle := (a + b)/2.0;
return Recursive_Composite_Simpson(f,a,middle,n/2)

+ Recursive_Composite_Simpson(f,middle,b,n/2);
end if;

end Recursive_Composite_Simpson;

The main procedure is

1.3. High Level Parallel Processing 23

Introduction to Supercomputing, Release 1.2.5

procedure Main is

v : double_float;
n : integer := 16;

begin
for k in 1..7 loop
v := 4.0*Recursive_Composite_Simpson

(circle'access,0.0,1.0,n);
double_float_io.put(v);
text_io.put(" error :");
double_float_io.put(abs(v-Ada.Numerics.Pi),2,2,3);
text_io.put(" for n = "); integer_io.put(n,1);
text_io.new_line;
n := 16*n;

end loop;
end Main;

Compiling and executing at the command line (with a makefile):

$ make simpson4pi
gnatmake simpson4pi.adb -o /tmp/simpson4pi
gcc -c simpson4pi.adb
gnatbind -x simpson4pi.ali
gnatlink simpson4pi.ali -o /tmp/simpson4pi

$ /tmp/simpson4pi
3.13905221789359E+00 error : 2.54E-03 for n = 16
3.14155300930713E+00 error : 3.96E-05 for n = 256
3.14159203419701E+00 error : 6.19E-07 for n = 4096
3.14159264391183E+00 error : 9.68E-09 for n = 65536
3.14159265343858E+00 error : 1.51E-10 for n = 1048576
3.14159265358743E+00 error : 2.36E-12 for n = 16777216
3.14159265358976E+00 error : 3.64E-14 for n = 268435456

We define a worker task as follows:

task type Worker
(name : integer;
f : access function (x : double_float)

return double_float;
a,b : access double_float; n : integer;
v : access double_float);

task body Worker is

w : access double_float := v;

begin
text_io.put_line("worker" & integer'image(name)

& " will get busy ...");
w.all := Recursive_Composite_Simpson(f,a.all,b.all,n);
text_io.put_line("worker" & integer'image(name)

(continues on next page)

24 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

& " is done.");
end Worker;

Launching workers is done as

type double_float_array is
array (integer range <>) of access double_float;

procedure Launch_Workers
(i,n,m : in integer; v : in double_float_array) is

-- DESCRIPTION :
-- Recursive procedure to launch n workers,
-- starting at worker i, to apply the Simpson rule
-- with m subintervals. The result of the i-th
-- worker is stored in location v(i).

step : constant double_float := 1.0/double_float(n);
start : constant double_float := double_float(i-1)*step;
stop : constant double_float := start + step;
a : access double_float := new double_float'(start);
b : access double_float := new double_float'(stop);
w : Worker(i,circle'access,a,b,m,v(i));

begin
if i >= n then

text_io.put_line("-> all" & integer'image(n)
& " have been launched");

else
text_io.put_line("-> launched " & integer'image(i));
Launch_Workers(i+1,n,m,v);

end if;
end Launch_Workers;

We get the number of tasks at the command line:

function Number_of_Tasks return integer is

-- DESCRIPTION :
-- The number of tasks is given at the command line.
-- Returns 1 if there are no command line arguments.

count : constant integer
:= Ada.Command_Line.Argument_Count;

begin
if count = 0 then
return 1;

else
declare
arg : constant string

:= Ada.Command_Line.Argument(1);
(continues on next page)

1.3. High Level Parallel Processing 25

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

begin
return integer'value(arg);

end;
end if;

end Number_of_Tasks;

The main procedure is below:

procedure Main is

nbworkers : constant integer := Number_of_Tasks;
nbintervals : constant integer := (16**7)/nbworkers;
results : double_float_array(1..nbworkers);
sum : double_float := 0.0;

begin
for i in results'range loop
results(i) := new double_float'(0.0);

end loop;
Launch_Workers(1,nbworkers,nbintervals,results);
for i in results'range loop
sum := sum + results(i).all;

end loop;
double_float_io.put(4.0*sum); text_io.put(" error :");
double_float_io.put(abs(4.0*sum-Ada.Numerics.pi));
text_io.new_line;

end Main;

Times in seconds obtained as time /tmp/simpson4pitasking p for p = 1, 2, 4, 8, 16, and 32 on kepler.

Table 1.2: Running times with Ada Tasking.

p real user sys speedup
1 8.926 8.897 0.002 1.00
2 4.490 8.931 0.002 1.99
4 2.318 9.116 0.002 3.85
8 1.204 9.410 0.003 7.41
16 0.966 12.332 0.003 9.24
32 0.792 14.561 0.009 11.27

Speedups are computed as
real time with p = 1

real time with p tasks
.

26 Chapter 1. Introduction to Parallel Computing

Introduction to Supercomputing, Release 1.2.5

1.3.5 Performance Monitoring

perfmon2 is a hardware-based performance monitoring interface for the Linux kernel. To monitor the performance of
a program, with the gathering of performance counter statistics, type

$ perf stat program

at the command prompt. To get help, type perf help. For help on perf stat, type perf stat help.

To count flops, we can select an event we want to monitor.

On the Intel Sandy Bridge processor, the codes for double operations are

• 0x530110 for FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE, and

• 0x538010 for FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE.

To count the number of double operations, we do

$ perf stat -e r538010 -e r530110 /tmp/simpson4pitasking 1

and the output contains

Performance counter stats for '/tmp/simpson4pitasking 1':

4,932,758,276 r538010
3,221,321,361 r530110

9.116025034 seconds time elapsed

1.3.6 Bibliography

1. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. A Fresh Approach to Numerical Computing. SIAM
Review, Vol 59, No 1, pages 65-98, 2017.

2. Ivo Balbaert, Avik Sengupta, Malcom Sherrington: Julia: High Performance Programming. Leverage the power
of Julia to design and develop high performing programs. Packt Publishing, 2016.

1.3.7 Exercises

1. A Monte Carlo method to estimate 𝜋/4 generates random tuples (𝑥, 𝑦), with 𝑥 and 𝑦 uniformly distributed in
[0, 1]. The ratio of the number of tuples inside the unit circle over the total number of samples approximates 𝜋/4.

>>> from random import uniform as u
>>> X = [u(0,1) for i in xrange(1000)]
>>> Y = [u(0,1) for i in xrange(1000)]
>>> Z = zip(X,Y)
>>> F = filter(lambda t: t[0]**2 + t[1]**2 <= 1, Z)
>>> len(F)/250.0
3.1440000000000001

Use the multiprocessing module to write a parallel version, letting processes take samples independently. Com-
pute the speedup.

2. Develop a parallel Julia version for the simpson4pi code.

1.3. High Level Parallel Processing 27

Introduction to Supercomputing, Release 1.2.5

28 Chapter 1. Introduction to Parallel Computing

CHAPTER 2

Introduction to Message Passing

To program distributed memory parallel computers, we apply message passing.

2.1 Basics of MPI

Programming distributed memory parallel computers happens through message passing. In this lecture we give basic
examples of using the Message Passing Interface, in C, Python, and Julia. The explanation using C requires careful
attention to the data movements and this understanding is needed when applying the wrappers in Python or Julia.

2.1.1 One Single Program Executed by all Nodes

A parallel program is a collection of concurrent processes. A process (also called a job or task) is a sequence of instruc-
tions. Usually, there is a 1-to-1 map between processes and processors. If there are more processes than processors,
then processes are executed in a time sharing environment. We use the SPMD model: Single Program, Multiple Data.
Every node executes the same program. Every node has a unique identification number (id) — the root node has num-
ber zero — and code can be executed depending on the id. In a manager/worker model, the root node is the manager,
the other nodes are workers.

The letters MPI stands for Message Passing Interface. MPI is a standard specification for interprocess communication
for which several implementations exist. When programming in C, we include the header

#include <mpi.h>

to use the functionality of MPI. Open MPI is an open source implementation of all features of MPI-2. In this lecture
we use MPI in simple interactive programs, e.g.: as mpicc and mpirun are available on laptop computers.

Our first parallel program is mpi_hello_world. We use a makefile to compile, and then run with 3 processes.
Instead of mpirun -np 3 we can also use mpiexec -n 3.

$ make mpi_hello_world
mpicc mpi_hello_world.c -o /tmp/mpi_hello_world

(continues on next page)

29

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

$ mpirun -np 3 /tmp/mpi_hello_world
Hello world from processor 0 out of 3.
Hello world from processor 1 out of 3.
Hello world from processor 2 out of 3.
$

To pass arguments to the MCA modules (MCA stands for Modular Component Architecture) we can call mpirun -np
(or mpiexec -n) with the option --mca such as

mpirun --mca btl tcp,self -np 4 /tmp/mpi_hello_world

MCA modules have direct impact on MPI programs because they allow tunable parameters to be set at run time, such
as * which BTL communication device driver to use, * what parameters to pass to that BTL, etc. Note: BTL = Byte
Transfer Layer.

The code of the program mpi_hello_world.c is listed below.

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[])
{

int i,p;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

printf("Hello world from processor %d out of %d.\n",i,p);

MPI_Finalize();

return 0;
}

2.1.2 Initialization, Finalization, and the Universe

Let us look at some MPI constructions that are part of any program that uses MPI. Consider the beginning and the end
of the program.

#include <mpi.h>

int main (int argc, char *argv[])
{

MPI_Init(&argc,&argv);
MPI_Finalize();
return 0;

}

The MPI_Init processes the command line arguments. The value of argc is the number of arguments at the command
line and argv contains the arguments as strings of characters. The first argument, argv[0] is the name of the program.
The cleaning up of the environment is done by MPI_Finalize().

30 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

MPI_COMM_WORLD is a predefined named constant handle to refer to the universe of p processors with labels from 0 to
𝑝− 1. The number of processors is returned by MPI_Comm_size and MPI_Comm_rank returns the label of a node. For
example:

int i,p;

MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

2.1.3 Broadcasting Data

Many parallel programs follow a manager/worker model. In a broadcast the same data is sent to all nodes. A broadcast
is an example of a collective communication. In a collective communication, all nodes participate in the communication.

As an example, we broadcast an integer. Node with id 0 (manager) prompts for an integer. The integer is broadcasted
over the network and the number is sent to all processors in the universe. Every worker node prints the number to
screen. The typical application of broadcasting an integer is the broadcast of the dimension of data before sending the
data.

The compiling and running of the program goes as follows:

$ make broadcast_integer
mpicc broadcast_integer.c -o /tmp/broadcast_integer

$ mpirun -np 3 /tmp/broadcast_integer
Type an integer number...
123
Node 1 writes the number n = 123.
Node 2 writes the number n = 123.
$

The command MPI_Bcast executes the broadcast. An example of the MPI_Bcast command:

int n;
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

There are five arguments:

1. the address of the element(s) to broadcast;

2. the number of elements that will be broadcasted;

3. the type of all the elements;

4. a message label; and

5. the universe.

The full source listing of the program is shown below.

#include <stdio.h>
#include <mpi.h>

void manager (int* n);
/* code executed by the manager node 0,
* prompts the user for an integer number n */

(continues on next page)

2.1. Basics of MPI 31

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

void worker (int i, int n);
/* code executed by the i-th worker node,
* who will write the integer number n to screen */

int main (int argc, char *argv[])
{

int myid,numbprocs,n;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) manager(&n);

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

if (myid != 0) worker(myid,n);

MPI_Finalize();

return 0;
}

void manager (int* n)
{

printf("Type an integer number... \n");
scanf("%d",n);

}

void worker (int i, int n)
{

printf("Node %d writes the number n = %d.\n",i,n);
}

2.1.4 Moving Data from Manager to Workers

Often we want to broadcast an array of doubles. The situation before broadcasting the dimension n to all nodes on
a 4-processor distributed memory computer is shown at the top left of Fig. 2.1. After broadcasting of the dimension,
each node must allocate space to hold as many doubles as the dimension.

We go through the code step by step. First we write the headers and the subroutine declarations. We include stdlib.h
for memory allocation.

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

void define_doubles (int n, double *d);
/* defines the values of the n doubles in d */

void write_doubles (int myid, int n, double *d);
(continues on next page)

32 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

Fig. 2.1: On the schematic of a a distributed memory 4-processor computer, the top displays the situation before and
after the broadcast of the dimension. After the broadcast of the dimension, each worker node allocates space for the
array of doubles. The bottom two pictures display the situation before and after the broadcast of the array of doubles.

2.1. Basics of MPI 33

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

/* node with id equal to myid
writes the n doubles in d */

The main function starts by broadcasting the dimension.

int main (int argc, char *argv[])
{

int myid,numbprocs,n;
double *data;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numbprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0)
{

printf("Type the dimension ...\n");
scanf("%d",&n);

}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

The main program continues, allocating memory. It is very important that every node performs the memory allocation.

data = (double*)calloc(n,sizeof(double));

if (myid == 0) define_doubles(n,data);

MPI_Bcast(data,n,MPI_DOUBLE,0,MPI_COMM_WORLD);

if (myid != 0) write_doubles(myid,n,data);

MPI_Finalize();
return 0;

It is good programming practice to separate the code that does not involve any MPI activity in subroutines. The two
subroutines are defined below.

void define_doubles (int n, double *d)
{

int i;

printf("defining %d doubles ...\n", n);
for(i=0; i < n; i++) d[i] = (double)i;

}

void write_doubles (int myid, int n, double *d)
{

int i;

printf("Node %d writes %d doubles : \n", myid,n);
for(i=0; i < n; i++) printf("%lf\n",d[i]);

}

34 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.1.5 MPI for Python

MPI for Python provides bindings of MPI for Python, allowing any Python program to exploit multiple processors.
The code is available at github and it installs with pip. Version 4.0.0 was released on 28 July 2024.

The object oriented interface follows closely MPI-2 C++ bindings and supports point-to-point and collective commu-
nications of any pickable Python object, as well as numpy arrays and builtin bytes, strings. mpi4py gives the standard
MPI look and feel in Python scripts to develop parallel programs. Often, only a small part of the code needs the
efficiency of a compiled language. Python handles memory, errors, and user interaction.

Our first script is again a hello world, shown below.

from mpi4py import MPI

SIZE = MPI.COMM_WORLD.Get_size()
RANK = MPI.COMM_WORLD.Get_rank()
NAME = MPI.Get_processor_name()

MESSAGE = "Hello from %d of %d on %s." \
% (RANK, SIZE, NAME)

print MESSAGE

Programs that run with MPI are executed with mpiexec. To run mpi4py_hello_world.py by 3 processes:

$ mpiexec -n 3 python mpi4py_hello_world.py
Hello from 2 of 3 on asterix.local.
Hello from 0 of 3 on asterix.local.
Hello from 1 of 3 on asterix.local.
$

Three Python interpreters are launched. Each interpreter executes the script, printing the hello message.

Let us consider again the basic MPI concepts and commands. MPI.COMM_WORLD is a predefined intracommunicator.
An intracommunicator is a group of processes. All processes within an intracommunicator have a unique number.
Methods of the intracommunicator MPI.COMM_WORLD are Get_size(), which returns the number of processes, and
Get_rank(), which returns rank of executing process.

Even though every process runs the same script, the test if MPI.COMM_WORLD.Get_rank() == i: allows to specify
particular code for the i-th process. MPI.Get_processor_name() `` returns the name of the calling
processor. A collective communication involves every process in the intracommunicator. A
broadcast is a collective communication in which one process sends the same data to all
processes, all processes receive the same data. In ``mpi4py, a broadcast is done with the bcast
method. An example:

$ mpiexec -n 3 python mpi4py_broadcast.py
0 has data {'pi': 3.1415926535897, 'e': 2.7182818284590}
1 has data {'pi': 3.1415926535897, 'e': 2.7182818284590}
2 has data {'pi': 3.1415926535897, 'e': 2.7182818284590}
$

To pass arguments to the MCA modules, we call mpiexec as mpiexec --mca btl tcp,self -n 3 python
mpi4py_broadcast.py.

The script mpi4py_broadcast.py below performs a broadcast of a Python dictionary.

2.1. Basics of MPI 35

Introduction to Supercomputing, Release 1.2.5

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {'e' : 2.7182818284590451,

'pi' : 3.1415926535897931 }
else:

DATA = None # DATA must be defined

DATA = COMM.bcast(DATA, root=0)
print RANK, 'has data', DATA

2.1.6 MPI wrappers for Julia

MPI.jl is a Julia interface to MPI, inspired by mpi4py.

Its installation requires a shared binary installation of a C MPI library, supporting the MPI 3.0 standard or later. The
MPI.jl is a Julia package, install as using MPI.

To check if the installation works, run the Julia program mpi_hello_world.jl, shown below. The code below is
adapted from JuliaParallel/MPI.jl, from the docs/examples:

using MPI
MPI.Init()

comm = MPI.COMM_WORLD
myid = MPI.Comm_rank(comm)
size = MPI.Comm_size(comm)

print("Hello from $myid of $size.\n")

MPI.Barrier(comm)

Run at the command prompt with mpiexecjl, after locating and adjusting the path.

2.1.7 Bibliography

1. S. Byrne, L.C. Wilcox, and V. Churavy: MPI.jl: Julia bindings for the Message Passing Interface. In JuliaCon
Proceedings, 1(1), 68, 2021.

2. L. Dalcin, R. Paz, and M. Storti. MPI for Python. Journal of Parallel and Distributed Computing, 65:1108-
1115, 2005.

3. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The Complete Reference Volume 1, The
MPI Core. Massachusetts Institute of Technology, second edition, 1998.

36 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.1.8 Exercises

0. Visit http://www.mpi-forum.org/docs/ and look at the MPI book, available at

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html.

1. Adjust hello world so that after you type in your name once, when prompted by the manager node, every node
salutes you, using the name you typed in.

2. We measure the wall clock time using time mpirun in the broadcasting of an array of doubles. To avoid typing
in the dimension n, either define n as a constant in the program or redirect the input from a file that contains n.
For increasing number of processes and n, investigate how the wall clock time grows.

2.2 Using MPI

We illustrate the collective communication commands to scatter data and gather results. Point-to-point communication
happens via a send and a recv (receive) command.

2.2.1 Scatter and Gather

Consider the addition of 100 numbers on a distributed memory 4-processor computer. For simplicity of coding, we
sum the first one hundred positive integers and compute

𝑆 =

100∑︁
𝑖=1

𝑖.

A parallel algorithm to sum 100 numbers proceeds in four stages:

1. distribute 100 numbers evenly among the 4 processors;

2. Every processor sums 25 numbers;

3. Collect the 4 sums to the manager node; and

4. Add the 4 sums and print the result.

Scattering an array of 100 number over 4 processors and gathering the partial sums at the 4 processors to the root is
displayed in Fig. 2.2.

The scatter and gather are of the collective communication type, as every process in the universe participates in this
operation. The MPI commands to scatter and gather are respectively MPI_Scatter and MPI_Gather.

The specifications of the MPI command to scatter data from one member to all members of a group are described in
Table 2.1. The specifications of the MPI command to gather data from all members to one member in a group are listed
Table 2.2.

Table 2.1: Arguments of the MPI_Scatter command.

MPI_SCATTER(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)
sendbuf address of send buffer
sendcount number of elements sent to each process
sendtype data type of send buffer elements
recvbuf address of receive buffer
recvcount number of elements in receive buffer
recvtype data type of receive buffer elements
root rank of sending process
comm communicator

2.2. Using MPI 37

Introduction to Supercomputing, Release 1.2.5

Fig. 2.2: Scattering data and gathering results.

Table 2.2: Arguments of the MPI_Gather command.

MPI_GATHER(sendbuf,sendcount,sendtype,recvbuf,recvcount,recvtype,root,comm)
sendbuf starting address of send buffer
sendcount number of elements in send buffer
sendtype data buffer of send buffer elements
recvbuf address of receive buffer
recvcount number of elements for any single receive
recvtype data type of receive buffer elements
root rank of receiving process
comm communicator

The code for parallel summation, in the program parallel_sum.c, illustrates the scatter and the gather.

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#define v 1 /* verbose flag, output if 1, no output if 0 */

int main (int argc, char *argv[])
{

int myid,j,*data,tosum[25],sums[4];

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid==0) /* manager allocates and initializes the data */
{

data = (int*)calloc(100,sizeof(int));
for (j=0; j<100; j++) data[j] = j+1;
if(v>0)
{

(continues on next page)

38 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

printf("The data to sum : ");
for (j=0; j<100; j++) printf(" %d",data[j]); printf("\n");

}
}

MPI_Scatter(data,25,MPI_INT,tosum,25,MPI_INT,0,MPI_COMM_WORLD);

if(v>0) /* after the scatter, every node has 25 numbers to sum */
{

printf("Node %d has numbers to sum :",myid);
for(j=0; j<25; j++) printf(" %d", tosum[j]);
printf("\n");

}
sums[myid] = 0;
for(j=0; j<25; j++) sums[myid] += tosum[j];
if(v>0) printf("Node %d computes the sum %d\n",myid,sums[myid]);

MPI_Gather(&sums[myid],1,MPI_INT,sums,1,MPI_INT,0,MPI_COMM_WORLD);

if(myid==0) /* after the gather, sums contains the four sums */
{

printf("The four sums : ");
printf("%d",sums[0]);
for(j=1; j<4; j++) printf(" + %d", sums[j]);
for(j=1; j<4; j++) sums[0] += sums[j];
printf(" = %d, which should be 5050.\n",sums[0]);

}
MPI_Finalize();
return 0;

}

2.2.2 Send and Recv

To illustrate point-to-point communication, we consider the problem of squaring numbers in an array. An example
of an input sequence is 2, 4, 8, 16, . . . with corresponding output sequence 4, 16, 64, 256, Instead of squaring, we
could apply a difficult function 𝑦 = 𝑓(𝑥) to an array of values for 𝑥. A session with the parallel code with 4 processes
runs as

$ mpirun -np 4 /tmp/parallel_square
The data to square : 2 4 8 16
Node 1 will square 4
Node 2 will square 8
Node 3 will square 16
The squared numbers : 4 16 64 256
$

Applying a parallel squaring algorithm to square 𝑝 numbers runs in three stages:

1. The manager sends 𝑝− 1 numbers 𝑥1, 𝑥2, . . . , 𝑥𝑝−1 to workers. Every worker receives: the 𝑖-th worker receives
𝑥𝑖 in 𝑓 . The manager copies 𝑥0 to 𝑓 : 𝑓 = 𝑥0.

2. Every node (manager and all workers) squares 𝑓 .

2.2. Using MPI 39

Introduction to Supercomputing, Release 1.2.5

3. Every worker sends 𝑓 to the manager. The manager receives 𝑥𝑖 from 𝑖-th worker, 𝑖 = 1, 2, . . . , 𝑝 − 1. The
manager copies 𝑓 to 𝑥0: 𝑥0 = 𝑓 , and prints.

To perform point-to-point communication with MPI are MPI_Send and MPI_Recv. The syntax for the blocking send
operation is in Table 2.3. Table 2.4 explains the blocking receive operation.

Table 2.3: The MPI_SEND command.

MPI_SEND(buf,count,datatype,dest,tag,comm)
buf initial address of the send buffer
count number of elements in send buffer
datatype data type of each send buffer element
dest rank of destination
tag message tag
comm communication

Table 2.4: The MPI_RECV command.

MPI_RECV(buf,count,datatype,source,tag,comm,status)
buf initial address of the receive buffer
count number of elements in receive buffer
datatype data type of each receive buffer element
source rank of source
tag message tag
comm communication
status status object

Code for a parallel square is below. Every MPI_Send is matched by a MPI_Recv. Observe that there are two loops
in the code. One loop is explicitly executed by the root. The other, implicit loop, is executed by the mpiexec -n p
command.

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#define v 1 /* verbose flag, output if 1, no output if 0 */
#define tag 100 /* tag for sending a number */

int main (int argc, char *argv[])
{

int p,myid,i,f,*x;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
if(myid == 0) /* the manager allocates and initializes x */
{

x = (int*)calloc(p,sizeof(int));
x[0] = 2;
for (i=1; i<p; i++) x[i] = 2*x[i-1];
if(v>0)
{

(continues on next page)

40 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

printf("The data to square : ");
for (i=0; i<p; i++) printf(" %d",x[i]); printf("\n");

}
}
if(myid == 0) /* the manager copies x[0] to f */
{ /* and sends the i-th element to the i-th processor */

f = x[0];
for(i=1; i<p; i++) MPI_Send(&x[i],1,MPI_INT,i,tag,MPI_COMM_WORLD);

}
else /* every worker receives its f from root */
{

MPI_Recv(&f,1,MPI_INT,0,tag,MPI_COMM_WORLD,&status);
if(v>0) printf("Node %d will square %d\n",myid,f);

}
f *= f; /* every node does the squaring */
if(myid == 0) /* the manager receives f in x[i] from processor i */
for(i=1; i<p; i++)

MPI_Recv(&x[i],1,MPI_INT,i,tag,MPI_COMM_WORLD,&status);
else /* every worker sends f to the manager */

MPI_Send(&f,1,MPI_INT,0,tag,MPI_COMM_WORLD);
if(myid == 0) /* the manager prints results */
{

x[0] = f;
printf("The squared numbers : ");
for(i=0; i<p; i++) printf(" %d",x[i]); printf("\n");

}
MPI_Finalize();
return 0;

}

2.2.3 Reducing the Communication Cost

The wall time refers to the time elapsed on the clock that hangs on the wall, that is: the real time, which measures
everything, not just the time the processors were busy. To measure the communication cost, we run our parallel program
without any computations. MPI_Wtime() returns a double containing the elapsed time in seconds since some arbitrary
time in the past. An example of its use is below.

double startwtime,endwtime,totalwtime;
startwtime = MPI_Wtime();
/* code to be timed */
endwtime = MPI_Wtime();
totalwtime = endwtime - startwtime;

A lot of time in a parallel program can be spent on communication. Broadcasting over 8 processors sequentially takes
8 stages. In a fan out broadcast, the 8 stages are reduced to 3. Fig. 2.3 illustrates the sequential and fan out broadcast.

The story of Fig. 2.3 can be told as follows. Consider the distribution of a pile of 8 pages among 8 people. We can do
this in three stages:

1. Person 0 splits the pile keeps 4 pages, hands 4 pages to person 1.

2. Person 0 splits the pile keeps 2 pages, hands 2 pages to person 2.

Person 1 splits the pile keeps 2 pages, hands 2 pages to person 3.

2.2. Using MPI 41

Introduction to Supercomputing, Release 1.2.5

Fig. 2.3: Sequential (left) versus fan out (right) broadcast.

3. Person 0 splits the pile keeps 1 page, hands 1 pages to person 4.

Person 1 splits the pile keeps 1 page, hands 1 pages to person 5.

Person 2 splits the pile keeps 1 page, hands 1 pages to person 6.

Person 3 splits the pile keeps 1 page, hands 1 pages to person 7.

Already from this simple example, we observe the pattern needed to formalize the algorithm. At stage 𝑘, processor 𝑖
communicates with the processor with identification number 𝑖 + 2𝑘.

The algorithm for fan out broadcast has a short description, shown below.

Algorithm: at step k, 2**(k-1) processors have data, and execute:

for j from 0 to 2**(k-1) do
processor j sends to processor j + 2**(k-1);
processor j+2**(k-1) receives from processor j.

The cost to broadcast of one item is 𝑂(𝑝) for a sequential broadcast, is 𝑂(log2(𝑝)) for a fan out broadcast. The cost to
scatter 𝑛 items is 𝑂(𝑝× 𝑛/𝑝) for a sequential broadcast, is 𝑂(log2(𝑝) × 𝑛/𝑝) for a fan out broadcast.

2.2.4 Point-to-Point Communication with MPI for Python

In MPI for Python we call the methods send and recv for point-to-point communication. Process 0 sends DATA to
process 1:

MPI.COMM_WORLD.send(DATA, dest=1, tag=2)

Every send must have a matching recv. For the script to continue, process 1 must do

DATA = MPI.COMM_WORLD.recv(source=0, tag=2)

mpi4py uses pickle on Python objects. The user can declare the MPI types explicitly.

What appears on screen running the Python script is below.

42 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

$ mpiexec -n 2 python mpi4py_point2point.py
0 sends {'a': 7, 'b': 3.14} to 1
1 received {'a': 7, 'b': 3.14} from 0

The script mpi4pi_point2point.py is below.

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {'a': 7, 'b': 3.14}
COMM.send(DATA, dest=1, tag=11)
print RANK, 'sends', DATA, 'to 1'

elif(RANK == 1):
DATA = COMM.recv(source=0, tag=11)
print RANK, 'received', DATA, 'from 0'

With mpi4py we can either rely on Python’s dynamic typing or declare types explicitly when processing numpy arrays.
To sum an array of numbers, we distribute the numbers among the processes that compute the sum of a slice. The sums
of the slices are sent to process 0 which computes the total sum. The code for the script is mpi4py_parallel_sum.py
and what appears on screen when the script runs is below.

$ mpiexec -n 10 python mpi4py_parallel_sum.py
0 has data [0 1 2 3 4 5 6 7 8 9] sum = 45
2 has data [20 21 22 23 24 25 26 27 28 29] sum = 245
3 has data [30 31 32 33 34 35 36 37 38 39] sum = 345
4 has data [40 41 42 43 44 45 46 47 48 49] sum = 445
5 has data [50 51 52 53 54 55 56 57 58 59] sum = 545
1 has data [10 11 12 13 14 15 16 17 18 19] sum = 145
8 has data [80 81 82 83 84 85 86 87 88 89] sum = 845
9 has data [90 91 92 93 94 95 96 97 98 99] sum = 945
7 has data [70 71 72 73 74 75 76 77 78 79] sum = 745
6 has data [60 61 62 63 64 65 66 67 68 69] sum = 645
total sum = 4950

The code for the script mpi4py_parallel_sum.py follows.

from mpi4py import MPI
import numpy as np

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()
SIZE = COMM.Get_size()
N = 10

if(RANK == 0):
DATA = np.arange(N*SIZE, dtype='i')
for i in range(1, SIZE):

SLICE = DATA[i*N:(i+1)*N]
COMM.Send([SLICE, MPI.INT], dest=i)

MYDATA = DATA[0:N]
(continues on next page)

2.2. Using MPI 43

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

else:
MYDATA = np.empty(N, dtype='i')
COMM.Recv([MYDATA, MPI.INT], source=0)

S = sum(MYDATA)
print RANK, 'has data', MYDATA, 'sum =', S

SUMS = np.zeros(SIZE, dtype='i')
if(RANK > 0):

COMM.send(S, dest=0)
else:

SUMS[0] = S
for i in range(1, SIZE):

SUMS[i] = COMM.recv(source=i)
print 'total sum =', sum(SUMS)

Recall that Python is case sensitive and the distinction between Send and send, and between Recv and recv is impor-
tant. In particular, COMM.send and COMM.recv have no type declarations, whereas COMM.Send and COMM.Recv have
type declarations.

2.2.5 Point-to-Point Communication with the MPI wrappers in Julia

The code below illustrates the sending and receiving of a dictionary between two nodes, using the MPI wrappers for
Julia.

using MPI
MPI.Init()

comm = MPI.COMM_WORLD
myid = MPI.Comm_rank(comm)

if myid == 0
data = Dict('a' => 7, 'b' => 3.14)
println("$myid sends $data to 1")
MPI.send(data, comm; dest=1, tag=11)

elseif myid == 1
data = MPI.recv(comm; source=0, tag=11)
println("$myid received $data from 0")

end

Running in a Terminal Windows, at the command prompt:

$ mpiexecjl -n 2 julia mpi_point2point.jl
0 sends Dict{Char, Real}('a' => 7, 'b' => 3.14) to 1
1 received Dict{Char, Real}('a' => 7, 'b' => 3.14) from 0

44 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.2.6 Bibliography

1. S. Byrne, L.C. Wilcox, and V. Churavy: MPI.jl: Julia bindings for the Message Passing Interface. In JuliaCon
Proceedings, 1(1), 68, 2021.

2. L. Dalcin, R. Paz, and M. Storti. MPI for Python. Journal of Parallel and Distributed Computing,
65:1108–1115, 2005.

3. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The Complete Reference Volume 1, The
MPI Core. Massachusetts Institute of Technology, second edition, 1998.

2.2.7 Exercises

1. Adjust the parallel summation to work for 𝑝 processors where the dimension 𝑛 of the array is a multiple of 𝑝.

2. Use C or Julia to rewrite the program to sum 100 numbers using MPI_Send and MPI_Recv instead of
MPI_Scatter and MPI_Gather. In Python, use the collective instead of point-to-point communication.

3. Use C, Python, or Julia to rewrite the program to square 𝑝 numbers using MPI_Scatter and MPI_Gather.

4. Show that a hypercube network topology has enough direct connections between processors for a fan out broad-
cast.

2.3 Pleasingly Parallel Computations

Monte Carlo simulations are an example of a computation for which a parallel computation requires a constant amount
of communication. In particular, at the start of the computations, the manager node gives every worker node a seed
for its random numbers. At the end of the computations, the workers send their simulation result to the manager node.
Between start and end, no communication occurred and we may expect an optimal speedup. This type of computation
is called a pleasingly parallel computation.

2.3.1 Ideal Parallel Computations

Suppose we have a disconnected computation graph for 4 processes as in Fig. 2.4.

Fig. 2.4: One manager node distributes input data to the compute nodes and collects results from the compute nodes.

Even if the work load is well balanced and all nodes terminate at the same time, we still need to collect the results from
each node. Without communication overhead, we hope for an optimal speedup.

Some examples of parallel computations without communication overhead are

2.3. Pleasingly Parallel Computations 45

Introduction to Supercomputing, Release 1.2.5

1. Geometric transformations of images (section 3.2.1 in textbook): Given an n-by-n matrix of pixels with RGB
color encodings, the communication overhead is 𝑂(𝑛2). The cost of a transformation is at most 𝑂(𝑛2). While
good for parallel computing, this is not good for message passing on distributed memory!

2. The computation of the Mandelbrot set: Every pixel in the set may require up to 255 iterations. Pixels are
computed independently from each other.

3. Monte Carlo simulations: Every processor generates a different sequence of random samples and process samples
independently.

In this lecture we elaborate on the third example.

2.3.2 Monte Carlo Simulations

We count successes of simulated experiments. We simulate by

• repeatedly drawing samples along a distribution;

• counting the number of successful samples.

By the law of large numbers, the average of the observed successes converges to the expected value or mean, as the
number of experiments increases.

Estimating 𝜋, the area of the unit disk as
∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥 =

𝜋

4
. Generating random uniformly distributed points with

coordinates (𝑥, 𝑦) ∈ [0,+1] × [0,+1], We count a success when 𝑥2 + 𝑦2 ≤ 1.

2.3.3 SPRNG: scalable pseudorandom number generator

We only have pseudorandom numbers as true random numbers do not exist on a computer. . . A multiplicative congru-
ential generator is determined by multiplier a, additive constant c, and a modulus m:

𝑥𝑛+1 = (𝑎𝑥𝑛 + 𝑐) mod 𝑚, 𝑛 = 0, 1,

Assumed: the pooled results of p processors running p copies of a Monte Carlo calculation achieves variance p times
smaller.

However, this assumption is true only if the results on each processor are statistically independent. Some problems are
that the choice of the seed determines the period, and with repeating sequences, we have lattice effects. The SPRNG:
Scalable PseudoRandom Number Generators library is designed to support parallel Monte Carlo applications. A simple
use is illustrated below:

#include <stdio.h>

#define SIMPLE_SPRNG /* simple interface */
#include "sprng.h"

int main (void)
{

printf("hello SPRNG...\n");
double r = sprng();
printf("a random double: %.15lf\n",r);
return 0;

}

Because g++ (the gcc c++ compiler) was used to build SPRNG, the makefile is as follows.

46 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

sprng_hello:
g++ -I/usr/local/include/sprng sprng_hello.c -lsprng \

-o /tmp/sprng_hello

To see a different random double with each run of the program, we generate a new seed, as follows:

#include <stdio.h>
#define SIMPLE_SPRNG
#include "sprng.h"

int main (void)
{

printf("SPRNG generates new seed...\n");
/* make new seed each time program is run */
int seed = make_sprng_seed();
printf("the seed : %d\n", seed);
/* initialize the stream */
init_sprng(seed, 0, SPRNG_DEFAULT);
double r = sprng();
printf("a random double: %.15f\n", r);
return 0;

}

Consider the estimation of 𝜋 with SPRNG and MPI. The progam sprng_estpi.c is below.

#include <stdio.h>
#include <math.h>
#define SIMPLE_SPRNG
#include "sprng.h"
#define PI 3.14159265358979

int main(void)
{

printf("basic estimation of Pi with SPRNG...\n");
int seed = make_sprng_seed();
init_sprng(seed, 0, SPRNG_DEFAULT);

printf("Give the number of samples : ");
int n; scanf("%d", &n);

int i, cnt=0;
for(i=0; i<n; i++)
{

double x = sprng();
double y = sprng();
double z = x*x + y*y;
if(z <= 1.0) cnt++;

}
double estimate = (4.0*cnt)/n;
printf("estimate for Pi : %.15f", estimate);
printf(" error : %.3e\n", fabs(estimate-PI));

return 0;
(continues on next page)

2.3. Pleasingly Parallel Computations 47

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

}

And some runs:

$ /tmp/sprng_estpi
basic estimation of Pi with SPRNG...
Give the number of samples : 100
estimate for Pi : 3.200000000000000 error : 5.841e-02
$ /tmp/sprng_estpi
basic estimation of Pi with SPRNG...
Give the number of samples : 10000
estimate for Pi : 3.131200000000000 error : 1.039e-02
$ /tmp/sprng_estpi
basic estimation of Pi with SPRNG...
Give the number of samples : 10000
estimate for Pi : 3.143600000000000 error : 2.007e-03
$ /tmp/sprng_estpi
basic estimation of Pi with SPRNG...
Give the number of samples : 1000000
estimate for Pi : 3.140704000000000 error : 8.887e-04

Using MPI, we run the program sprng_estpi_mpi.c:

#include <stdio.h>
#include <math.h>
#define SIMPLE_SPRNG
#include "sprng.h"
#define PI 3.14159265358979
#include <mpi.h>

double estimate_pi (int i, int n);
/* Estimation of pi by process i,
* using n samples. */

int main (int argc, char *argv[])
{

int id,np;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&np);
MPI_Comm_rank(MPI_COMM_WORLD,&id);

int n;
if(id == 0)
{

printf("Reading the number of samples...\n");
scanf("%d",&n);

}
MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

double est4pi = estimate_pi(id, n);
double sum = 0.0;

(continues on next page)

48 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

MPI_Reduce(&est4pi,&sum,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
if(id == 0)
{

est4pi = sum/np;
printf("Estimate for Pi : %.15lf",est4pi);
printf(" error : %.3e\n",fabs(est4pi-PI));

}
MPI_Finalize();
return 0;

}

MPI_Reduce is a collective communication function to reduce data gathered using some operations, e.g.: addition.

The syntax and arguments are in Table 2.5. The predefined reduction operation op we use is MPI_SUM.

Table 2.5: Syntax and arguments of MPI_Reduce.

MPI_REDUCE(sendbuf,recvbuf,count,datatype, op,root,comm)
sendbuf address of send buffer
recvbuf address of receive buffer
count number of elements in send buffer
datatype data type of elements in send buffer
op reduce operation
root rank of root process
comm communicator

The estimate function we use in sprng_estpi_mpi.c is below:

double estimate_pi (int i, int n)
{

int seed = make_sprng_seed();
init_sprng(seed, 0, SPRNG_DEFAULT);

int j,cnt=0;
for(j=0; j<n; j++)
{

double x = sprng();
double y = sprng();
double z = x*x + y*y;
if(z <= 1.0) cnt++;

}
double estimate = (4.0*cnt)/n;
printf("Node %d estimate for Pi : %.15f",i,estimate);
printf(" error : %.3e\n",fabs(estimate-PI));

return estimate;
}

Because g++ (the gcc C++ compiler) was used to build SPRNG, we must compile the code with mpic++. Therefore,
the makefile contains the following lines:

2.3. Pleasingly Parallel Computations 49

Introduction to Supercomputing, Release 1.2.5

sprng_estpi_mpi:
mpic++ -I/usr/local/include/sprng \

sprng_estpi_mpi.c -lsprng \
-o /tmp/sprng_estpi_mpi

We end this section with the Mean Time Between Failures (MTBF) problem. The Mean Time Between Failures
(MTBF) problem asks for the expected life span of a product made of components. Every component is critical.
The multi-component product fails as soon as one of its components fails. For every component we assume that the
life span follows a known normal distribution, given by 𝜇 and 𝜎. For example, consider 3 components with respective
means 11, 12, 13 and corresponding standard deviations 1, 2, 3. Running 100,000 simulations, we compute the average
life span of the composite product.

If 𝑓𝑖(𝑡) is the cumulative distribution function of the i-th component, then we estimate the triple integral:

𝜇 =

3∑︁
𝑖=1

∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑡
∏︁
𝑗 ̸=𝑖

(1 − 𝑓𝑗(𝑡))𝑑𝑓𝑖(𝑡).

We need to implement the normal distribution, as specified below.

int normal (double *x, double *y);
/*
* DESCRIPTION :
* Generates two independent normally distributed
* variables x and y, along Algorithm P (Knuth Vol 2),
* the polar method is due to Box and Muller.
*
* ON ENTRY :
* x,y two independent random variables,
* uniformly distributed in [0,1].
*
* ON RETURN : fail = normal(&x,&y)
* fail if 1, then x and y are outside the unit disk,
* if 0, then x and y are inside the unit disk;
* x,y independent normally distributed variables. */

The function normal can be defined as

int normal (double *x, double *y)
{

double s;

x = 2.0(*x) - 1.0;
y = 2.0(*y) - 1.0;
s = (*x)*(*x) + (*y)*(*y);

if(s >= 1.0)
return 1;

else
{

double ln_s = log(s);
double rt_s = sqrt(-2.0*ln_s/s);
*x = (*x)*rt_s;
*y = (*y)*rt_s;
return 0;

(continues on next page)

50 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

}
}

To test the function normal, we proceed as follows. For the generated numbers, we compute the average 𝜇 and standard
deviation 𝜎. We count how many samples are in [𝜇− 𝜎, 𝜇 + 𝜎].

$ /tmp/sprng_normal
normal variables with SPRNG ...
a normal random variable : 0.645521197140996
a normal random variable : 0.351776102906080
give number of samples : 1000000
mu = 0.000586448667516, sigma = 1.001564397361179
ratio of #samples in [-1.00,1.00] : 0.6822
generated 1572576 normal random numbers

To compile, we may need to link with the math library -lm. The header (specification) of the function is

double map_to_normal (double mu, double sigma, double x);
/*
* DESCRIPTION :
* Given a normally distributed number x with mean 0 and
* standard deviation 1, returns a normally distributed
* number y with mean mu and standard deviation sigma. */

The C code (implementation) of the function is

double map_to_normal (double mu, double sigma, double x)
{
return mu + sigma*x;

}

Running sprng_mtbf gives

$ /tmp/sprng_mtbf
MTBF problem with SPRNG ...
Give number of components : 3
average life span for part 0 ? 11
standard deviation for part 0 ? 1
average life span for part 1 ? 12
standard deviation for part 1 ? 2
average life span for part 2 ? 13
standard deviation for part 2 ? 3
mu[0] = 11.000 sigma[0] = 1.000
mu[1] = 12.000 sigma[1] = 2.000
mu[2] = 13.000 sigma[2] = 3.000
Give number of simulations : 100000
expected life span : 10.115057028769346

The header of the mtbf function is below

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

(continues on next page)

2.3. Pleasingly Parallel Computations 51

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

#define SIMPLE_SPRNG
#include "sprng.h"

double mtbf (int n, int m, double *mu, double *sigma);
/*
* DESCRIPTION :
* Returns the expected life span of a composite product
* of m parts, where part i has expected life span mu[i],
* with standard deviation sigma[i],
* using n simulations. */

The mtbf function is implemented as

double mtbf (int n, int m, double *mu, double *sigma)
{

int i,cnt=0;
double s[n+1];
do
{

normald(mu[0],sigma[0],&s[cnt],&s[cnt+1]);
for(i=1; i<m; i++)
{

double x,y;
normald(mu[i],sigma[i],&x,&y);
s[cnt] = min(s[cnt],x);
s[cnt+1] = min(s[cnt+1],y);

}
cnt = cnt + 2;

} while (cnt < n);

double sum = 0.0;
for(i=0; i<cnt; i++) sum = sum + s[i];
return sum/cnt;

}

2.3.4 Bibliography

1. S.L. Anderson. Random number generators on vector supercomputers and other advanced architectures. SIAM
Review 32(2): 221–251, 1990.

2. D.E. Knuth. The Art of Computer Programming. Volume 2. Seminumerical Algorithms. Third Edition. Addison-
Wesley, 1997. Chapter Three.

3. M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: a scalable library for pseudorandom number genera-
tion. ACM Transactions on Mathematical Software 26(3): 436–461, 2000.

52 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.3.5 Exercises

1. Consider the code for the estimation of 𝜋. For a fixed choice of the seed, examine the relationship between the
error 𝜖 and the number of samples 𝑛. Make a plot relating 𝑛 to − log10(𝜖), for sufficiently many experiments for
different values of 𝑛 so the trend becomes clear.

2. Consider the MPI code for the estimation of 𝜋. Fix the seeds so you can experimentally demonstrate the speedup.
Execute the code for 𝑝 = 2, 4, and 8 compute nodes.

3. Write a parallel version with MPI of sprng_mtbf.c. Verify the correctness by comparison with a sequential
run.

2.4 Load Balancing

We distinguish between static and dynamic load balancing, using the computation of the Mandelbrot set as an example.
For dynamic load balancing, we encounter the need for nonblocking communications. To check for incoming messages,
we use MPI_Iprobe.

2.4.1 the Mandelbrot set

We consider computing the Mandelbrot set, shown in Fig. 2.5 as a grayscale plot.

Fig. 2.5: The Mandelbrot set.

The number 𝑛 of iterations ranges from 0 to 255. The grayscales are plotted in reverse, as 255 − 𝑛. Grayscales for
different pixels are calculated independently. The prototype and definition of the function iterate is in the code
below. We call iterate for all pixels (x, y), for x and y ranging over all rows and columns of a pixel matrix. In our
plot we compute 5,000 rows and 5,000 columns.

int iterate (double x, double y);
/*
* Returns the number of iterations for z^2 + c
* to grow larger than 2, for c = x + i*y,
* where i = sqrt(-1), starting at z = 0. */

(continues on next page)

2.4. Load Balancing 53

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int iterate (double x, double y)
{

double wx,wy,v,xx;
int k = 0;

wx = 0.0; wy = 0.0; v = 0.0;
while ((v < 4) && (k++ < 254))
{

xx = wx*wx - wy*wy;
wy = 2.0*wx*wy;
wx = xx + x;
wy = wy + y;
v = wx*wx + wy*wy;

}
return k;

}

In the code for iterate we count 6 multiplications on doubles, 3 additions and 1 subtraction. On a Mac OS X laptop
2.26 Ghz Intel Core 2 Duo, for a 5,000-by-5,000 matrix of pixels:

$ time /tmp/mandelbrot
Total number of iterations : 682940922

real 0m15.675s
user 0m14.914s
sys 0m0.163s

The program performed 682, 940, 922 × 10 flops in 15 seconds or 455,293,948 flops per second. Turning on full
optimization and the time drops from 15 to 9 seconds. After compilation with -O3, the program performed 758,823,246
flops per second.

$ make mandelbrot_opt
gcc -O3 -o /tmp/mandelbrot_opt mandelbrot.c

$ time /tmp/mandelbrot_opt
Total number of iterations : 682940922

real 0m9.846s
user 0m9.093s
sys 0m0.163s

The input parameters of the program define the intervals [𝑎, 𝑏] for 𝑥 and [𝑐, 𝑑] for 𝑦, as (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑], e.g.:
[𝑎, 𝑏] = [−2,+2] = [𝑐, 𝑑]; The number 𝑛 of rows (and columns) in pixel matrix determines the resolution of the image
and the spacing between points: 𝛿𝑥 = (𝑏− 𝑎)/(𝑛− 1), 𝛿𝑦 = (𝑑− 𝑐)/(𝑛− 1). The output is a postscript file, which
is a standard format, direct to print or view, and allows for batch processing in an environment without visualization
capabilities.

54 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.4.2 Granularity

Definition of Grain

A grain is a sequence of computational steps for sequential execution on a single processor.

Depending on the grain size, we distinguish between

• small grain size: fine granularity,

• large grain size: coarse granularity.

There is a tradeoff to make:

• Coarse granularity has little communication overhead, but may limit the amount of parallelism; while

• fine granularity promotes parallelism, but may lead to an excessive communication overhead.

2.4.3 Static Work Load Assignment

Static work load assignment means that the decision which pixels are computed by which processor is fixed in advance
(before the execution of the program) by some algorithm. For the granularity in the communcation, we have two
extremes:

1. Matrix of grayscales is divided up into p equal parts and each processor computes part of the matrix. For ex-
ample: 5,000 rows among 5 processors, each processor takes 1,000 rows. The communication happens after all
calculations are done, at the end all processors send their big submatrix to root node.

2. Matrix of grayscales is distributed pixel-by-pixel. Entry (𝑖, 𝑗) of the n-by-n matrix is computed by processor
with label (𝑖× 𝑛 + 𝑗) mod 𝑝. The communication is completely interlaced with all computation.

In choosing the granularity between the two extremes:

1. Problem with all communication at end: Total cost = computational cost + communication cost. The communi-
cation cost is not interlaced with the computation.

2. Problem with pixel-by-pixel distribution: To compute the grayscale of one pixel requires at most 255 iterations,
but may finish much sooner. Even in the most expensive case, processors may be mostly busy handling send/recv
operations.

As compromise between the two extremes, we distribute the work load along the rows. Row 𝑖 is computed by node
1 + (𝑖 mod (𝑝− 1)). THe root node 0 distributes row indices and collects the computed rows.

2.4.4 Static work load assignment with MPI

Consider a manager/worker algorithm for static load assignment: Given 𝑛 jobs to be completed by 𝑝 processors, 𝑛 ≫ 𝑝.
Processor 0 is in charge of

1. distributing the jobs among the 𝑝− 1 compute nodes; and

2. collecting the results from the 𝑝− 1 compute nodes.

Assuming 𝑛 is a multiple of 𝑝− 1, let 𝑘 = 𝑛/(𝑝− 1).

The manager executes the following algorithm:

2.4. Load Balancing 55

Introduction to Supercomputing, Release 1.2.5

for i from 1 to k do
for j from 1 to p-1 do

send the next job to compute node j;
for j from 1 to p-1 do

receive result from compute node j.

The run of an example program is illustrated by what is printed on screen:

$ mpirun -np 3 /tmp/static_loaddist
reading the #jobs per compute node...
1
sending 0 to 1
sending 1 to 2
node 1 received 0
-> 1 computes b
node 1 sends b
node 2 received 1
-> 2 computes c
node 2 sends c
received b from 1
received c from 2
sending -1 to 1
sending -1 to 2
The result : bc
node 2 received -1
node 1 received -1
$

The main program is below, followed by the code for the worker and for the manager.

int main (int argc, char *argv[])
{

int i,p;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);
if(i != 0)

worker(i);
else
{

printf("reading the #jobs per compute node...\n");
int nbjobs; scanf("%d",&nbjobs);
manager(p,nbjobs*(p-1));

}
MPI_Finalize();
return 0;

}

Following is the code for each worker.

int worker (int i)
{

int myjob;
(continues on next page)

56 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

MPI_Status status;
do
{

MPI_Recv(&myjob,1,MPI_INT,0,tag,
MPI_COMM_WORLD,&status);

if(v == 1) printf("node %d received %d\n",i,myjob);
if(myjob == -1) break;
char c = 'a' + ((char)i);
if(v == 1) printf("-> %d computes %c\n",i,c);
if(v == 1) printf("node %d sends %c\n",i,c);
MPI_Send(&c,1,MPI_CHAR,0,tag,MPI_COMM_WORLD);

}
while(myjob != -1);
return 0;

}

Following is the code for the manager.

int manager (int p, int n)
{

char result[n+1];
int job = -1;
int j;
do
{
for(j=1; j<p; j++) /* distribute jobs */
{
if(++job >= n) break;
int d = 1 + (job % (p-1));
if(v == 1) printf("sending %d to %d\n",job,d);
MPI_Send(&job,1,MPI_INT,d,tag,MPI_COMM_WORLD);

}
if(job >= n) break;
for(j=1; j<p; j++) /* collect results */
{

char c;
MPI_Status status;
MPI_Recv(&c,1,MPI_CHAR,j,tag,MPI_COMM_WORLD,&status);
if(v == 1) printf("received %c from %d\n",c,j);
result[job-p+1+j] = c;

}
} while (job < n);

job = -1;
for(j=1; j < p; j++) /* termination signal is -1 */
{
if(v==1) printf("sending -1 to %d\n",j);
MPI_Send(&job,1,MPI_INT,j,tag,MPI_COMM_WORLD);

}
result[n] = '\0';
printf("The result : %s\n",result);
return 0;

(continues on next page)

2.4. Load Balancing 57

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

}

2.4.5 an implementation with mpi4py

The specifications of the Python functions in the problem are listed below.

from mpi4py import MPI
COMM = MPI.COMM_WORLD

def manager(npr, njobs, verbose=True):
"""
The manager distributes njobs jobs to npr-1
workers and prints the received results.
The njobs must be a multiple of npr-1.
"""

def worker(i, verbose=True):
"""
The i-th worker receives a number.
The worker terminates if the number is -1,
otherwise it sends to the manager the
corresponding character following the letter 'a'.
"""

The main program is defined next.

def main(verbose=True):
"""
Runs a manager/worker static load distribution.
"""
rank = COMM.Get_rank()
size = COMM.Get_size()
if rank > 0:

worker(rank, verbose)
else:

manager(size, size*(size-1), verbose)

Each workers receives a job and sends back a character corresponding to the received number.

def worker(i, verbose=True):
if verbose:

print('Hello from worker', i)
while True:

nbr = COMM.recv(source=0, tag=11)
if verbose:

print('-> worker', i, 'received', nbr)
if nbr == -1:

break
chrnbr = chr(ord('a') + nbr)
if verbose:

print('-> worker', i, 'computed', chrnbr)
COMM.send(chrnbr, dest=0, tag=11)

58 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

The manager distributes jobs, as defined below.

def manager(npr, njobs, verbose=True):
if verbose:

print('Manager distributes', njobs,
'jobs to', npr-1, 'workers')

result = ''
jobcnt = 0
while jobcnt < njobs:

for i in range(1, npr):
jobcnt = jobcnt + 1
nbr = 1 + (jobcnt % (npr-1))
if verbose:

print('-> manager sends job', jobcnt,
'to worker', i)

COMM.send(nbr, dest=i, tag=11)
for i in range(1, npr):

data = COMM.recv(source=i, tag=11)
if verbose:

print('-> manager received', data,
'from worker', i)

result = result + data
for i in range(1, npr):

if verbose:
print('-> manager sends -1 to worker', i)

COMM.send(-1, dest=i, tag=11)
print('the result :', result)
print('number of characters :', len(result))
print(' number of jobs :', njobs)

2.4.6 Dynamic Work Load Balancing

Consider scheduling 8 jobs on 2 processors, as in Fig. 2.6.

Fig. 2.6: Scheduling 8 jobs on 2 processors. In a worst case scenario, with static job scheduling, all the long jobs end
up at one processor, while the short ones at the other, creating an uneven work load.

In scheduling 𝑛 jobs on 𝑝 processors, 𝑛 ≫ 𝑝, node 0 manages the job queue, nodes 1 to 𝑝− 1 are compute nodes. The

2.4. Load Balancing 59

Introduction to Supercomputing, Release 1.2.5

manager executes the following algorithm:

for j from 1 to p-1 do
send job j-1 to compute node j;

while not all jobs are done do
if a node is done with a job then

collect result from node;
if there is still a job left to do then

send next job to node;
else send termination signal.

To check for incoming messages, the nonblocking (or Immediate) MPI command is explained in Table 2.6.

Table 2.6: Syntax and arguments of MPI_Iprobe.

MPI_Iprobe(source,tag,comm,flag,status)
source rank of source or MPI_ANY_SOURCE
tag message tag or MPI_ANY_TAG
comm communicator
flag address of logical variable
status status object

If flag is true on return, then status contains the rank of the source of the message and can be received. The manager
starts with distributing the first 𝑝− 1 jobs, as shown below.

int manager (int p, int n)
{

char result[n+1];
int j;

for(j=1; j<p; j++) /* distribute first jobs */
{
if(v == 1) printf("sending %d to %d\n",j-1,j);
MPI_Send(&j,1,MPI_INT,j,tag,MPI_COMM_WORLD);

}
int done = 0;
int jobcount = p-1; /* number of jobs distributed */
do /* probe for results */
{

int flag;
MPI_Status status;
MPI_Iprobe(MPI_ANY_SOURCE,MPI_ANY_TAG,

MPI_COMM_WORLD,&flag,&status);
if(flag == 1)
{ /* collect result */

char c;
j = status.MPI_SOURCE;
if(v == 1) printf("received message from %d\n",j);
MPI_Recv(&c,1,MPI_CHAR,j,tag,MPI_COMM_WORLD,&status);
if(v == 1) printf("received %c from %d\n",c,j);
result[done++] = c;
if(v == 1) printf("#jobs done : %d\n",done);
if(jobcount < n) /* send the next job */

(continues on next page)

60 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

{
if(v == 1) printf("sending %d to %d\n",jobcount,j);
jobcount = jobcount + 1;
MPI_Send(&jobcount,1,MPI_INT,j,tag,MPI_COMM_WORLD);

}
else /* send -1 to signal termination */
{
if(v == 1) printf("sending -1 to %d\n",j);
flag = -1;
MPI_Send(&flag,1,MPI_INT,j,tag,MPI_COMM_WORLD);

}
}

} while (done < n);
result[done] = '\0';
printf("The result : %s\n",result);
return 0;

}

The code for the worker is the same as in the static work load distribution, see the function worker above. To make
the simulation of the dynamic load balancing more realistic, the code for the worker could be modified with a call to
the sleep function with as argument a random number of seconds.

2.4.7 probing in Python and Julia

The probing is available in mpi4py as

iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)

and in MPI.jl, the probing is done as

ismessage, (status|nothing) = Iprobe(src::Integer, tag::Integer, comm::Comm)

To illustrate dynamic load balancing in a Julia program, the specifications are listed below.

using MPI
MPI.Init()
COMM = MPI.COMM_WORLD

"""
function manager(p::Int, n::Int, verbose::Bool=true)

distributes n jobs to p-1 workers
and prints the received results.
Assumed is that n >= p-1.
"""

"""
function worker(i::Int, verbose::Bool=true)

The i-th worker receives a number.
The worker terminates if the number is -1,
otherwise it sends to the manager

(continues on next page)

2.4. Load Balancing 61

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

the corresponding character following 'a'.
"""

The main program is defined next.

"""
function main(verbose::Bool=true)

runs a manager/worker dynamic load distribution.
"""
function main(verbose::Bool=true)

myid = MPI.Comm_rank(COMM)
size = MPI.Comm_size(COMM)
if myid == 0

print("Give the number of jobs : ")
line = readline(stdin)
njobs = parse(Int, line)

end
MPI.Barrier(COMM)
if myid == 0

manager(size, njobs)
else

worker(myid)
end
MPI.Barrier(COMM)

end

The function which defines the actions of each worker is given below.

function worker(i::Int, verbose::Bool=true)
println("Worker ", i, " says hello.")
while true

nbr = MPI.recv(COMM; source=0, tag=11)
println("-> worker ", i, " received ", nbr)
if nbr == -1

break
end
chrnbr = Char(Int('a') + nbr)
MPI.send(chrnbr, COMM; dest=0, tag=11)

end
end

The manager sends the first jobs and then enters a loop to send the next jobs. Observe the use of Iprobe.

function manager(p::Int, n::Int, verbose::Bool=true)
if verbose

println("Manager distributes ", n,
" jobs to ", p-1, " workers ...")

end
result = ""
for j=1:p-1

println("-> manager sends job ", j,
" to worker ", j)

(continues on next page)

62 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

MPI.send(j, COMM; dest=j, tag=11)
end
jobcnt = p-1 # sent already p-1 jobs
done = 0 # counts workers that are done
while done < p-1

for i=1:p-1
messageSent = MPI.Iprobe(COMM; source=i)
if messageSent

data = MPI.recv(COMM; source=i)
println("-> manager received ", data,

" from ", i)
result = string(result, data)
jobcnt = jobcnt + 1
if jobcnt > n

MPI.send(-1, COMM; dest=i, tag=11)
done = done + 1

else
nbr = 1 + (jobcnt % p)
MPI.send(nbr, COMM; dest=i, tag=11)

end
end

end
end
println("result : ", result)
println("number of characters : ", length(result))
println(" number of jobs : ", n)

2.4.8 Scalability

Introducing load balancing we applied the manager/worker model to schedule jobs before executing (static) and during
execution (dynamic). This model works well for a modest number of processors. For thousands of processors, one
single manager may no longer be capable to obtain good load balancing.

Obtaining an optimal load balancing is NP-complete. The survey paper of Kwok and Ahmad describes several heuristics
to statically schedule jobs.

Nearest neighbor load balancing methods iteratively strive to obtain a global optimal work load distribution. Among
the deterministic algorithms are diffusion, dimension exchange, and the gradient model. The diffusion method was
modeled by Cybenko using linear system theories. Taking into account the topologies of the networks, results from
graph theory are applied in the convergence analysis, as explained in the book of Xu and Lau.

2.4.9 Bibliography

1. Selim G. Akl. Superlinear performance in real-time parallel computation. The Journal of Supercomputing
29(1):89–111, 2004.

2. George Cybenko. Dynamic Load Balancing for Distributed Memory Processors. Journal of Parallel and
Distributed Computing 7, 279-301, 1989.

3. Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task graphs to
multiprocessor. ACM Computing Surveys, 31(4):406–469, 1999.

2.4. Load Balancing 63

Introduction to Supercomputing, Release 1.2.5

4. C. McCreary and H. Gill. Automatic determination of grain size for efficient parallel processing. Commu-
nications of the ACM, 32(9):1073–1078, 1989.

5. Chengzhong Xu and Francis C.M. Lau. Load Balancing in Parallel Computers. Theory and Practice. Kluwer
Academic Publishers, 1997.

2.4.10 Exercises

1. Apply the manager/worker algorithm for static load assignment to the computation of the Mandelbrot set. What
is the speedup for 2, 4, and 8 compute nodes? To examine the work load of every worker, use an array to store
the total number of iterations computed by every worker.

2. Apply the manager/worker algorithm for dynamic load balancing to the computation of the Mandelbrot set. What
is the speedup for 2, 4, and 8 compute nodes? To examine the work load of every worker, use an array to store
the total number of iterations computed by every worker.

3. Compare the performance of static load assignment with dynamic load balancing for the Mandelbrot set. Com-
pare both the speedups and the work loads for every worker.

2.5 Handson Supercomputing

This lecture introduces to the practical aspects of using fast workstations and a real supercomputer.

2.5.1 working on a fast workstation

The first workstation is pascal.math.uic.edu, a Microway numbersmasher Xeon + Tesla GPU server (2016):

• two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz,

• 256GB of internal memory at 2400MHz,

• NVIDIA Tesla P100 16GB Pascal GPU accelerators, 4.7 TFLOPS (FP64) peak performance.

The newer ampere.math.uic.edu is a Microway 2U Xeon + NVIDIA GPU server (2024):

• two 24-core Intel Xeon 5318Y Ice Lake-SP, up to 3.40GHz,

• 256GB of internal memory at 3200MHz,

• NVIDIA Ampere A100 80GB GPU accelerator, 8.6 TFLOPS (FP64) peak performance. TensorCore perfor-
mance: up to 19.5 TFLOPS (FP64).

Login via ssh at a Terminal or PowerShell window. To transfer files use secure copy scp.

2.5.2 using a real supercomputer

Access has been granted through https://access-ci.org.

The workflow typically includes the following:

1. request access to the cluster

2. login to the cluster

3. user work spaces and directories

4. requesting and running software

64 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

5. submitting jobs

6. monitoring a job

2.6 Data Partitioning

To distribute the work load, we distinguish between functional and domain decomposition. To synchronize compu-
tations, we can use MPI_Barrier. We consider efficient scatter and gather implementations to fan out data and to fan
in results. To overlap the communication with computation, we can use the nonblocking immediate send and receive
operations.

2.6.1 functional and domain decomposition

To turn a sequential algorithm into a parallel one, we distinguish between functional and domain decomposition: In
a functional decomposition, the arithmetical operations are distributed among several processors. The Monte Carlo
simulations are example of a functional decomposition. In a domain decomposition, the data are distributed among
several processors. The Mandelbrot set computation is an example of a domain decomposition. When solving prob-
lems, the entire data set is often too large to fit into the memory of one computer. Complete game trees (e.g.: the game
of connect-4 or four in a row) consume an exponential amount of memory.

Divide and conquer used to solve problems:

1. break the problem in smaller parts;

2. solve the smaller parts; and

3. assemble the partial solutions.

Often, divide and conquer is applied in a recursive setting where the smallest nontrivial problem is the base case.
Sorting algorithms which apply divide and conquer are mergesort and quicksort.

2.6.2 parallel summation

Applying divide and conquer, we sum a sequence of numbers with divide and conquer, as in the following formula.

7∑︁
𝑘=0

𝑥𝑘 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) + (𝑥4 + 𝑥5 + 𝑥6 + 𝑥7)

= ((𝑥0 + 𝑥1) + (𝑥2 + 𝑥3)) + ((𝑥4 + 𝑥5) + (𝑥6 + 𝑥7))

The grouping of the summands in pairs is shown in Fig. 2.7.

The size of the problem is n, where 𝑆 =

𝑛−1∑︁
𝑘=0

𝑥𝑘. Assume we have 8 processors to make 8 partial sums:

𝑆 = (𝑆0 + 𝑆1 + 𝑆2 + 𝑆3) + (𝑆4 + 𝑆5 + 𝑆6 + 𝑆7)
= ((𝑆0 + 𝑆1) + (𝑆2 + 𝑆3)) + ((𝑆4 + 𝑆5) + (𝑆6 + 𝑆7))

where 𝑚 = (𝑛− 1)/8 and 𝑆𝑖 =

𝑚∑︁
𝑘=0

𝑥𝑘+𝑖𝑚 The communication pattern goes along divide and conquer:

1. the numbers 𝑥𝑘 are scattered in a fan out fashion,

2. summing the partial sums happens in a fan in mode.

Fanning out an array of data is shown in Fig. 2.8.

2.6. Data Partitioning 65

Introduction to Supercomputing, Release 1.2.5

Fig. 2.7: With 4 processors, the summation of 8 numbers in done in 3 steps.

Fig. 2.8: Fanning out data.

66 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

Algorithm: at step k, 2**k processors have data, and execute:
for j from 0 to 2**(k-1) do

processor j sends data/2**(k+1) to processor j + 2**k;
processor j+2**k receives data/2**(k+1) from processor j.

In fanning out, we use the same array for all nodes, and use only one send/recv statement. Observe the bit patterns in
nodes and data locations, as shown in Table 2.7.

Table 2.7: Bit patterns and data locations.

step
node 0 1 2 3 data
000 [0. . . 7] [0. . . 3] [0. . . 1] [0] 000
001 [4. . . 7] [4. . . 5] [4] 100
010 [2. . . 3] [2] 010
011 [6. . . 7] [6] 110
100 [1] 001
101 [5] 101
110 [3] 011
111 [7] 111

At step 3, the node with label in binary expansion 𝑏2𝑏1𝑏0 has data starting at index 𝑏0𝑏1𝑏2.

Fanning out with MPI is illustrated below, with 8 processes.

$ mpirun -np 8 /tmp/fan_out_integers
stage 0, d = 1 :
0 sends 40 integers to 1 at 40, start 40
1 received 40 integers from 0 at 40, start 40
stage 1, d = 2 :
0 sends 20 integers to 2 at 20, start 20
2 received 20 integers from 0 at 20, start 20
1 sends 20 integers to 3 at 60, start 60
3 received 20 integers from 1 at 60, start 60
stage 2, d = 4 :
0 sends 10 integers to 4 at 10, start 10
7 received 10 integers from 3 at 70, start 70
3 sends 10 integers to 7 at 70, start 70
4 received 10 integers from 0 at 10, start 10
1 sends 10 integers to 5 at 50, start 50
2 sends 10 integers to 6 at 30, start 30
6 received 10 integers from 2 at 30, start 30
5 received 10 integers from 1 at 50, start 50
data at all nodes :
1 has 10 integers starting at 40 with 40, 41, 42
2 has 10 integers starting at 20 with 20, 21, 22
7 has 10 integers starting at 70 with 70, 71, 72
5 has 10 integers starting at 50 with 50, 51, 52
0 has 10 integers starting at 0 with 0, 1, 2
6 has 10 integers starting at 30 with 30, 31, 32
3 has 10 integers starting at 60 with 60, 61, 62
4 has 10 integers starting at 10 with 10, 11, 12

To synchronize across all members of a group we apply MPI_Barrier(comm) where comm is the communicator

2.6. Data Partitioning 67

Introduction to Supercomputing, Release 1.2.5

(MPI_COMM_WORLD). MPI_Barrier blocks the caller until all group members have called the statement. The call
returns at any process only after all group members have entered the call.

The synchronization in each stage of the fan out must be done because the processors with high identification numbers
may only start sending the data in later stages, when they have received the data from processors with low identification
numbers.

The computation of the offset is done by the function parity_offset, as used in the program to fan out integers.

int parity_offset (int n, int s);
/* returns the offset of node with label n
* for data of size s based on parity of n */

int parity_offset (int n, int s)
{

int offset = 0;
s = s/2;
while(n > 0)
{

int d = n % 2;
if(d > 0) offset += s;
n = n/2;
s = s/2;

}
return offset;

}

The main program to fan out integers is below.

int main (int argc, char *argv[])
{

int myid,p,s,i,j,d,b;
int A[size];

MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0) /* manager initializes */
for(i=0; i<size; i++) A[i] = i;

s = size;
for(i=0,d=1; i<3; i++,d*=2) /* A is fanned out */
{

s = s/2;
if(v>0) MPI_Barrier(MPI_COMM_WORLD);
if(myid == 0) if(v > 0) printf("stage %d, d = %d :\n",i,d);
if(v>0) MPI_Barrier(MPI_COMM_WORLD);
for(j=0; j<d; j++)
{

b = parity_offset(myid,size);
if(myid == j)
{
if(v>0) printf("%d sends %d integers to %d at %d, start %d\n",

(continues on next page)

68 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

j,s,j+d,b+s,A[b+s]);
MPI_Send(&A[b+s],s,MPI_INT,j+d,tag,MPI_COMM_WORLD);

}
else if(myid == j+d)
{

MPI_Recv(&A[b],s,MPI_INT,j,tag,MPI_COMM_WORLD,&status);
if(v>0)

printf("%d received %d integers from %d at %d, start %d\n",
j+d,s,j,b,A[b]);

}
}

}
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
if(v > 0) if(myid == 0) printf("data at all nodes :\n");
if(v > 0) MPI_Barrier(MPI_COMM_WORLD);
printf("%d has %d integers starting at %d with %d, %d, %d\n",

myid,size/p,b,A[b],A[b+1],A[b+2]);
MPI_Finalize();
return 0;

}

The same program in Python uses mpi4py and numpy. As the program fans out an array of 80 integers over 8 processors,
it must be executed as

mpiexec -n 8 python3 fan_out_integers.py

The print statements in verbose mode are omitted in the code below.

import numpy as np
from mpi4py import MPI
COMM = MPI.COMM_WORLD
SIZE = 80 # size of the problem

def parity_offset(n, s):
"""
Returns the offset of node with label n
for data of size s based on parity of n.
"""
offset = 0
dim = n
wsz = s//2
while dim > 0:

d = dim % 2
if d > 0:

offset += wsz
dim = dim//2
wsz = wsz//2

return offset

def main(verbose=True):
"""

(continues on next page)

2.6. Data Partitioning 69

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

Fans out 80 integers to 8 processors.
"""
myid = COMM.Get_rank()
p = COMM.Get_size()
manager initializes, workers allocate space
if myid == 0:

data = np.arange(SIZE, dtype='i')
else:

data = np.empty(SIZE, dtype='i')
the code below has no verbose statements
d = 1 # depth
s = SIZE # size of a slice
b = 0 # begin index
for i in range(3): # in 3 steps for 8 nodes

s = s//2
for j in range(d):

b = parity_offset(myid, SIZE);
if myid == j:

slice = data[b+s: b+2*s]
COMM.Send([slice, MPI.INT], dest=j+d)

elif myid == j+d:
slice = data[b: b+s]
COMM.Recv([slice, MPI.INT], source=j)

d = 2*d

The version in Julia with mpi.jl is listed next. To synchronize the printing in verbose mode, MPI_Barrier is applied.

using MPI
MPI.Init()

COMM = MPI.COMM_WORLD
size of the problem
SIZE = 80

"""
function parity_offset(n::Int, s::Int)

returns the offset of node with label n
for data of size s based on parity of n.
"""
function parity_offset(n::Int, s::Int)

offset = 0
dim = n
wsz = div(s, 2)
while dim > 0

d = dim % 2
if d > 0

offset += wsz
end
dim = div(dim, 2)
wsz = div(wsz, 2)

end
(continues on next page)

70 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

return offset
end

"""
function main(verbose=True)

fans out 80 integers to 8 processors.
"""
function main(verbose::Bool=true)

myid = MPI.Comm_rank(COMM)
p = MPI.Comm_size(COMM)
manager initializes, workers allocate space
if myid == 0

data = [i for i=1:SIZE]
else

data = zeros(SIZE)
end
d = 1
s = SIZE
b = 0
for i=0:2

s = div(s, 2)
if verbose

MPI.Barrier(COMM)
if myid == 0

println("stage ", i, " d = ", d)
end
MPI.Barrier(COMM)

end
for j=0:d-1

b = parity_offset(myid, SIZE) + 1
if myid == j

if verbose
MPI.Barrier(COMM)
println(j, " sends ", s, " integers to ", j+d,

" at ", b+s, " start ", data[b+s],
" to ", data[b+2*s-1])

MPI.Barrier(COMM)
end
slice = data[b+s: b+2*s]
MPI.send(slice, COMM; dest=j+d, tag=11)

elseif myid == j+d
data[b: b+s] = MPI.recv(COMM; source=j, tag=11)
if verbose

MPI.Barrier(COMM)
println(j+d, " received ", s, " integers from ", j,

" at ", b, " start ", data[b],
" to ", data[b+s-1])

MPI.Barrier(COMM)
end

end
end

(continues on next page)

2.6. Data Partitioning 71

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

d = 2*d
end
if verbose

MPI.Barrier(COMM)
println(myid, " has ", div(SIZE, p), " integers starting at ", b,

" with ", data[b], data[b+1], " to ", data[b+div(SIZE, p)-1])
MPI.Barrier(COMM)

end
end

main()

To execute the above program, saved as fan_out_integers.jl, do

mpiexecjl -n 8 julia fan_out_integers.jl

Fanning in the results is illustrated in Fig. 2.9.

Fig. 2.9: Fanning in results.

Algorithm: at step k, 2**k processors send results and execute:
for j from 0 to 2**k-1 do

processor j+2**k sends the result to processor j;
processor j receives the result from processor j+2**k.

We run the algorithm for decreasing values of k: for example: k=2,1,0.

2.6.3 An Application

Computing 𝜋 to trillions of digits is a benchmark problem for supercomputers.

One of the remarkable discoveries made by the PSLQ Algorithm (PSLQ = Partial Sum of Least Squares, or integer
relation detection) is a simple formula that allows to calculating any binary digit of 𝜋 without calculating the digits
preceding it:

𝜋 =

∞∑︁
𝑖=0

1

16𝑖

(︂
4

8𝑖 + 1
− 2

8𝑖 + 4
− 1

8𝑖 + 5
− 1

8𝑖 + 6

)︂
.

72 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

BBP stands for Bailey, Borwein and Plouffe. Instead of adding numbers, we concatenate strings.

Some readings on calculations for pi are listed below:

• David H. Bailey, Peter B. Borwein and Simon Plouffe: On the Rapid Computation of Various Polylogarithmic
Constants. Mathematics of Computation 66(218): 903–913, 1997.

• David H. Bailey: the BBP Algorithm for Pi. September 17, 2006. <http://crd-legacy.lbl.gov/~dhbailey/
dhbpapers/>

• Daisuke Takahashi: Parallel implementation of multiple-precision arithmetic and 2, 576, 980, 370, 000
decimal digits of pi calculation. Parallel Computing 36(8): 439-448, 2010.

2.6.4 Nonblocking Point-to-Point Communication

The MPI_SEND and MPI_RECV are blocking:

• The sender must wait till the message is received.

• The receiver must wait till the message is sent.

For synchronized computations, this is desirable. To overlap the communication with the computation, we may prefer
the use of nonblocking communication operations:

• MPI_ISEND for the Immediate send; and

• MPI_IRECV for the Immediate receive.

The status of the immediate send/receive

• can be queried with MPI_TEST; or

• we can wait for its completion with MPI_WAIT.

The specification of the MPI_ISEND command

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

is in Table 2.8.

Table 2.8: Specification of the MPI_ISEND command.

parameter description
buf address of the send buffer
count number of elements in send buffer
datatype datatype of each send buffer element
dest rank of the destination
tag message tag
comm communicator
request communication request (output)

The sender should not modify any part of the send buffer after a nonblocking send operation is called, until the send
completes.

The specification of the MPI_IRECV command

MPI_IRECV(buf, count, datatype, source, tag, comm, request)

2.6. Data Partitioning 73

http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/

Introduction to Supercomputing, Release 1.2.5

is in Table 2.9.

Table 2.9: Specification of the MPI_IRECV command.

parameter description
buf address of the receive buffer
count number of elements in receive buffer
datatype datatype of each receive buffer element
source rank of source or MPI_ANY_SOURCE
tag message tag or MPI_ANY_TAG
comm communicator
request communication request (output)

The receiver should not access any part of the receive buffer after a nonblocking receive operation is called, until the
receive completes.

After the call to MPI_ISEND or MPI_IRECV, the request can be used to query the status of the communication or wait
for its completion.

To wait for the completion of a nonblocking communication:

MPI_WAIT (request, status)

with specifications in Table 2.10.

Table 2.10: Specification of the MPI_WAIT command.

parameter description
request communication request
status status object

To test the status of the communication:

MPI_TEST (request, flag, status)

with specifications in Table 2.11.

Table 2.11: Specification of the MPI_TEST command.

parameter description
request communication request
flag true if operation completed
status status object

74 Chapter 2. Introduction to Message Passing

Introduction to Supercomputing, Release 1.2.5

2.6.5 Exercises

1. Adjust the fanning out of the array of integers so it works for any number 𝑝 of processors where 𝑝 = 2𝑘 for some
𝑘. You may take the size of the array as an integer multiple of 𝑝. To illustrate your program, provide screen shots
for 𝑝 = 8, 16, and 32.

2. Run the program of the previous exercise on the supercomputer, for 𝑝 = 8, 16, 32, 64, and 128.

For each run, report the wall clock time.

3. Complete the summation and the fanning in of the partial sums, extending the program. You may leave 𝑝 = 8.

2.6. Data Partitioning 75

Introduction to Supercomputing, Release 1.2.5

76 Chapter 2. Introduction to Message Passing

CHAPTER 3

Introduction to Threading and Tasking

To program shared memory parallel computers, we can apply Open MP, the pthreads library in C, the Intel Threading
Building blocks in C++, or the tools available in Julia.

3.1 Introduction to OpenMP

Although the focus of this lecture is on OpenMP, we start out by introducing the running example, and by illustrating
its multithreaded solution in Julia.

3.1.1 programming shared memory parallel computers

We can approximate 𝜋 via
𝜋

4
=

∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥, applying the trapezoidal rule:

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)).

Using 𝑛 subintervals of [𝑎, 𝑏]:∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) + ℎ

𝑛−1∑︁
𝑖=1

𝑓(𝑎 + 𝑖ℎ), ℎ =
𝑏− 𝑎

𝑛
.

The application of multithreading is illustrated in Fig. 3.1. In the example of Fig. 3.1, the interval [0, 1] in four equal
parts, for the execution with four threads.

77

Introduction to Supercomputing, Release 1.2.5

Fig. 3.1: Multithreaded integration with four threads Each thread has its own variables for the limits of the integration
interval and for the value of the integral.

3.1.2 multithreading in Julia

The composite trapezoidal rule is defined in the Julia function below.

"""
function traprule(f::Function,

a::Float64, b::Float64,
n::Int)

returns the composite trapezoidal rule to
approximate the integral of f over [a,b]
using n function evaluations.
"""
function traprule(f::Function,

a::Float64, b::Float64,
n::Int)

h = (b-a)/n
y = (f(a) + f(b))/2
x = a + h
for i=1:n-1

y = y + f(x)
x = x + h

end
return h*y

end

The program continues below, with the use of Threads.

78 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

using Printf
using Base.Threads

nt = nthreads()
println("The number of threads : $nt")
subapprox = zeros(nt)

f(x) = sqrt(1 - x^2)
dx = 1/nt
bounds = [i for i=0:dx:1]

timestart = time()
@threads for i=1:nt

subapprox[i] = traprule(f, bounds[i], bounds[i+1], 1_000_000)
end
approxpi = 4*sum(subapprox)
elapsed = time() - timestart

println("The approximation for Pi : $approxpi")
err = @sprintf("%.3e", pi - approxpi)
println("with error : $err")
println("The elapsed time : $elapsed seconds")

Observe that in the parallel loop, every thread using one million function evaluations. Instead of a speedup, we should
look for a quality up, and observe that the error of the approximation for 𝑝𝑖 decreases when using more threads.

To execute the code, at the command prompt in Linux, type

JULIA_NUM_THREADS=8 julia mtcomptrap.jl

to run the code with 8 threads. As an alternative to setting the environment variable JULIA_NUM_THREADS, launch the
program as

julia -t 8 mtcomptrap.jl

to use 8 threads.

To introduce the notion of parallel region, consider the sequence Fig. 3.2. Suppose 𝑎1, 𝑎2, 𝑎3 can be executed in parallel,
and similarly for the execution of 𝑏1, 𝑏2, 𝑏3, 𝑏4, and 𝑐1, 𝑐2, 𝑐3.

Fig. 3.2: A sequence of three blocks of statements.

The parallel execution of the sequence in Fig. 3.2 is shown in in Fig. 3.3.

The running of a crew of four threads using three parallel regions is illustrated in Fig. 3.4.

3.1. Introduction to OpenMP 79

Introduction to Supercomputing, Release 1.2.5

Fig. 3.3: Three parallel regions to execute a sequence of statements.

Fig. 3.4: Running a crew of four threads with three parallel regions.

80 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.1.3 the OpenMP Application Program Interface

OpenMP is an Application Program Interface which originated when a group of parallel computer vendors joined forces
to provide a common means for programming a broad range of shared memory parallel computers.

The collection of

1. compiler directives (specified by #pragma)

2. library routines (call gcc -fopenmp) e.g.: to get the number of threads; and

3. environment variables (e.g.: number of threads, scheduling policies)

defines collectively the specification of the OpenMP API for shared-memory parallelism in C, C++, and Fortran pro-
grams. OpenMP offers a set of compiler directives to extend C/C++. The directives can be ignored by a regular C/C++
compiler. . .

With MPI, we identified processors with processes: in mpirun -p as p is larger than the available cores, as many as
p processes are spawned. In comparing a process with a thread, we can consider a process as a completely separate
program with its own variables and memory allocation. Threads share the same memory space and global variables
between routines. A process can have many threads of execution.

3.1.4 using OpenMP

Our first program with OpenMP is below, Hello World!.

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[])
{

omp_set_num_threads(8);

#pragma omp parallel
{
#pragma omp master
{

printf("Hello from the master thread %d!\n", omp_get_thread_num());
}
printf("Thread %d says hello.\n", omp_get_thread_num());

}
return 0;

}

If we save this code in the file hello_openmp0, then we compile and run the program as shown below.

$ make hello_openmp0
gcc -fopenmp hello_openmp0.c -o /tmp/hello_openmp0

$ /tmp/hello_openmp0
Hello from the master thread 0!
Thread 0 says hello.
Thread 1 says hello.
Thread 2 says hello.
Thread 3 says hello.
Thread 4 says hello.

(continues on next page)

3.1. Introduction to OpenMP 81

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

Thread 5 says hello.
Thread 6 says hello.
Thread 7 says hello.
$

Let us go step by step through the hello_openmp0.c program and consider first the use of library routines. We compile
with gcc -fopenmp and put

#include <omp.h>

at the start of the program. The program hello_openmp0.c uses two OpenMP library routines:

1. void omp_set_num_threads (int n);

sets the number of threads to be used for subsequent parallel regions.

2. int omp_get_thread_num (void);

returns the thread number, within the current team, of the calling thread.

We use the parallel construct as

#pragma omp parallel
{

S1;
S2;
...
Sm;

}

to execute the statements S1, S2, . . . , Sm in parallel.

The master construct specifies a structured block that is executed by the master thread of the team. The master construct
is illustrated below:

#pragma omp parallel
{
#pragma omp master
{

printf("Hello from the master thread %d!\n", omp_get_thread_num());
}
/* instructions omitted */

}

The single construct specifies that the associated block is executed by only one of the threads in the team (not necessarily
the master thread), in the context of its implicit task. The other threads in the team, which do not execute the block,
wait at an implicit barrier at the end of the single construct. Extending the hello_openmp0.c program with

#pragma omp parallel
{

/* instructions omitted */
#pragma omp single
{

printf("Only one thread %d says more ...\n", omp_get_thread_num());
}

}

82 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.1.5 Numerical Integration with OpenMP

We consider the composite trapezoidal rule for 𝜋 via
𝜋

4
=

∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥. The trapezoidal rule for 𝑓(𝑥) over [𝑎, 𝑏] is∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑏− 𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)).

Using 𝑛 subintervals of [𝑎, 𝑏]:∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) + ℎ

𝑛−1∑︁
𝑖=1

𝑓(𝑎 + 𝑖ℎ), ℎ =
𝑏− 𝑎

𝑛
.

The first argument of the C function for the composite trapezoidal rule is the function that defines the integrand f. The
complete C program follows.

double traprule
(double (*f) (double x), double a, double b, int n)
{

int i;
double h = (b-a)/n;
double y = (f(a) + f(b))/2.0;
double x;

for(i=1,x=a+h; i < n; i++,x+=h) y += f(x);

return h*y;
}

double integrand (double x)
{
return sqrt(1.0 - x*x);

}

int main (int argc, char *argv[])
{

int n = 1000000;
double my_pi = 0.0;
double pi,error;

my_pi = traprule(integrand,0.0,1.0,n);
my_pi = 4.0*my_pi; pi = 2.0*asin(1.0); error = my_pi-pi;
printf("Approximation for pi = %.15e with error = %.3e\n", my_pi,error);

return 0;
}

On one core at 3.47 Ghz, running the program evaluates
√

1 − 𝑥2 one million times.

$ time /tmp/comptrap
Approximation for pi = 3.141592652402481e+00 with error = -1.187e-09

real 0m0.017s
user 0m0.016s
sys 0m0.001s

3.1. Introduction to OpenMP 83

Introduction to Supercomputing, Release 1.2.5

The private clause of parallel is illustrated below.

int main (int argc, char *argv[])
{

int i;
int p = 8;
int n = 1000000;
double my_pi = 0.0;
double a,b,c,h,y,pi,error;

omp_set_num_threads(p);

h = 1.0/p;

#pragma omp parallel private(i,a,b,c)
/* each thread has its own i,a,b,c */
{

i = omp_get_thread_num();
a = i*h;
b = (i+1)*h;
c = traprule(integrand,a,b,n);
#pragma omp critical
/* critical section protects shared my_pi */

my_pi += c;
}
my_pi = 4.0*my_pi; pi = 2.0*asin(1.0); error = my_pi-pi;
printf("Approximation for pi = %.15e with error = %.3e\n",my_pi,error);

return 0;
}

A private variable is a variable in a parallel region providing access to a different block of storage for each thread.

#pragma omp parallel private(i,a,b,c)
/* each thread has its own i,a,b,c */
{

i = omp_get_thread_num();
a = i*h;
b = (i+1)*h;
c = traprule(integrand,a,b,n);

Thread i integrates from a to b, where h = 1.0/p and stores the result in c. The critical construct restricts
execution of the associated structured block in a single thread at a time.

#pragma omp critical
/* critical section protects shared my_pi */

my_pi += c;

A thread waits at the beginning of a critical section until no threads is executing a critical section. The critical
construct enforces exclusive access. In the example, no two threads may increase my_pi simultaneously. Running on
8 cores:

$ make comptrap_omp
gcc -fopenmp comptrap_omp.c -o /tmp/comptrap_omp -lm

(continues on next page)

84 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

$ time /tmp/comptrap_omp
Approximation for pi = 3.141592653497455e+00 \
with error = -9.234e-11

real 0m0.014s
user 0m0.089s
sys 0m0.001s
$

Compare on one core (error = -1.187e-09):

real 0m0.017s
user 0m0.016s
sys 0m0.001s

The results are summarized in Table 3.1. Summarizing the results:

Table 3.1: Multithreaded Composite Trapezoidal Rule.

real time error
1 thread 0.017s -1.187e-09
8 threads 0.014s -9.234e-11

In the multithreaded version, every thread uses 1,000,000 subintervals. The program with 8 threads does 8 times more
work than the program with 1 thread.

In the book by Wilkinson and Allen, section 8.5 is on OpenMP.

3.1.6 Bibliography

1. Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared Memory Parallel
Programming. The MIT Press, 2007.

2. OpenMP Architecture Review Board. OpenMP Application Program Interface. Version 4.0, July 2013. Avail-
able at <http://www.openmp.org>.

3.1.7 Exercises

0. Read the first chapter of the book Using OpenMP by Chapman, Jost, and van der Pas.

1. Modify the hello world! program with OpenMP so that the master thread prompts the user for a name which
is used in the greeting displayed by thread 5. Note that only one thread, the one with number 5, greets the user.

2. Modify the hello world! program so that the number of threads is entered at the command line.

3. Consider the Monte Carlo simulations we have developed with MPI for the estimation of 𝜋. Write a version with
OpenMP and examine the speedup.

4. Write an OpenMP program to simulate the management of a bank account, with the balance represented by a
single shared variable. The program has two threads. Each thread shows the balance to the user and prompts for
a debit (decrease) or a deposit (increase). Each thread then updates the balance in a critical section and displays
the final the balance to the user.

3.1. Introduction to OpenMP 85

http://www.openmp.org

Introduction to Supercomputing, Release 1.2.5

3.2 The Crew of Threads Model

We illustrate the use of pthreads to implement the work crew model, working to process a sequence of jobs, given in a
queue.

3.2.1 Multithreaded Processes

Before we start programming programming shared memory parallel computers, let us specify the relation between
threads and processes.

A thread is a single sequential flow within a process. Multiple threads within one process share heap storage, static
storage, and code. Each thread has its own registers and stack. Threads share the same single address space and
synchronization is needed when threads access same memory locations. A single threaded process is depicted in Fig.
3.5 next to a multithreaded process.

Fig. 3.5: At the left we see a process with one single thread and at the right a multithreaded process.

Threads share the same single address space and synchronization is needed when threads access same memory loca-
tions. Multiple threads within one process share heap storage, for dynamic allocation and deallocation; static storage,
fixed space; and code. Each thread has its own registers and stack.

The difference between the stack and the heap:

• stack: Memory is allocated by reserving a block of fixed size on top of the stack. Deallocation is adjusting the
pointer to the top.

• heap: Memory can be allocated at any time and of any size.

Every call to calloc (or malloc) and the deallocation with free involves the heap. Memory allocation or deallocation
should typically happen respectively before or after the running of multiple threads. In a multithreaded process, the
memory allocation and deallocation should otherwise occur in a critical section. Code is thread safe if its simultaneous
execution by multiple threads is correct.

86 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.2.2 The Work Crew Model

Instead of the manager/worker model where one node is responsible for the distribution of the jobs and the other nodes
are workers, with threads we can apply a more collaborative model. We call this the work crew model. Fig. 3.6
illustrates a computation performed by three threads in a work crew model.

Fig. 3.6: A computation performed by 3 threads in a work crew model.

If the computation is divided into many jobs stored in a queue, then the threads grab the next job, compute the job, and
push the result onto another queue or data structure.

We will simulate a work crew model:

• Suppose we have a queue of 𝑛 jobs.

• Each job has a certain work load (computational cost).

• There are 𝑝 threads working on the 𝑛 jobs.

To distribute the jobs among the threads, we can choose between the following:

1. either each worker has its own queue of jobs,

2. or idle workers do the next jobs in the shared queue.

We consider the second type of distributing jobs, which corresponds to dynamic load balancing, because which job
gets executed by which thread is determined during execution.

3.2.3 A Crew of Workers with Julia

The output of a simulation with Julia is below.

$ julia -t 3 workcrew.jl
The jobs : [4, 5, 5, 2, 4, 6, 3, 6, 6, 4]
the number of threads : 3
Worker 1 is ready.
Worker 3 is ready.
Worker 2 is ready.
Worker 3 spends 5 seconds on job 2 ...
Worker 1 spends 4 seconds on job 1 ...
Worker 2 spends 5 seconds on job 3 ...
Worker 1 spends 2 seconds on job 4 ...
Worker 3 spends 6 seconds on job 6 ...
Worker 2 spends 4 seconds on job 5 ...
Worker 1 spends 3 seconds on job 7 ...
Worker 2 spends 6 seconds on job 8 ...
Worker 1 spends 6 seconds on job 9 ...
Worker 3 spends 4 seconds on job 10 ...
Jobs done : [1, 3, 2, 1, 2, 3, 1, 2, 1, 3]

3.2. The Crew of Threads Model 87

Introduction to Supercomputing, Release 1.2.5

The setup starts with generating a queue of jobs, done by the code below.

using Base.Threads

nbr = 10
jobs = rand((2, 3, 4, 5, 6), nbr)
println("The jobs : ", jobs)

nt = nthreads()
println("the number of threads : ", nt)

@threads for i=1:nt
println("Worker ", threadid(), " is ready.")

end

The queue of jobs is shared between all threads. The value of the index to the next job is also shared. The next idle
worker will take this value and update it. For the correctness of the program, it is critical that during the update of this
value, no other thread accesses the value. Julia provides the mechanism of the atomic variable, which will be illustrated
next.

jobidx = Atomic{Int}(1)
@threads for i=1:nt

println("Worker ", threadid(), " is ready.")
while true

myjob = atomic_add!(jobidx, 1)
if myjob > nbr

break
end
println("Thread ", threadid(),

" spends ", jobs[myjob], " seconds",
" on job ", myjob, " ...")

sleep(jobs[myjob])
jobs[myjob] = threadid()

end
end
println("Jobs done : ", jobs)

The job index is accessed in a thread safe manner using an atomic variable, and used as follows:

• The job index is declared and initialized to one: jobidx = Atomic{Int}(1).

• Incrementing the job index goes via myjob = atomic_add!(jobidx, 1), which returns the current value of
jobidx and increments the value of jobidx by one.

The thread safe manner means that accessing the value of the job index can done by only one thread at the same time.

88 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.2.4 Processing a Job Queue

To define the simulation more precisely, consider that the state of the job queue is defined by

1. the number of jobs,

2. the index to the next job to be executed, and

3. the work to be done by every job.

Variables in a program can be values or references to values, as illustrated in Fig. 3.7, for a queue of 8 jobs. The current
status of the queue is determined by the value of nextjob, the index to the next job.

Fig. 3.7: Representing a job queue by the number of jobs, the next job and the work for each job.

In C, the above picture is realized by the statements:

int nb = 8;
int *nextjob;
int *work;

*nextjob = 3;
work = (int*)calloc(nb, sizeof(int));

To define the sharing of data between threads, we encapsulate the references. Every thread has as values

1. its thread identification number id; and

2. the number of jobs nb.

The shared data are

1. the reference to the next job; and

2. the cost for every job.

The use of values and pointers is illustrated in Fig. 3.8.

The definition of the data structure in C is shown below.

typedef struct
{

int id; /* identification label */
int nb; /* number of jobs */
int *nextjob; /* index of next job */

(continues on next page)

3.2. The Crew of Threads Model 89

Introduction to Supercomputing, Release 1.2.5

Fig. 3.8: Each thread has as values its identification number and the number of jobs. The shared values are in the
memory locations referred to by the pointers nextjob and work.

(continued from previous page)

int *work; /* array of nb jobs */
} jobqueue;

For example, to share the data of the job queue between 8 threads, consider Fig. 3.9.

Thread 𝑖 takes on input q[𝑖]:

1. q[𝑖].id = 𝑖,

2. q[𝑖].nb = 8,

3. *q[𝑖].nextjob = 3,

4. q[𝑖].work[3] defines the next job.

The situation for 𝑖 = 2 on the example with 3 threads is illustrated in Fig. 3.10.

The sequential C code to process the job queue is listed below:

void do_job (jobqueue *q)
{

int jobtodo;
do
{

jobtodo = -1;
int *j = q->nextjob;
if(*j < q->nb) jobtodo = (*j)++;
if(jobtodo == -1) break;
int w = q->work[jobtodo];
sleep(w);

}
while (jobtodo != -1);

}

The q->nextjob is equivalent to (*q).nextjob. The jobtodo = (*j)++ dereferences j, assigns, and increments.

90 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

Fig. 3.9: A job queue q to distribute 8 jobs among 3 threads.

Fig. 3.10: A job queue q accessed by thread 𝑖 = 2.

3.2. The Crew of Threads Model 91

Introduction to Supercomputing, Release 1.2.5

3.2.5 Processing the Jobs with OpenMP

With OpenMP, we take the sequential code and define parallel regions. Observe the critical section in the code below.

void do_job (jobqueue *q)
{

int jobtodo;
do
{

jobtodo = -1;
int *j = q->nextjob;

#pragma omp critical
if(*j < q->nb) jobtodo = (*j)++;

if(jobtodo == -1) break;
int w = q->work[jobtodo];
sleep(w);

}
while (jobtodo != -1);

}

The do_job function is called in the function below, which defines the parallel region.

int process_jobqueue (jobqueue *jobs, int nbt)
{

jobqueue q[nbt];
int i;

for(i=0; i<nbt; i++)
{

q[i].nb = jobs->nb;
q[i].id = i;
q[i].nextjob = jobs->nextjob;
q[i].work = jobs->work;

}
#pragma omp parallel
{

i = omp_get_thread_num();
do_job(&q[i]);

}
return *(jobs->nextjob);

}

And then finally, we define the main program.

int main (int argc, char* argv[])
{

int njobs,done,nbthreads;
jobqueue *jobs;

/* prompt for njobs and nbthreads */

jobs = make_jobqueue(njobs);
(continues on next page)

92 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

omp_set_num_threads(nbthreads);

done = process_jobqueue(jobs,nbthreads);

printf("done %d jobs\n", jobs->nb);

return 0;
}

This detailed definition of the job queue works as well with Pthreads, as explained in the next section.

3.2.6 The POSIX Threads Programming Interface

For UNIX systems, a standardized C language threads programming interface has been specified by the IEEE POSIX
1003.1c standard. POSIX stands for Portable Operating System Interface. Implementations of this POSIX threads
programming interface are referred to as POSIX threads, or Pthreads. We can see that gcc supports posix threads
when we ask for its version number:

$ gcc -v
... output omitted ...
Thread model: posix
... output omitted ...

In a C program we just insert

#include <pthread.h>

and compilation may require the switch -pthread

$ gcc -pthread program.c

Our first program with Pthreads is once again a hello world. We define the function each thread executes:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *say_hi (void *args);
/*
* Every thread executes say_hi.
* The argument contains the thread id. */

int main (int argc, char* argv[]) { ... }

void *say_hi (void *args)
{

int *i = (int*) args;
printf("hello world from thread %d!\n",*i);
return NULL;

}

3.2. The Crew of Threads Model 93

Introduction to Supercomputing, Release 1.2.5

Typing gcc -o /tmp/hello_pthreads hello_pthreads.c at the command prompt compiles the program and
execution goes as follows:

$ /tmp/hello_pthreads
How many threads ? 5
creating 5 threads ...
waiting for threads to return ...
hello world from thread 0!
hello world from thread 2!
hello world from thread 3!
hello world from thread 1!
hello world from thread 4!
$

Below is the main program:

int main (int argc, char* argv[])
{

printf("How many threads ? ");
int n; scanf("%d",&n);
{

pthread_t t[n];
pthread_attr_t a;
int i,id[n];
printf("creating %d threads ...\n",n);
for(i=0; i<n; i++)
{

id[i] = i;
pthread_attr_init(&a);
pthread_create(&t[i],&a,say_hi,(void*)&id[i]);

}
printf("waiting for threads to return ...\n");
for(i=0; i<n; i++) pthread_join(t[i],NULL);

}
return 0;

}

In order to avoid sharing data between threads, To each thread we pass its unique identification label. To say_hi we
pass the address of the label. With the array id[n] we have n distinct addresses:

pthread_t t[n];
pthread_attr_t a;
int i,id[n];
for(i=0; i<n; i++)
{

id[i] = i;
pthread_attr_init(&a);
pthread_create(&t[i],&a,say_hi,(void*)&id[i]);

}

Passing &i instead of &id[i] gives to every thread the same address, and thus the same identification label. We can
summarize the use of Pthreads in 3 steps:

1. Declare threads of type pthread_t and attribute(s) of type pthread_attri_t.

2. Initialize the attribute a as pthread_attr_init(&a); and create the threads with pthreads_create

94 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

providing

1. the address of each thread,

2. the address of an attribute,

3. the function each thread executes, and

4. an address with arguments for the function.

Variables are shared between threads if the same address is passed as argument to the function the thread executes.

3. The creating thread waits for all threads to finish using pthread_join.

To process a queue of jobs, we will simulate a work crew model with Pthreads. Suppose we have a queue with n jobs.
Each job has a certain work load (computational cost). There are t threads working on the n jobs. A variable nextjob
is an index to the next job. In a critical section, each thread reads the current value of nextjob and increments the
value of nextjob with one.

The job queue is defined as a structure of constant values and pointers, which allows threads to share data.

typedef struct
{

int id; /* identification label */
int nb; /* number of jobs */
int *nextjob; /* index of next job */
int *work; /* array of nb jobs */

} jobqueue;

Every thread gets a job queue with two constants and two adrresses. The constants are the identification number and
the number of jobs. The identification number labels the thread and is different for each thread, whereas the number of
jobs is the same for each thread. The two addresses are the index of the next job and the work array. Because we pass
the addresses to each thread, each thread can change the data the addresses refer to.

The function to generate n jobs is defined next.

jobqueue *make_jobqueue (int n)
{

jobqueue *jobs;

jobs = (jobqueue*) calloc(1,sizeof(jobqueue));
jobs->nb = n;
jobs->nextjob = (int*)calloc(1,sizeof(int));
*(jobs->nextjob) = 0;
jobs->work = (int*) calloc(n,sizeof(int));

int i;
for(i=0; i<n; i++)

jobs->work[i] = 1 + rand() % 5;

return jobs;
}

The function to process the jobs by n threads is defined below:

int process_jobqueue (jobqueue *jobs, int n)
{

pthread_t t[n];
(continues on next page)

3.2. The Crew of Threads Model 95

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

pthread_attr_t a;
jobqueue q[n];
int i;
printf("creating %d threads ...\n",n);
for(i=0; i<n; i++)
{

q[i].nb = jobs->nb; q[i].id = i;
q[i].nextjob = jobs->nextjob;
q[i].work = jobs->work;
pthread_attr_init(&a);
pthread_create(&t[i],&a,do_job,(void*)&q[i]);

}
printf("waiting for threads to return ...\n");
for(i=0; i<n; i++) pthread_join(t[i],NULL);
return *(jobs->nextjob);

}

3.2.7 Implementing a Critical Section with mutex

Running the processing of the job queue can go as follows:

$ /tmp/process_jobqueue
How many jobs ? 4
4 jobs : 3 5 4 4
How many threads ? 2
creating 2 threads ...
waiting for threads to return ...
thread 0 requests lock ...
thread 0 releases lock
thread 1 requests lock ...
thread 1 releases lock
*** thread 1 does job 1 ***
thread 1 sleeps 5 seconds
*** thread 0 does job 0 ***
thread 0 sleeps 3 seconds
thread 0 requests lock ...
thread 0 releases lock
*** thread 0 does job 2 ***
thread 0 sleeps 4 seconds
thread 1 requests lock ...
thread 1 releases lock
*** thread 1 does job 3 ***
thread 1 sleeps 4 seconds
thread 0 requests lock ...
thread 0 releases lock
thread 0 is finished
thread 1 requests lock ...
thread 1 releases lock
thread 1 is finished
done 4 jobs
4 jobs : 0 1 0 1

(continues on next page)

96 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

$

There are three steps to use a mutex (mutual exclusion):

1. initialization: pthread_mutex_t L = PTHREAD_MUTEX_INITIALIZER;

2. request a lock: pthread_mutex_lock(&L);

3. release the lock: pthread_mutex_unlock(&L);

The main function is defined below:

pthread_mutex_t read_lock = PTHREAD_MUTEX_INITIALIZER;

int main (int argc, char* argv[])
{

printf("How many jobs ? ");
int njobs; scanf("%d",&njobs);
jobqueue *jobs = make_jobqueue(njobs);
if(v > 0) write_jobqueue(jobs);

printf("How many threads ? ");
int nthreads; scanf("%d",&nthreads);
int done = process_jobqueue(jobs,nthreads);
printf("done %d jobs\n",done);
if(v>0) write_jobqueue(jobs);

return 0;
}

Below is the definition of the function do_job:

void *do_job (void *args)
{

jobqueue *q = (jobqueue*) args;
int dojob;
do
{

dojob = -1;
if(v > 0) printf("thread %d requests lock ...\n",q->id);
pthread_mutex_lock(&read_lock);
int *j = q->nextjob;
if(*j < q->nb) dojob = (*j)++;
if(v>0) printf("thread %d releases lock\n",q->id);
pthread_mutex_unlock(&read_lock);
if(dojob == -1) break;
if(v>0) printf("*** thread %d does job %d ***\n",

q->id,dojob);
int w = q->work[dojob];
if(v>0) printf("thread %d sleeps %d seconds\n",q->id,w);
q->work[dojob] = q->id; /* mark job with thread label */
sleep(w);

} while (dojob != -1);

(continues on next page)

3.2. The Crew of Threads Model 97

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

if(v>0) printf("thread %d is finished\n",q->id);

return NULL;
}

Pthreads allow for the finest granularity. Applied to the computation of the Mandelbrot set: One job is the computation
of the grayscale of one pixel, in a 5,000-by-5,000 matrix. The next job has number𝑛 = 5, 000*𝑖+𝑗, where 𝑖 = 𝑛/5, 000
and 𝑗 = 𝑛 mod 5, 000.

3.2.8 The Dining Philosophers Problem

A classic example to illustrate the synchronization problem in parallel program is the dining philosophers problem.

The problem setup, rules of the game:

1. Five philosophers are seated at a round table.

2. Each philosopher sits in front of a plate of food.

3. Between each plate is exactly one chop stick.

4. A philosopher thinks, eats, thinks, eats, . . .

5. To start eating, every philosopher

1. first picks up the left chop stick, and

2. then picks up the right chop stick.

Why is there a problem?

The problem of the starving philosophers:

• every philosoper picks up the left chop stick, at the same time,

• there is no right chop stick left, every philosopher waits, . . .

3.2.9 Bibliography

1. Compaq Computer Corporation. Guide to the POSIX Threads Library, April 2001.

2. Mac OS X Developer Library. Threading Programming Guide, 2010.

3.2.10 Exercises

1. Modify the hello world! program with Pthreads so that the master thread prompts the user for a name which
is used in the greeting displayed by thread 5. Note that only one thread, the one with number 5, greets the user.

2. Consider the Monte Carlo simulations we have developed with MPI for the estimation of 𝜋. Write a version with
Julia, or OpenMP, or Pthreads and examine the speedup.

3. Consider the computation of the Mandelbrot set as implemented in the program mandelbrot.c of lecture 7.
Write code (with Julia, or OpenMP, or Pthreads) for a work crew model of threads to compute the grayscales.
Does the grain size matter? Compare the running time of your program with your MPI implementation.

4. For some number N, array x, function f, consider:

98 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

#pragma omp parallel
#pragma omp for schedule(dynamic)
{
for(i=0; i<N; i++) x[i] = f(i);

}

Define the simulation of the dynamic load balancing with the job queue using schedule(dynamic).

5. Write a simulation for the dining philosophers problem. Could you observe starvation? Explain.

3.3 Tasking with OpenMP

A process can be viewed as a program. A process can have multiple threads of execution.

Task

A task provides a unit of work to a thread for execution.

Tasks are much lighter than threads. The main differences between threads and tasks are:

• Starting and terminating a task is much faster than starting and terminating a thread.

• A thread has its own process id and own resources, whereas a task is typically a small routine.

3.3.1 Parallel Recursive Functions

The sequence of Fibonacci numbers 𝐹𝑛 are defined as

𝐹0 = 0, 𝐹1 = 1, and for 𝑛 > 1 : 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

This leads to a natural recursive function.

The recursion generates many function calls. While inefficient to compute𝐹𝑛, this recursion serves as a parallel pattern.

The parallel version is part of the OpenMP Application Programming Interface Examples. The Fibonacci function
with tasking demonstrates the generation of a large number of tasks with one thread. No parallelism will result from
this example.

But it is instructive to introduce basic task constructs.

• The task construct defines an explicit task.

• The taskwait construct synchronizes sibling tasks.

• The shared clause of a task construct declares a variable to be shared by tasks.

The start of the program takes the number of threads as a command line argument, or, when that number is omitted,
prompts the user for the number of threads:

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int fib (int n);
(continues on next page)

3.3. Tasking with OpenMP 99

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

/* Returns the n-th Fibonacci number,
* computed recursively with tasking. */

int main (int argc, char *argv[])
{

int n;

if(argc > 1)
n = atoi(argv[1]);

else
{

printf("Give n : "); scanf("%d", &n);
}
omp_set_num_threads(8);

#pragma omp parallel
{
#pragma omp single
printf("F(%d) = %d\n",n,fib(n));

}
return 0;

}

The single construct specifies that the statement is executed by only one thread in the team. In this example, one
thread generates many tasks. The definition of a parallel recursive Fibonacci function is below.

int fib (int n)
{
if(n < 2)
return n;

else
{

int left,right; // shared by all tasks

#pragma omp task shared(left)
left = fib(n-1);

#pragma omp task shared(right)
right = fib(n-2);

// synchronize tasks
#pragma omp taskwait
return left + right;

}
}

100 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.3.2 Parallel Recursive Quadrature

The recursive parallel computation of the Fibonacci number serves as a pattern to compute integrals by recursively
dividing the integration interval.

Let us apply a numerical integration rule 𝑅(𝑓, 𝑎, 𝑏, 𝑛) to
∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥. The rule 𝑅(𝑓, 𝑎, 𝑏, 𝑛) takes on input

• the function 𝑓 , bounds 𝑎, 𝑏 of [𝑎, 𝑏], and

• the number 𝑛 of function evaluations.

The rule returns and approximation 𝐴 and an error estimate 𝑒.

If 𝑒 is larger than some tolerance, then

1. 𝑐 = (𝑏− 𝑎)/2 is the middle of [𝑎, 𝑏],

2. compute 𝐴1, 𝑒1 = 𝑅(𝑓, 𝑎, 𝑐, 𝑛),

3. compute 𝐴2, 𝑒2 = 𝑅(𝑓, 𝑐, 𝑎, 𝑛),

4. return 𝐴1 + 𝐴2, 𝑒1 + 𝑒2.

As a rule, the composite trapezoidal rule is applied recursively. Using n subintervals of $[a,b]$, the rule is

𝑅(𝑓, 𝑎, 𝑏, 𝑛) =
ℎ

2
(𝑓(𝑎) + 𝑓(𝑏)) + ℎ

𝑛−1∑︁
𝑖=1

𝑓(𝑎 + 𝑖ℎ), ℎ =
𝑏− 𝑎

𝑛
.

In our setup, let 𝑓(𝑥) = 𝑒𝑥, [𝑎, 𝑏] = [0, 1], then
∫︁ 1

0

𝑒𝑥𝑑𝑥 = 𝑒− 1.

We keep 𝑛 fixed. Let 𝑑 be the depth of the recursion. The recursion level is ℓ. Pseudo code is below.

ℱ(ℓ, 𝑑, 𝑓, 𝑎, 𝑏, 𝑛):

1. If ℓ = 𝑑 then

2. return 𝑅(𝑓, 𝑎, 𝑏, 𝑛)

3. else

4. 𝑐 = (𝑏− 𝑎)/2

5. return ℱ(ℓ+1, 𝑑, 𝑓, 𝑎, 𝑐, 𝑛) + ℱ(ℓ+1, 𝑑, 𝑓, 𝑐, 𝑏, 𝑛).

The tree of function calls is shown in Fig. 3.11. The root of the tree is the first call, omitting the value for 𝑛, the number
of function calls.

At the leaves of the tree, the rule is applied. As all computations are concentrated at the leaves, we expect speedups
from a parallel execution.

A recursive parallel integration function with OpenMP is defined below.

double rectraprule
(int level, int depth,
double (*f) (double x), double a, double b, int n)

{
if(level == depth)
return traprule(f,a,b,n);

else
{

double middle = (b - a)/2;
(continues on next page)

3.3. Tasking with OpenMP 101

Introduction to Supercomputing, Release 1.2.5

Fig. 3.11: A tree of recursive function calls of depth 2.

(continued from previous page)

double left,right;

#pragma omp task shared(left)
left = rectraprule(level+1,depth,f,a,middle,n);

#pragma omp task shared(right)
right = rectraprule(level+1,depth,f,middle,b,n);

#pragma omp taskwait
return left + right;

}
}

Timing the running with 8 threads is shown below.

$ time ./comptraprec 200000 10
approximation = 1.7182818284620265e+00

exp(1) - 1 = 1.7182818284590451e+00, error = 2.98e-12

real 0m3.299s
user 0m3.298s
sys 0m0.001s
$ time ./comptraprecomp 200000 10
approximation = 1.7182818284620265e+00

exp(1) - 1 = 1.7182818284590451e+00, error = 2.98e-12

real 0m0.743s
user 0m4.003s
sys 0m0.004s
$

Observe the speedup, when comparing the wall clock times (real).

102 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.3.3 Bernstein’s Conditions

Given a program, which statements can be executed in parallel? Let us do a dependency analysis.

Let 𝑢 be an operation. Denote:

• ℛ(𝑢) is the set of memory cells 𝑢 reads,

• ℳ(𝑢) is the set of memory cells 𝑢 modifies.

Two operations 𝑢 and 𝑣 are independent if

1. ℳ(𝑢) ∩ℳ(𝑣) = ∅, and

2. ℳ(𝑢) ∩ℛ(𝑣) = ∅, and

3. ℛ(𝑢) ∩ℳ(𝑣) = ∅.

The above conditions are known as Bernstein’s conditions. Checking Bernstein’s conditions is easy for operations on
scalars, is more difficult for array accesses, and is almost impossible for pointer dereferencing.

As an example, let x be some scalar and consider two statements:

1. 𝑢: x = x + 1,

2. 𝑣: x = x + 2.

We see that 𝑢 and 𝑣 are independent of each other, because 𝑢 followed by 𝑣 or 𝑣‘ followed by 𝑢 is equivalent to

𝑤 : x = x + 3.

However, execution of 𝑢 and 𝑣 happens by a sequence of more elementary instructions:

• 𝑢: r1 = x; r1 += 1; x = r1;

• 𝑣: r2 = x; r2 += 2; x = r2;

where r1 and r2 are registers. The elementary instructions are no longer independent.

3.3.4 Task Dependencies

With the depend clause of OpenMP, the order of execution of tasks can be ordered.

In the depend clause, we consider two dependence types:

1. The in type: the task depends on the sibling task(s) that generates the item followed by the in:.

2. The out type: if an item appeared following an in: then there should be task with the clause `` out``.

The code below is copied from the OpenMP API Examples section.

#include <stdio.h>
#include <omp.h}

int main (int argc, char *argv[])
{

int x = 1;

#pragma omp parallel
#pragma omp single
{

#pragma omp task shared(x) depend(out: x)
(continues on next page)

3.3. Tasking with OpenMP 103

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

x = 2;
#pragma omp task shared(x) depend(in: x)
printf("x = %d\n", x);

}
return 0;

}

In the parallel region, the single construct indicates that every instruction needs to be execute only once.

• One task assigns 2 to x.

• Another task prints the value of x.

Without depend, tasks could execute in any order, and the program would have a race condition.

Race Condition

A race condition occurs in a parallel program execution when two or more threads access a common resource.

The depend clauses force the ordering of the tasks. The example always prints x = 2.

3.3.5 Parallel Blocked Matrix Multiplication

Our last example also comes from the OpenMP API Examples. Consider the product of two blocked matrices 𝐴 with
𝐵: [︂

𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

]︂ [︂
𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2

]︂
=

[︂
𝐶1,1 𝐶1,2

𝐶2,1 𝐶2,2

]︂
.

where

𝐶𝑖,𝑗 = 𝐴𝑖,1𝐵1,𝑗 + 𝐴𝑖,2𝐵2,𝑗 ,

for all 𝑖 and 𝑗. The arguments of the depend clauses are blocked matrices.

Matrices are stored as pointers to rows. Allocating a matrix of dimension dim:

double **A;
int i;

A = (double**)calloc(dim, sizeof(double*));

for(i=0; i<dim; i++) A[i] = (double*)calloc(dim, sizeof(double));

Every row A[i] is allocated in the loop.

We consider multiplying blocked matrices of random doubles. At the command line, we specify

1. the block size, the size of each block,

2. the number of blocks in every matrix, and

3. the number of threads.

The dimension equals the block size times the number of blocks.

The parallel region:

104 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

#pragma omp parallel
#pragma omp single
matmatmul(dim,blocksize,A,B,C);

One single thread calls the function matmatmul. The matmatmul generates a large number of tasks. The function
matmatmul begins as

void matmatmul
(int N, int BS,
double **A, double **B, double **C)

{
int i, j, k, ii, jj, kk;

for(i=0; i<N; i+=BS)
{
for(j=0; j<N; j+=BS)
{
for(k=0; k<N; k+=BS)
{

The triple loop computes the block 𝐶𝑖,𝑗 .

Each task has its own indices ii, jj, and kk.

#pragma omp task private(ii, jj, kk) \
depend(in: A[i:BS][k:BS], B[k:BS][j:BS]) \
depend(inout: C[i:BS][j:BS])

{
for(ii=i; ii<i+BS; ii++)
for(jj=j; jj<j+BS; jj++)
for(kk=k; kk<k+BS; kk++)

C[ii][jj] = C[ii][jj] + A[ii][kk]*B[kk][jj];
}

The inout dependence type C[i:BS][j:BS] expresses that the dependencies of the update of the block 𝐶𝑖,𝑗 .

Runs with 2 and 4 threads are shown below.

$ gcc -fopenmp -O3 -o matmulomp matmulomp.c

$ time ./matmulomp 500 2 2

real 0m0.828s
user 0m1.558s
sys 0m0.020s

$ time ./matmulomp 500 2 4

real 0m0.445s
user 0m1.575s
sys 0m0.017s
$

PLASMA (Parallel Linear Algebra Software for Multicore Architectures) is a numerical library intended as a successor
to LAPACK for solving problems in dense linear algebra on multicore processors. As indicated in the bibliography

3.3. Tasking with OpenMP 105

Introduction to Supercomputing, Release 1.2.5

section, the PLASMA developers used the OpenMP standard.

3.3.6 Bibliography

1. A. J. Bernstein: Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Computers
15(5):757-763, 1966.

2. P. Feautrier: Bernstein’s Conditions. In Encycopedia of Parallel Computing, edited by David Padua, pages
130-133, Springer 2011.

3. C. von Praun: Race Conditions. In Encycopedia of Parallel Computing, edited by David Padua, pages 1691-
1697, Springer 2011.

4. B. Wilkinson and M. Allen: Parallel Programming. Techniques and Applications Using Networked Work-
stations and Parallel Computers. 2nd Edition. Prentice-Hall 2005.

5. A. YarKhan, J. Kurzak, P. Luszczek, J. Dongarra: Porting the PLASMA Numerical Library to the OpenMP
Standard. International Journal of Parallel Programming, May 2016.

3.3.7 Exercises

1. Label the six elementary operations in the example on the Bernstein’s conditions as 𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3.

Write for each the sets ℛ(·) and ℳ(·).

Based on the dependency analysis, arrange the six instructions for a correct parallel computation.

2. The block size, number of blocks, and number of threads are the three parameters in matmulomp.

Explore experimentally with matmulomp the relationship between the number of blocks and the number of
threads.

For which values do you obtain a good speedup?

3.4 Tasking with Julia

Julia is a new programming language for scientific computing designed for performance. The tasking in Julia is inspired
by parallel programming systems like Cilk, Intel Threading Building Blocks, and Go.

This lecture is based on a blogpost, of 23 July 2019, https://julialang.org/blog/2019/07/multithreading
by Jeff Bezanson, Jameson Nash, and Kiran Pamnany, as an early preview of Julia version 1.3.0.

Tasks are units of work, mapped to threads. The next sections mirror the previous lecture on Tasking with OpenMP.

3.4.1 Parallel Recursive Functions

The sequence of Fibonacci numbers 𝐹𝑛 are defined as

𝐹0 = 0, 𝐹1 = 1, and for 𝑛 > 1 : 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

This leads to a natural recursive function.

The recursion generates many function calls. While inefficient to compute𝐹𝑛, this recursion serves as a parallel pattern.

The Fibonacci function with tasking demonstrates the generation of a large number of tasks with one thread. No
parallelism will result from this example.

But it is instructive to introduce basic task constructs.

106 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

• With t = @spawn F() we start a task t to compute F(), for some function F().

• The fetch(t) waits for t to complete and gets its return value.

In the multitasked program to compute the Fibonacci numbers, the number 𝑛 for the 𝑛-th Fibonacci number will be
gotten from the command line argument. The Julia program below prints all command line arguments.

print(PROGRAM_FILE, " has ", length(ARGS))
println(" arguments.")
println("The command line arguments :")
for x in ARGS

println(x)
end

If the file showthreads.jl contains

using Base.Threads

nbt = nthreads()
println("The number of threads : ", nbt)

then run via typing

JULIA_NUM_THREADS=8 julia showthreads.jl

at the command prompt. Alternatively, type

julia -t 8 showthreads.jl

to run the program with 8 threads.

The recursive parallel computation of the Fibonacci numbers is then defined in the program below:

import Base.Threads.@spawn

function fib(n::Int)
if n < 2

return n
end
t = @spawn fib(n-2)
return fib(n-1) + fetch(t)

end

if length(ARGS) > 0
nbr = parse(Int64, ARGS[1])
println(fib(nbr))

else
println(fib(10))

end

If the program is saved in the file fibmt.jl, then we run it with 8 threads, typing

JULIA_NUM_THREADS=8 julia fibmt.jl 10

or alternatively

3.4. Tasking with Julia 107

Introduction to Supercomputing, Release 1.2.5

julia -t 8 fibmt.jl 10

at the command prompt to compute the 10-th Fibonacci number with tasks mapped to 8 threads.

The recursive function fib illustrates the starting of a task and the synchronization of the sibling task:

• t = @spawn fib(n-2) starts a task to compute fib(n-2)

• fetch(t) waits for t to complete and gets its return value.

There can not be any speedup because of the only computation, the + happens after the synchronization.

3.4.2 Parallel Recursive Quadrature

The recursive parallel computation of the Fibonacci number serves as a pattern to compute integrals by recursively
dividing the integration interval. The setup is identical as the section on Parallel Recursive Quadrature in the Tasking
with OpenMP lecture.

The recursive application of the composite Trapezoidal rule is defined in the Julia function rectraprule.

function rectraprule(level::Int64,depth::Int64,
f::Function,a::Float64,

b::Float64,n::Int64)
if level == depth

return traprule(f,a,b,n)
else

middle = (b-a)/2

t = @spawn rectraprule(level+1,depth, \
f,a,middle,n)

return rectraprule(level+1,depth, \
f,middle,b,n) + fetch(t)

end
end

Using a depth of recursion of 4, the output of a couple of runs is shown below:

$ time JULIA_NUM_THREADS=2 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

real 0m5.207s
user 0m9.543s
sys 0m0.734s
$ time JULIA_NUM_THREADS=4 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

real 0m3.120s
user 0m9.872s
sys 0m0.727s
$ time JULIA_NUM_THREADS=8 julia traprulerecmt.jl 4
1.7182818284590451e+00
1.7182818292271964e+00 error : 7.68e-10

(continues on next page)

108 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

real 0m1.985s
user 0m10.617s
sys 0m0.735s
$

Observe the decrease of the wall clock time as the number of threads doubles.

On a Windows computer, replace the time by Measure-Command, and type

Measure-Command { julia -t 8 traprulerecmt.jl }

at the prompt in a PowerShell window.

3.4.3 Parallel Merge Sort

Merge sort works by divide and conquer, recursively as:

1. If no or one element, then return.

2. Split in two equal halves.

3. Sort the first half.

4. Sort the second half.

5. Merge the sorted halves.

The two above sort statements are recursive.

The sort algorithm will work in place, modifying the input, without returning. Instead of fetch, we use wait. The
wait(t) waits on task t to finish.

The Julia function psort! is defined below.

"""
Sorts the elements of v in place, from hi to lo.
"""
function psort!(v, lo::Int=1, hi::Int=length(v))

if lo >= hi
return v

end
if hi - lo < 100000 # no multithreading

sort!(view(v, lo:hi), alg = MergeSort)
return v

end

mid = (lo+hi)>>>1 # find the midpoint

task to sort the first half starts
half = @spawn psort!(v, lo, mid)

runs with the current call below
psort!(v, mid+1, hi)

wait for the lower half to finish
wait(half)

(continues on next page)

3.4. Tasking with Julia 109

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

temp = v[lo:mid] # workspace for merging
i, k, j = 1, lo, mid+1 # merge the two sorted sub-arrays

@inbounds while k < j <= hi
if v[j] < temp[i]

v[k] = v[j]
j += 1

else
v[k] = temp[i]
i += 1

end
k += 1

end
@inbounds while k < j

v[i] = temp[i]
k += 1
i += 1

end

return v
end

The @inbounds skips the checking of the index bounds when accessing array elements.

The main function of the program which times the Julia code properly with @time is listed below.

"""
Calls the psort! once before the timing
to avoid compilation overhead.
"""
function main()

a = rand(100)
b = copy(a)
psort!(b)
a = rand(20000000)
b = copy(a)
@time psort!(b)

end

Runs in a Bourne shell are listed below.

$ for n in 1 2 4 8; do JULIA_NUM_THREADS=$n julia mergesortmt.jl; done
2.219275 seconds (3.31 k allocations: 686.950 MiB, 3.34% gc time)
1.439491 seconds (3.59 k allocations: 686.959 MiB, 6.41% gc time)
0.920875 seconds (3.63 k allocations: 686.963 MiB, 3.90% gc time)
0.625733 seconds (3.73 k allocations: 686.969 MiB, 4.45% gc time)

$

Compare to the wall clock time:

$ time JULIA_NUM_THREADS=8 julia mergesortmt.jl
0.618549 seconds (3.72 k allocations: 686.969 MiB, 4.78% gc time)

(continues on next page)

110 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

real 0m1.220s
user 0m3.579s
sys 0m1.015s
$

3.4.4 Basic Linear Algebra Subprograms

The builtin LinearAlgebra package of Julia offers access to BLAS (Basic Linear Algebra Subroutines) which allow
for multithreaded computations. This section illustrates the application of multithreading to solving linear algebra
problems.

The inplace matrix matrix multiplication is provided via mul! as illustrated in an interactive session below.

julia> using LinearAlgebra

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0];

julia> C = similar(B); mul!(C, A, B)
2×2 Array{Float64,2}:
3.0 3.0
7.0 7.0

Basic Linear Algebra Subprograms (BLAS) specifies common elementary linear algebra operations.

help?> BLAS.set_num_threads
set_num_threads(n)

Set the number of threads the BLAS library should use.

Setting the number of threads provides a parallel matrix multiplication. Consider the program matmatmulmt.jl listed
below.

using LinearAlgebra

if length(ARGS) < 2
println("use as")
print(" julia ", PROGRAM_FILE)
println(" dimension nthreads")

else
n = parse(Int, ARGS[1])
p = parse(Int, ARGS[2])

BLAS.set_num_threads(p)
A = rand(n, n)
B = rand(n, n)
C = similar(B)
@time mul!(C, A, B)

end

The output of runs is shown next:

3.4. Tasking with Julia 111

Introduction to Supercomputing, Release 1.2.5

$ julia matmatmulmt.jl 8000 1
20.823673 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 2
11.338446 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 4
6.242092 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 8
3.853406 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 16
2.487637 seconds (2.70 M allocations: 130.252 MiB)

$ julia matmatmulmt.jl 8000 32
1.864454 seconds (2.70 M allocations: 130.252 MiB)

$

The peak flops performance depends on the size of the problem. The function peakflops computes the peak flop rate
of the computer by using double precision gemm!

julia> using LinearAlgebra

julia> peakflops(8000)
3.331289611013868e11

julia> peakflops(16000)
3.475269847112081e11

julia> peakflops(4000)
3.130204729573054e11

The size of the problem needs to be large enough to fully occupy the available computing resources.

3.4.5 Exercises

1. Execute the recursive trapezoidal rule for different number of evaluations and increasing depths of recursion.

For which values do you observe the best speedups?

2. Run the peakflops on your computer.

For which dimension do you see the highest value?

Compute the number of flops and relate this to the specifications of your computer.

112 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

3.5 Evaluating Parallel Performance

When evaluating the performance of parallel programs, we start by measuring time. We distinguish between times
directly from time measurements and those that are derived, e.g.: flops. When the number of processors grows, the
size of the problem has to grow as well to achieve the same performance, which then leads to the notion of isoefficiency.
For task based parallel programs the length of a critical path in a task graph provides an upper bound on the speedup.
With the roofline model, we can distinguish between computations that are compute bound or memory bound.

3.5.1 Metrics

The goal is to characterize parallel performance. Metrics are determined from performance measures. Time metrics
are obtained from time measurements.

Time measurements are

1. execution time which includes

• CPU time and system time

• I/O time

2. overhead time is caused by

• communication

• synchronization

The wall clock time measures execution time plus overhead time.

Time metrics come directly from time measurements. Derived metrics are results of arithmetical metric expressions.

Definition of flops

flops are the number of floating-point operations per second:

number of floating-point operations done
execution time

.

Definition of communication-to-computation ratio:

The communication-to-computation ratio is

communication time
execution time

.

Definition of memory access-to-computation ratio:

The memory access-to-computation ratio is

time spent on memory operations
execution time

.

Speedup and efficiency depend on the number of processors and are called parallelism metrics. Metrics used in per-
formance evaluation are

3.5. Evaluating Parallel Performance 113

Introduction to Supercomputing, Release 1.2.5

• Peak speed is the maximum flops a computer can attain. Fast Graphics Processing Units achieve teraflop perfor-
mance.

• Benchmark metrics use representative applications. The LINPACK benchmark ranks the Top 500 supercomput-
ers.

• Tuning metrics include bottleneck analysis. For task-based parallel programs, the application of critical path
analysis techniques finds the longest path in the execution of a parallel program.

3.5.2 Isoefficiency

The notion of isoefficiency complements the scalabiliy treatments introduced by the laws of Ahmdahl and Gustafson.
The law of Ahmdahl keeps the dimension of the problem fixed and increases the number of processors. In applying
the law of Gustafson we do the opposite: we fix the number of processors and increase the dimension of the problem.
In practice, to examine the scalability of a parallel program, we have to treat both the dimension and the number of
processors as variables.

Before we examine how relates to scalability, recall some definitions. For p processors:

Speedup =
serial time

parallel time
= 𝑆(𝑝) → 𝑝.

As we desire the speedup to reach p, the efficiency goes to 1:

Efficiency =
Speedup

𝑝
=

𝑆(𝑝)

𝑝
= 𝐸(𝑝) → 1.

Let 𝑇𝑠 denote the serial time, 𝑇𝑝 the parallel time, and 𝑇0 the overhead, then: 𝑝𝑇𝑝 = 𝑇𝑠 + 𝑇0.

𝐸(𝑝) =
𝑇𝑠

𝑝𝑇𝑝
=

𝑇𝑠

𝑇𝑠 + 𝑇0
=

1

1 + 𝑇0/𝑇𝑠

The scalability analysis of a parallel algorithm measures its capacity to effectively utilize an increasing number of
processors.

Let 𝑊 be the problem size, for FFT: 𝑊 = 𝑛 log(𝑛). Let us then relate 𝐸 to 𝑊 and 𝑇0. The overhead 𝑇0 depends on
𝑊 and 𝑝: 𝑇0 = 𝑇0(𝑊,𝑝). The parallel time equals

𝑇𝑝 =
𝑊 + 𝑇0(𝑊,𝑝)

𝑝
, Speedup 𝑆(𝑝) =

𝑊

𝑇𝑝
=

𝑊𝑝

𝑊 + 𝑇0(𝑊,𝑝)
.

The efficiency is

𝐸(𝑝) =
𝑆(𝑝)

𝑝
=

𝑊

𝑊 + 𝑇0(𝑊,𝑝)
=

1

1 + 𝑇0(𝑊,𝑝)/𝑊
.

The goal is for 𝐸(𝑝) → 1 as 𝑝 → ∞. The algorithm scales badly if W must grow exponentially to keep efficiency from
dropping. If W needs to grow only moderately to keep the overhead in check, then the algorithm scales well.

Isoefficiency relates work to overhead:

𝐸 =
1

1 + 𝑇0(𝑊,𝑝)/𝑊
⇒ 1

𝐸
=

1 + 𝑇0(𝑊,𝑝)/𝑊

1

⇒ 1

𝐸
− 1 =

𝑇0(𝑊,𝑝)

𝑊

⇒ 1 − 𝐸

𝐸
=

𝑇0(𝑊,𝑝)

𝑊
.

The isoefficiency function is

𝑊 =

(︂
𝐸

1 − 𝐸

)︂
𝑇0(𝑊,𝑝) or 𝑊 = 𝐾𝑇0(𝑊,𝑝).

Keeping K constant, isoefficiency relates W to 𝑇0. We can relate isoefficiency to the laws we encountered earlier:

114 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

• Amdahl’s Law: keep W fixed and let p grow.

• Gustafson’s Law: keep p fixed and let W grow.

Let us apply the isoefficiency to the parallel FFT. The isoefficiency function: 𝑊 = 𝐾 𝑇0(𝑊,𝑝). For FFT: 𝑇𝑠 =
𝑛 log(𝑛)𝑡𝑐, where 𝑡𝑐 is the time for complex multiplication and adding a pair. Let 𝑡𝑠 denote the startup cost and 𝑡𝑤
denote the time to transfer a word. The time for a parallel FFT:

𝑇𝑝 = 𝑡𝑐

(︂
𝑛

𝑝

)︂
log(𝑛)⏟ ⏞

computation time

+ 𝑡𝑠 log(𝑝)⏟ ⏞
start up time

+ 𝑡𝑤

(︂
𝑛

𝑝

)︂
log(𝑝)⏟ ⏞

transfer time

.

Comparing start up cost to computation cost, using the expression for 𝑇𝑝 in the efficiency 𝐸(𝑝):

𝐸(𝑝) =
𝑇𝑠

𝑝𝑇𝑝
=

𝑛 log(𝑛)𝑡𝑐
𝑛 log(𝑛)𝑡𝑐 + 𝑝 log(𝑝)𝑡𝑠 + 𝑛 log(𝑝)𝑡𝑤

=
𝑊𝑡𝑐

𝑊𝑡𝑐 + 𝑝 log(𝑝)𝑡𝑠 + 𝑛 log(𝑝)𝑡𝑤
, 𝑊 = 𝑛 log(𝑛).

Assume 𝑡𝑤 = 0 (shared memory):

𝐸(𝑝) =
𝑊𝑡𝑐

𝑊𝑡𝑐 + 𝑝 log(𝑝)𝑡𝑠
.

We want to express 𝐾 =
𝐸

1 − 𝐸
, using

1

𝐾
=

1 − 𝐸

𝐸
=

1

𝐸
− 1:

1

𝐾
=

𝑊𝑡𝑐 + 𝑝 log(𝑝)𝑡𝑠
𝑊𝑡𝑐

− 𝑊𝑡𝑐
𝑊𝑡𝑐

⇒ 𝑊 = 𝐾

(︂
𝑡𝑠
𝑡𝑐

)︂
𝑝 log(𝑝).

The plot in Fig. 3.12 shows by how much the work load must increase to keep the same efficiency for an increasing
number of processors.

Comparing transfer cost to the computation cost, taking another look at the efficiency 𝐸(𝑝):

𝐸(𝑝) =
𝑊𝑡𝑐

𝑊𝑡𝑐 + 𝑝 log(𝑝)𝑡𝑠 + 𝑛 log(𝑝)𝑡𝑤
, 𝑊 = 𝑛 log(𝑛).

Assuming 𝑡𝑠 = 0 (no start up):

𝐸(𝑝) =
𝑊𝑡𝑐

𝑊𝑡𝑐 + 𝑛 log(𝑝)𝑡𝑤
.

We want to express 𝐾 =
𝐸

1 − 𝐸
, using

1

𝐾
=

1 − 𝐸

𝐸
=

1

𝐸
− 1:

1

𝐾
=

𝑊𝑡𝑐 + 𝑛 log(𝑝)𝑡𝑤
𝑊𝑡𝑐

− 𝑊𝑡𝑐
𝑊𝑡𝑐

⇒ 𝑊 = 𝐾

(︂
𝑡𝑤
𝑡𝑐

)︂
𝑛 log(𝑝).

In Fig. 3.13 the efficiency function is displayed for an increasing number of processors and various values of the
dimension.

3.5.3 Task Graph Scheduling

A task graph is a Directed Acyclic Graph (DAG):

• nodes are tasks, and

• edges are precedence constraints between tasks.

3.5. Evaluating Parallel Performance 115

Introduction to Supercomputing, Release 1.2.5

Fig. 3.12: Isoefficiency for a shared memory application.

116 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

Fig. 3.13: Scalability analysis with a plot of the efficiency function.

3.5. Evaluating Parallel Performance 117

Introduction to Supercomputing, Release 1.2.5

Task graph scheduling or DAG scheduling maps the task graph onto a target platform.

The scheduler

1. takes a task graph as input,

2. decides which processor will execute what task,

3. with the objective to minimize the total execution time.

Let us consider the task graph of forward substitution.

Consider 𝐿x = b, an 𝑛-by-𝑛 lower triangular linear system, where 𝐿 = [ℓ𝑖,𝑗] ∈ R𝑛×𝑛, ℓ𝑖,𝑖 ̸= 0, ℓ𝑖,𝑗 = 0, for 𝑗 > 𝑖.

For 𝑛 = 3, we compute:

ℓ1,1𝑥1 = 𝑏1 ⇒ 𝑥1 := 𝑏1/ℓ1,1
ℓ2,1𝑥1 + ℓ2,2𝑥2 = 𝑏2 ⇒ 𝑥2 := (𝑏2 − ℓ2,1𝑥1)/ℓ2,2
ℓ3,1𝑥1 + ℓ3,2𝑥2 + ℓ3,3𝑥3 = 𝑏3 ⇒ 𝑥3 := (𝑏3 − ℓ3,1𝑥1 − ℓ3,2𝑥2)/ℓ3,3

The formulas translate into pseudo code, with tasks labeled for each instruction:

task 𝑇1,1 : 𝑥1 := 𝑏1/ℓ1,1
for 𝑖 from 2 to 𝑛 do

for 𝑗 from 1 to 𝑖− 1 do
task 𝑇𝑖,𝑗 : 𝑏𝑖 := 𝑏𝑖 − ℓ𝑖,𝑗𝑥𝑗

task 𝑇𝑖,𝑖 : 𝑥𝑖 := 𝑏𝑖/ℓ𝑖,𝑖

To decide which tasks depend on which other tasks, we apply Bernstein’s conditions.

Each task 𝑇 has an input set in(𝑇), and an output set out(𝑇).

Tasks 𝑇1 and 𝑇2 are independent if

in(𝑇1) ∩ out(𝑇2) = ∅, and
out(𝑇1) ∩ in(𝑇2) = ∅, and

out(𝑇1) ∩ out(𝑇2) = ∅.

Applied to forward substitution:

task 𝑇1,1 : 𝑥1 := 𝑏1/ℓ1,1 in(𝑇1,1) = {𝑏1, ℓ1,1}, out(𝑇1,1) = {𝑥1}
for 𝑖 from 2 to 𝑛 do

for 𝑗 from 1 to 𝑖− 1 do
task 𝑇𝑖,𝑗 : 𝑏𝑖 := 𝑏𝑖 − ℓ𝑖,𝑗𝑥𝑗 in(𝑇𝑖,𝑗) = {𝑥𝑗 , 𝑏𝑖, ℓ𝑖,𝑗}, out(𝑇𝑖,𝑗) = {𝑏𝑖}

task 𝑇𝑖,𝑖 : 𝑥𝑖 := 𝑏𝑖/ℓ𝑖,𝑖 in(𝑇𝑖,𝑖) = {𝑏𝑖, ℓ𝑖,𝑖}, out(𝑇𝑖,𝑖) = {𝑥𝑖}

The task graph for a four dimensional linear system is shown in Fig. 3.14.

In the task graph of Fig. 3.14, a critical path is colored in red in Fig. 3.15.

Recall that 𝑇𝑖,𝑖 computes 𝑥𝑖. The length of a critical path limits the speedup. For the above example, a sequential
execution

𝑇1,1, 𝑇2,1, 𝑇3,1, 𝑇4,1, 𝑇2,2, 𝑇3,2, 𝑇4,2, 𝑇3,3, 𝑇4,3, 𝑇4,4

takes 10 steps. The length of a critical path is 7. At most three threads can compute simultaneously. For 𝑛 = 4, we
found 7. For 𝑛 = 5, the length of the critical path is 9, as can be seen from Fig. 3.16.

For any dimension 𝑛, the length of the critical path is 2𝑛− 1. At most 𝑛− 1 threads can compute simultaneously.

118 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

Fig. 3.14: Task graph for forward substition to solve a four dimensional lower triangular linear system.

Fig. 3.15: A critical path is shown in red in the task graph for forward substition to solve a four dimensional lower
triangular linear system.

Fig. 3.16: A critical path is shown in red in the task graph for forward substition to solve a five dimensional lower
triangular linear system.

3.5. Evaluating Parallel Performance 119

Introduction to Supercomputing, Release 1.2.5

3.5.4 The Roofline Model

Performance is typically measured in flops: the number of floating-point operations per second.

Definition of arithmetic intensity

The arithmetic intensity of a computation is the number of floating-point operations per byte.

For example, consider 𝑧 := 𝑥 + 𝑦, assign 𝑥 + 𝑦 to 𝑧. One floating point operation involving 64-bit doubles, and each
double occupies 8 bytes, so the arithmetic intensity is 1/24.

Do you want faster memory or faster processors? To answer this question, we must decide if the computation if memory
bound or compute bound.

Definition of memory bound

A computation is memory bound if the peak memory bandwidth determines the performance.

Memory bandwidth is the number of bytes per second that can be read or stored in memory.

Definition of compute bound

A computation is compute bound if the peak floating-point performance determines the performance.

A high arithmetic intensity is needed for a compute bound computation.

As an introduction to the roofline model, consider Fig. 3.17. The formula for attainable performance is

attainable
GFlops/sec = min

⎧⎨⎩ peak floating point performance

peak memory bandwidth × operational intensity

Observe the difference between arithmetic and operational intensity:

• arithmetic intensity measures the number of floating point operations per byte,

• operational intensity measures the number of operations per byte.

In applying the roofline model, in Fig. 3.17,

1. The horizontal line is the theoretical peak performance, expressed in gigaflops per second, the units of the vertical
axis.

2. The units of the horizontal coordinate axis are flops per byte.

The ridge point is the ratio of the theoretical peak performance and the memory bandwidth.

3. For any particular computation, record the pair (𝑥, 𝑦)

1. 𝑥 is the arithmetic intensity, number of flops per byte,

2. 𝑦 is the performance defined by the number of flops per second.

If (𝑥, 𝑦) lies under the horizontal part of the roof, then the computation is compute bound, otherwise, the computation
is memory bound.

To summarize, to decide if a computation is memory bound or compute bound, consider Fig. 3.18.

120 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

Fig. 3.17: The roofline model. Image copied from the paper by S. Williams, A. Waterman, and D. Patterson, 2009.

3.5.5 Bibliography

1. Thomas Decker and Werner Krandick: On the Isoefficiency of the Parallel Descartes Method. In Symbolic
Algebraic Methods and Verification Methods, pages 55–67, Springer 2001. Edited by G. Alefeld, J. Rohn, S.
Rump, and T. Yamamoto.

2. Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing. 2nd edi-
tion, Pearson 2003.

3. Vipin Kumar and Anshul Gupta: Analyzing Scalability of Parallel Algorithms and Architectures. Journal
of Parallel and Distributed Computing 22: 379–391, 1994.

4. Alan D. Malony: Metrics. In Encycopedia of Parallel Computing, edited by David Padua, pages 1124–1130,
Springer 2011.

5. Yves Robert: Task Graph Scheduling. In Encycopedia of Parallel Computing, edited by David Padua, pages
2013–2024, Springer 2011.

6. S. Williams, A. Waterman, and D. Patterson: Roofline: an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65-76, 2009.

3.6 Work Stealing

Work stealing is an alternative to load balancing. In parallel shared memory computing, we apply the work crew model.

We distinguish between static and dynamic work assignment:

1. Static: before the execution of the program. Each worker has its own queue of jobs to process.

+ Ideal speedup if jobs are evenly distributed,

− if one worker gets all long jobs, then unbalanced.

3.6. Work Stealing 121

Introduction to Supercomputing, Release 1.2.5

Fig. 3.18: Memory bound or compute bound? Image copied from the tutorial slides by Charlene Yang, LBNL, 16 June
2019.

122 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

2. Dynamic: during the execution of the program. Workers process the same queue of jobs.

+ The size of each job is taken into account,

− synchronization overhead may dominate for small jobs and when there are many workers.

Tasks are much lighter than threads. starting and terminating a task is much faster than starting and terminating a thread;
and a thread has its own process id and own resources, whereas a task is typically a small routine. In scheduling threads
on processors, we distinguish between work sharing and work stealing. In work sharing, the scheduler attempts to
migrate threads to under-utilized processors in order to distribute the work. In work stealing, under-utilized processors
attempt to steal threads from other processors.

3.6.1 Work Stealing Simulated by a Julia Program

Work stealing is illustrated as a hybrid between static and dynamic work assignment:

1. Each worker starts with its own queue.

2. An idle worker will work on jobs of other queues.

Main benefit over dynamic work assignment: synchronization overhead occurs only at the end of the execution.

The setup of the Julia simulation is defined below.

1. As many queues as the number of threads are generated:

• even indexed queues have small jobs,

• odd indexed queues have large jobs.

This generates unbalanced job queues to test the work stealing.

2. The 𝑖-th worker starts processing the 𝑖-th job queue.

3. Every queue has an index to the current job. In Julia, this index is of type Atomic{Int}, for mutual exclusive
access.

4. After the 𝑖-th worker is done with its 𝑖-th job queue, it searches for jobs over all 𝑗-th queues, for 𝑗 ̸= 𝑖.

The Julia code to make the job queues is listed below.

using Base.Threads

nt = nthreads()

nbr = 10 # number of jobs in each queue
allocate memory for all job queues
jobs = [zeros(nbr) for i=1:nt]

every worker generates its own job queue
even indexed queues have light work loads
@threads for i=1:nt

if i % 2 == 0
jobs[i] = rand((1, 2, 3), nbr)

else
jobs[i] = rand((4, 5, 6), nbr)

end
println("Worker ", threadid(), " has jobs ",

jobs[i], " ", sum(jobs[i]))
end

3.6. Work Stealing 123

Introduction to Supercomputing, Release 1.2.5

The output of a run of the program with four threads is shown below. Each number in the job queue represents the time
each job takes.

$ julia -t 4 worksteal.jl
Worker 1 has jobs [6.0, 6.0, 6.0, ... , 5.0] 53.0
Worker 3 has jobs [4.0, 4.0, 5.0, ... , 5.0] 48.0
Worker 4 has jobs [3.0, 2.0, 3.0, ... , 3.0] 24.0
Worker 2 has jobs [2.0, 2.0, 2.0, ... , 2.0] 14.0

The ... represents omitted numbers for brevity.

The last number of the output is the sum of the times of the jobs. Workers 2 and 4 has clearly lighter loads, compared
to workers 1 and 3.

In the code below, every worker starts processing its own queue:

jobidx = [Atomic{Int}(1) for i=1:nt]
@threads for i=1:nt

while true
myjob = atomic_add!(jobidx[i], 1)
if myjob > length(jobs[i])

break
end
println("Worker ", threadid(),

" spends ", jobs[i][myjob], " seconds",
" on job ", myjob, " ...")

sleep(jobs[i][myjob])
jobs[i][myjob] = threadid()

end

Observe the use of the Atomic{Int} for the indices. The myjob = atomic_add!(jobidx[i], 1)

• increments the jobidx[i] after returning its value.

• This statement is executed in a critical section.

Then the code continues, idle threads steal work:

println("Worker ", threadid(), " will steal jobs ...")
more2steal = true
while more2steal

more2steal = false
for j=1:threadid()-1

myjob = atomic_add!(jobidx[j], 1)
if myjob <= length(jobs[j])

println("Worker ", threadid(),
" spends ", jobs[j][myjob], " seconds",
" on job ", myjob, " of ", j, " ...")

sleep(jobs[j][myjob])
jobs[j][myjob] = threadid()

end
more2steal = (myjob < length(jobs[j]))

end
for j=threadid()+1:nt # is similar to previous code

An example of a part of an output is shown below.

124 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

Worker 4 spends 1.0 seconds on job 7 ...
Worker 2 will steal jobs ...
Worker 2 spends 4.0 seconds on job 4 of 1 ...
Worker 4 spends 3.0 seconds on job 8 ...
Worker 1 spends 4.0 seconds on job 5 ...
Worker 4 spends 3.0 seconds on job 9 ...
Worker 2 spends 4.0 seconds on job 5 of 3 ...
Worker 3 spends 5.0 seconds on job 6 ...
Worker 4 spends 3.0 seconds on job 10 ...
Worker 1 spends 6.0 seconds on job 6 ...
Worker 3 spends 6.0 seconds on job 7 ...
Worker 4 will steal jobs ...
Worker 4 spends 6.0 seconds on job 7 of 1 ...
Worker 1 spends 4.0 seconds on job 8 ...

Worker 2 is done first, takes job 4 of worker 1. Worker 1 then continues with job 5. When worker 4 is done, it takes
job 7 of worker 1. Worker 1 then continues with job 8.

To conclude, we make the following observations:

• Implementing a work crew with work stealing is not much more complicated than dynamic load balancing.

• The idle workers start at the first queue and then progress linearly, which may be good if the first queue contains
all important jobs.

• In an alternative work stealing scheme, idle workers would start in the queue of their immediate neighbors.

3.6.2 Multithreading in Python with Numba

Numba is an open-source JIT compiler that translates a subset of Python and NumPy into fast machine code using
LLVM, via the llvmlite Python package. It offers a range of options for parallelising Python code for CPUs and GPUs,
often with only minor code changes. Started by Travis Oliphant in 2012, under active development https://github.
com/numba/numba.

To use, do pip install numba. The example below (copied from the wikipedia page) works on Windows.

import numba
import random

@numba.jit
def monte_carlo_pi(n_samples: int) -> float:

"""
Applies Monte Carlo to estimate pi.
"""
acc = 0
for i in range(n_samples):

x = random.random()
y = random.random()
if (x**2 + y**2) < 1.0:

acc += 1
return 4.0 * acc / n_samples

p = monte_carlo_pi(1000000)
print(p)

3.6. Work Stealing 125

Introduction to Supercomputing, Release 1.2.5

3.6.3 Multithreading in Python with Parsl

Parsl stands for Parallel Scripting in Python. Parsl provides an intuitive, pythonic way of parallelizing codes by anno-
tating ‘’apps”: Python functions or external applications that run concurrently. Parsl works seamlessly with Jupyter
notebooks. Write once, run anywhere. From laptops to supercomputers.

To use, do pip install parsl. The example (copied from the parsl user guide) below was executed on WSL,
Window Subsystem for Linux, Ubuntu 22.04.

from parsl import python_app
import parsl

parsl.load()

Map function that returns double the input integer
@python_app
def app_double(x):

return x*2

Reduce function that returns the sum of a list
@python_app
def app_sum(inputs=()):

return sum(inputs)

Create a list of integers
items = range(0,4)

Map phase: apply the double *app* function to each item in list
mapped_results = []
for i in items:

x = app_double(i)
mapped_results.append(x)

Reduce phase: apply the sum *app* function to the set of results
total = app_sum(inputs=mapped_results)

print(total.result())

3.6.4 the Intel Threading Building Blocks (TBB)

The Intel TBB is a library that helps you leverage multicore performance without having to be a threading expert. The
advantage of Intel TBB is that it works at a higher level than raw threads, yet does not require exotic languages or
compilers. The library differs from others in the following ways:

• TBB enables you to specify logical parallelism instead of threads;

• TBB targets threading for performance;

• TBB is compatible with other threading packages;

• TBB emphasizes scalable, data parallel programming;

• TBB relies on generic programming, (e.g.: use of STL in C++).

The code is open source, free to download at < http://threadingbuildingblocks.org/>

The TBB task scheduler uses work stealing for load balancing.

126 Chapter 3. Introduction to Threading and Tasking

http://threadingbuildingblocks.org/

Introduction to Supercomputing, Release 1.2.5

Our first C++ program, similar to our previous Hello world! programs, using TBB is below. A class in C++ is a like
a struct in C for holding data attributes and functions (called methods).

#include "tbb/tbb.h"
#include <cstdio>
using namespace tbb;

class say_hello
{

const char* id;
public:

say_hello(const char* s) : id(s) { }
void operator() () const
{

printf("hello from task %s\n",id);
}

};

int main()
{

task_group tg;
tg.run(say_hello("1")); // spawn 1st task and return
tg.run(say_hello("2")); // spawn 2nd task and return
tg.wait(); // wait for tasks to complete

}

The run method spawns the task immediately, but does not block the calling task, so control returns immediately. To
wait for the child tasks to finish, the classing task calls wait. Observe the syntactic simplicity of task_group. When
running the code, we see on screen:

$./hello_task_group
hello from task 2
hello from task 1
$

3.6.5 using the parallel_for

Consider the following problem of raising complex numbers to a large power.

• Input 𝑛 ∈ Z>0, 𝑑 ∈ Z>0,
x ∈ C𝑛.

• Output y ∈ C𝑛, 𝑦𝑘 = 𝑥𝑑
𝑘,

for 𝑘 = 1, 2, . . . , 𝑛.

Let us first develop the serial program.

To avoid overflow, we take complex numbers on the unit circle. In C++, complex numbers are defined as a template
class. To instantiate the class complex with the type double we first declare the type dcmplx. Random complex
numbers are generated as 𝑒2𝜋𝑖𝜃 = cos(2𝜋𝜃) + 𝑖 sin(2𝜋𝜃), for random 𝜃 ∈ [0, 1].

#include <complex>
#include <cstdlib>
#include <cmath>

(continues on next page)

3.6. Work Stealing 127

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

using namespace std;

typedef complex<double> dcmplx;

dcmplx random_dcmplx (void);
// generates a random complex number on the complex unit circle
dcmplx random_dcmplx (void)
{

int r = rand();
double d = ((double) r)/RAND_MAX;
double e = 2*M_PI*d;
dcmplx c(cos(e),sin(e));
return c;

}

We next define the function to write arrays. Observe the local declaration int i in the for loop, the scientific format-
ting, and the methods real() and imag().

#include <iostream>
#include <iomanip>

void write_numbers (int n, dcmplx *x); // writes the array of n doubles in x
void write_numbers (int n, dcmplx *x)
{
for(int i=0; i<n; i++)

cout << scientific << setprecision(4)
<< "x[" << i << "] = (" << x[i].real()
<< " , " << x[i].imag() << ")\n";

}

Below it the prototype and the definition of the function to raise an array of n double complex number to some power.
Because the builtin pow function applies repeated squaring, it is too efficient for our purposes and we use a plain loop.

void compute_powers (int n, dcmplx *x, dcmplx *y, int d);
// for arrays x and y of length n, on return y[i] equals x[i]**d
void compute_powers (int n, dcmplx *x, dcmplx *y, int d)
{
for(int i=0; i < n; i++) // y[i] = pow(x[i],d); pow is too efficient
{

dcmplx r(1.0,0.0);
for(int j=0; j < d; j++) r = r*x[i];
y[i] = r;

}
}

Without command line arguments, the main program prompts the user for the number of elements in the array and
for the power. The three command line arguments are the dimension, the power, and the verbose level. If the third
parameter is zero, then no numbers are printed to screen, otherwise, if the third parameter is one, the powers of the
random numbers are shown. Running the program in silent mode is useful for timing purposes. Below are some
example sessions with the program.

$ /tmp/powers_serial
how many numbers ? 2

(continues on next page)

128 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

x[0] = (-7.4316e-02 , 9.9723e-01)
x[1] = (-9.0230e-01 , 4.3111e-01)
give the power : 3
x[0] = (2.2131e-01 , -9.7520e-01)
x[1] = (-2.3152e-01 , 9.7283e-01)

$ /tmp/powers_serial 2 3 1
x[0] = (-7.4316e-02 , 9.9723e-01)
x[1] = (-9.0230e-01 , 4.3111e-01)
x[0] = (2.2131e-01 , -9.7520e-01)
x[1] = (-2.3152e-01 , 9.7283e-01)

$ time /tmp/powers_serial 1000 1000000 0

real 0m17.456s
user 0m17.451s
sys 0m0.001s

The main program is listed below:

int main (int argc, char *argv[])
{

int v = 1; // verbose if > 0
if(argc > 3) v = atoi(argv[3]);
int dim; // get the dimension
if(argc > 1)

dim = atoi(argv[1]);
else
{

cout << "how many numbers ? ";
cin >> dim;

}
// fix the seed for comparisons
srand(20120203); //srand(time(0));
dcmplx r[dim];
for(int i=0; i<dim; i++)

r[i] = random_dcmplx();
if(v > 0) write_numbers(dim,r);
int deg; // get the degree
if(argc > 1)

deg = atoi(argv[2]);
else
{

cout << "give the power : ";
cin >> deg;

}
dcmplx s[dim];
compute_powers(dim,r,s,deg);
if(v > 0) write_numbers(dim,s);

return 0;
}

3.6. Work Stealing 129

Introduction to Supercomputing, Release 1.2.5

To speed up the computations, parallel_for is used. We first illustrate the speedup that can be obtained with a
parallel version of the code.

$ time /tmp/powers_serial 1000 1000000 0
real 0m17.456s
user 0m17.451s
sys 0m0.001s
$ time /tmp/powers_tbb 1000 1000000 0
real 0m1.579s
user 0m18.540s
sys 0m0.010s

The speedup:
17.456

1.579
= 11.055 with 12 cores. The class ComputePowers is defined below

class ComputePowers
{

dcmplx *const c; // numbers on input
int d; // degree
dcmplx *result; // output
public:

ComputePowers(dcmplx x[], int deg, dcmplx y[])
: c(x), d(deg), result(y) { }

void operator()
(const blocked_range<size_t>& r) const

{
for(size_t i=r.begin(); i!=r.end(); ++i)
{

dcmplx z(1.0,0.0);
for(int j=0; j < d; j++) z = z*c[i];
result[i] = z;

}
}

};

We next explain the use of tbb/blocked_range.h. A blocked_range represents a half open range [𝑖, 𝑗) that can
be recursively split.

#include "tbb/blocked_range.h"

template<typename Value> class blocked_range

void operator()
(const blocked_range<size_t>& r) const

{
for(size_t i=r.begin(); i!=r.end(); ++i)
{

Calling the parallel_for happens as follows:

#include "tbb/tbb.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"
#include "tbb/task_scheduler_init.h"

(continues on next page)

130 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

using namespace tbb;

Two lines change in the main program:

task_scheduler_init init(task_scheduler_init::automatic);

parallel_for(blocked_range<size_t>(0,dim),
ComputePowers(r,deg,s));

3.6.6 using the parallel_reduce

We consider the summation of integers as an application of work stealing. Fig. 3.19 and Fig. 3.20 are taken from the
Intel TBB tutorial.

Fig. 3.19: An application of work stealing.

Fig. 3.20: What if no worker is available?

The definition of the class to sum a sequence of integers is below.

3.6. Work Stealing 131

Introduction to Supercomputing, Release 1.2.5

class SumIntegers
{

int *data;
public:

int sum;
SumIntegers (int *d) : data(d), sum(0) {}
void operator()

(const blocked_range<size_t>& r)
{

int s = sum; // must accumulate !
int *d = data;
size_t end = r.end();
for(size_t i=r.begin(); i != end; ++i)

s += d[i];
sum = s;

}
// the splitting constructor
SumIntegers (SumIntegers& x, split) :

data(x.data), sum(0) {}
// the join method does the merge
void join (const SumIntegers& x) { sum += x.sum; }

};

int ParallelSum (int *x, size_t n)
{

SumIntegers S(x);

parallel_reduce(blocked_range<size_t>(0,n), S);

return S.sum;
}

The main program is below:

int main (int argc, char *argv[])
{

int n;
if(argc > 1)

n = atoi(argv[1]);
else
{

cout << "give n : ";
cin >> n;

}
int *d;
d = (int*)calloc(n,sizeof(int));
for(int i=0; i<n; i++) d[i] = i+1;

task_scheduler_init init
(task_scheduler_init::automatic);

int s = ParallelSum(d,n);

cout << "the sum is " << s
(continues on next page)

132 Chapter 3. Introduction to Threading and Tasking

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

<< " and it should be " << n*(n+1)/2
<< endl;

return 0;
}

3.6.7 Bibliography

1. Intel Threading Building Blocks. Tutorial. Available online via <http://www.intel.com>.

2. Robert D. Blumofe and Charles E. Leiserson: Scheduling Multithreaded Computations by Work-Stealing. In
the Proceedings of the 35th Annual IEEE Conference on Foundations of Computer Science (FoCS 1994), pages
356-368.

3. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt Keutzer,
David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams and Katherine A. Yelick: The
Landscape of Parallel Computing Research: A View from Berkeley. Technical Report No. UCB/EECS-
2006-183 EECS Department, University of California, Berkeley, December 18, 2006.

3.6.8 Exercises

1. A permanent is similar to a determinant but then without the alternating signs. Develop a task-based parallel
program to compute the permanent of a 0/1 matrix. Why is work stealing appropriate for this problem?

2. Modify the hello world! program with TBB so that the user is first prompted for a name. Two tasks are
spawned and they use the given name in their greeting.

3. Modify powers_tbb.cpp so that the 𝑖-th entry is raised to the power 𝑑− 𝑖. In this way not all entries require the
same work load. Run the modified program and compare the speedup to check the performance of the automatic
task scheduler.

3.6. Work Stealing 133

http://www.intel.com

Introduction to Supercomputing, Release 1.2.5

134 Chapter 3. Introduction to Threading and Tasking

CHAPTER 4

Acceleration with Graphics Processing Units

A Graphics Processing Unit (GPU) is a massively parallel computer, capable of teraflop performance.

4.1 A Massively Parallel Processor: the GPU

4.1.1 Introduction to General Purpose GPUs

Thanks to the industrial success of video game development graphics processors became faster than general CPUs.
General Purpose Graphic Processing Units (GPGPUs) are available, capable of double floating point calculations.
Accelerations by a factor of 10 with one GPGPU are not uncommon. Comparing electric power consumption is ad-
vantageous for GPGPUs.

Thanks to the popularity of the PC market, millions of GPUs are available – every PC has a GPU. This is the first time
that massively parallel computing is feasible with a mass-market product. Applications such as magnetic resonance
imaging (MRI) use some combination of PC and special hardware accelerators.

In five weeks, we plan to cover the following topics:

1. architecture, programming models, scalable GPUs

2. introduction to CUDA and data parallelism

3. CUDA thread organization, synchronization

4. CUDA memories, reducing memory traffic

5. coalescing and applications of GPU computing

The lecture notes follow the book by David B. Kirk and Wen-mei W. Hwu: Programming Massively Parallel Proces-
sors. A Hands-on Approach. Elsevier 2010; fourth edition, 2023, with Izzat El Hajj as third author.

What are the expected learning outcomes from the part of the course?

1. We will study the design of massively parallel algorithms.

2. We will understand the architecture of GPUs and the programming models to accelerate code with GPUs.

135

Introduction to Supercomputing, Release 1.2.5

3. We will use software libraries to accelerate applications.

The key questions we address are the following:

1. Which problems may benefit from GPU acceleration?

2. Rely on existing software or develop own code?

3. How to mix MPI, multicore, and GPU?

The textbook authors use the peach metaphor: much of the application code will remain sequential; but GPUs can
dramatically improve easy to parallelize code.

Our Microway workstation pascal (acquired in 2016) has an NVIDIA GPU with the CUDA software development
installed.

• NIVDIA P100 general purpose graphics processing unit

1. number of CUDA cores: 3,584 (56 × 64)

2. frequency of CUDA cores: 405MHz

3. double precision floating point performance: 4.7 Tflops (peak)

4. single precision floating point performance: 9.3 Tflops (peak)

5. total global memory: 16275 MBytes

• CUDA programming model with nvcc compiler.

To compare the theoretical peak performance of the P100, consider the theoretical peak performance of the two Intel
E5-2699v4 (2.2GHz 22 cores) CPUs in the workstation:

• 2.20 GHz × 8 flops/cycle = 17.6 GFlops/core;

• 44 core × 17.6 GFlops/core = 774.4 GFlops.

⇒ 4700/774.4 = 6.07. One P100 is as strong as 6 × 44 = 264 cores.

CUDA stands for Compute Unified Device Architecture, is a general purpose parallel computing architecture introduced
by NVIDIA.

Consider the comparison of the specifications of three consecutive NVIDIA GPUs:

1. NVIDIA P100 16GB Pascal Accelerator

• 3,586 CUDA cores, 3,586 = 56 SM × 64 cores/SM

• GPU max clock rate: 1329 MHz (1.33 GHz)

• 16GB Memory at 720GB/sec peak bandwidth

• peak performance: 4.7 TFLOPS double precision

2. NVIDIA V100 Volta Accelerator

• 5,120 CUDA cores, 5,120 = 80 SM × 64 cores/SM

• GPU max clock rate: 1912 MHz (1.91 GHz)

• Memory clock rate: 850 Mhz

• 32GB Memory at 870GB/sec peak bandwidth

• peak performance: 7.9 TFLOPS double precision

3. NVIDIA A100 Ampere Accelerator

• 6,912 CUDA cores, 6,912 = 108 SM × 64 cores/SM

136 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

• GPU max clock rate: 1410 MHz (1.41 GHz)

• Memory clock rate: 1512 Mhz

• 80GB Memory at 1.94TB/sec peak bandwidth

• peak performance: 9.7 TFLOPS double precision

• peak FP64 Tensor Core performance: 19.5 TFLOPS

Tensor cores were already present in the P100 and V100, but those earlier tensor core were not capable of double
precision arithmetic.

The full specifications are described in whitepapers available at the web site of NVIDIA:

• NVIDIA GeForce GTX 680, 2012.

• NVIDIA Tesla P100, 2016.

• NVIDIA Tesla V100 GPU Architecture, August 2017.

• NVIDIA A100 Tensor Core GPU Architecture, 2020.

• NVIDIA Ampere GA102 GPU Architecture, 2021.

• NVIDIA H100 Tensor Core GPU Architecture, 2022.

The evolution of bandwidth is shown in Fig. 4.1.

Fig. 4.1: Evolution of the bandwidth, from the NVIDIA developer documentation.

4.1. A Massively Parallel Processor: the GPU 137

Introduction to Supercomputing, Release 1.2.5

The evolution of core counts is shown in Fig. 4.2.

Fig. 4.2: Evolution of the core counts, from the NVIDIA developer documentation.

The evolution of the non-Tensor peak performance for various GPUs is as follows: Pascal: 4.7, Volta: 7.9, Ampere:
9.7, Hopper: 25.6 TFLOPS.

4.1.2 Graphics Processors as Parallel Computers

In this section we compare the performance between GPUs and CPU, explaining the difference between their archi-
tectures. The performance gap between GPUs and CPUs is illustrated by two figures, taken from the NVIDIA CUDA
programming guide. We compare the flops in Fig. 4.3 and the memory bandwidth in Fig. 4.4.

Memory bandwidth is the rate at which data can be read from/stored into memory, expressed in bytes per second.
Graphics chips operate at approximately 10 times the memory bandwidth of CPUs. For our Microway station pascal,
the memory bandwidth of the CPU is 76.8GB/s, whereas the NVIDIA P100 has 720GB/s as peak bandwidth. Straight-
forward parallel implementations on GPGPUs often achieve directly a speedup of 10, saturating the memory bandwidth.

The main distinction between the CPU and GPU design is as follows:

• CPU: multicore processors have large cores and large caches using control for optimal serial performance.

• GPU: optimizing execution throughput of massive number of threads with small caches and minimized control
units.

The distinction is illustrated in Fig. 4.5.

138 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.3: Flops comparison taken from the NVIDIA programming guide.

4.1. A Massively Parallel Processor: the GPU 139

Introduction to Supercomputing, Release 1.2.5

Fig. 4.4: Bandwidth comparision taken from the NVIDIA programming guide.

140 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.5: Distinction between the design of a CPU and a GPU.

The architecture of a modern GPU is summarized in the following items:

• A CUDA-capable GPU is organized into an array of highly threaded Streaming Multiprocessors (SMs).

• Each SM has a number of Streaming Processors (SPs) that share control logic and an instruction cache.

• Global memory of a GPU consists of multiple gigabytes of Graphic Double Data Rate (GDDR) DRAM.

• Higher bandwidth makes up for longer latency.

• The growing size of global memory allows to keep data longer in global memory, with only occasional transfers
to the CPU.

• A good application runs 10,000 threads simultaneously.

A concrete example of the GPU architecture is in Fig. 4.6.

Streaming multiprocessors support up to 2,048 threads. The multiprocessor creates, manages, schedules, and executes
threads in groups of 32 parallel threads called warps. Unlike CPU cores, threads are executed in order and there is no
branch prediction, although instructions are pipelined.

According to David Kirk and Wen-mei Hwu (page 14): Developers who are experienced with MPI and OpenMP will
find CUDA easy to learn. CUDA (Compute Unified Device Architecture) is a programming model that focuses on data
parallelism.

Data parallelism involves

• huge amounts of data on which

• the arithmetical operations are applied in parallel.

With MPI we applied the SPMD (Single Program Multiple Data) model. With GPGPU, the architecture is SIMT =
Single Instruction Multiple Thread. An example with large amount of data parallelism is matrix-matrix multiplication
in large dimensions. Available Software Development Tools (SDK), e.g.: BLAS, FFT are available for download at
<http://www.nvidia.com>.

Alternatives to CUDA are

• OpenCL (chapter 14) for heterogeneous computing;

• OpenACC (chapter 15) uses directives like OpenMP;

4.1. A Massively Parallel Processor: the GPU 141

http://www.nvidia.com

Introduction to Supercomputing, Release 1.2.5

Fig. 4.6: A concrete example of the GPU architecture.

142 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

• C++ Accelerated Massive Parallelism (chapter 18).

Extensions to CUDA are

• Thrust: productivity-oriented library for CUDA (chapter~16);

• CUDA FORTRAN (chapter 17);

• MPI/CUDA (chapter 19).

And then, of course, there is Julia, which provides packages for vendor agnostic GPU computing.

4.1.3 Bibliography

1. NVIDIA CUDA Programming Guide. Available at <http://developer.nvdia.com>.

2. Victor W. Lee et al: Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Comput-
ing on CPU and GPU. In Proceedings of the 37th annual International Symposium on Computer Architecture
(ISCA’10), ACM 2010.

3. W.W. Hwu (editor). GPU Computing Gems: Emerald Edition. Morgan Kaufmann, 2011.

4.1.4 Exercises

0. How strong is the graphics card in your computer?

4.2 Programming GPUs with PyCUDA and Julia

High level GPU programming can be done in Python or Julia. Before introducing PyCUDA and GPU programming
with Julia, the data parallel model is described.

4.2.1 Data Parallelism

The programming model is Single Instruction Multiple Data (SIMD). In the application of data parallelism, blocks of
threads read from memory, execute the same instruction(s), and then write the results back to memory. To fully occupy
a massively parallel processor such as the GPU, at least 10,000 threads are needed.

Code that runs on the GPU is defined in a function, the so-called kernel.

The scalable programming model of the GPU is illustrated in Fig. 4.7.

Streaming multiprocessors schedule the blocks of threads for execution in groups of 32 threads, called a warp. The
dual warp scheduler is illustrated in Fig. 4.8.

A kernel launch creates a grid of blocks, and each block has one or more threads. The organization of the grids and
blocks can be 1D, 2D, or 3D. During the running of the kernel, threads in the same block are executed simultaneously.

The programming model for NVIDIA GPUs is called CUDA which stands for Compute Unified Device Architecture.

Programming GPUs is more complicated because it is not possible to quickly add print statements when debugging
the code. As illustrated in Fig. 4.9 every GPU (called the device) is connected to a CPU (called the host). Kernels are
lauched by the host for execution on the device.

4.2. Programming GPUs with PyCUDA and Julia 143

http://developer.nvdia.com

Introduction to Supercomputing, Release 1.2.5

Fig. 4.7: A scalable programming model. Each core represents a streaming multiprocessor.

4.2.2 Matrix Matrix Multiplication

Our scientific running example of data parallel computations is the multiplication of two matrices. Consider the mul-
tiplication of matrices 𝐴 and 𝐵 which results in 𝐶 = 𝐴 ·𝐵, with

𝐴 = [𝑎𝑖,𝑗] ∈ R𝑛×𝑚, 𝐵 = [𝑏𝑖,𝑗] ∈ R𝑚×𝑝, 𝐶 = [𝑐𝑖,𝑗] ∈ R𝑛×𝑝.

𝑐𝑖,𝑗 is the inner product of the i-th row of 𝐴 with the j-th column of 𝐵:

𝑐𝑖,𝑗 =

𝑚∑︁
𝑘=1

𝑎𝑖,𝑘 · 𝑏𝑘,𝑗 .

All 𝑐𝑖,𝑗’s can be computed independently from each other. For 𝑛 = 𝑚 = 𝑝 = 1, 024 we have 1,048,576 inner products.
The matrix multiplication is illustrated in Fig. 4.10.

4.2.3 PyCUDA

Code for the GPU can be generated in Python, see Fig. 4.11, as described in the following paper by A. Kloeckner,
N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih: PyCUDA and PyOpenCL: A scripting-based approach to
GPU run-time code generation. Parallel Computing, 38(3):157–174, 2012.

To verify whether PyCUDA is correctly installed on our computer, we can run an interactive Python session as follows.

>>> import pycuda
>>> import pycuda.autoinit

(continues on next page)

144 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.8: Dual warp scheduler, copied from the NVIDIA documentation.

4.2. Programming GPUs with PyCUDA and Julia 145

Introduction to Supercomputing, Release 1.2.5

Fig. 4.9: From the GeForce 8 and 9 Series GPU Programming Guide (NVIDIA).

(continued from previous page)

>>> from pycuda.tools import make_default_context
>>> c = make_default_context()
>>> d = c.get_device()
>>> d.name()
'Tesla P100-PCIE-16GB'

We illustrate the matrix-matrix multiplication on the GPU with code generated in Python. We multipy an n-by-m matrix
with an m-by-p matrix with a two dimensional grid of 𝑛× 𝑝 threads. For testing we use 0/1 matrices.

$ python matmatmul.py
matrix A:
[[0. 0. 1. 0.]
[0. 0. 1. 1.]
[0. 1. 1. 0.]]
matrix B:
[[1. 1. 0. 1. 1.]
[1. 0. 1. 0. 0.]
[0. 0. 1. 1. 0.]
[0. 0. 1. 1. 0.]]
multiplied A*B:
[[0. 0. 1. 1. 0.]
[0. 0. 2. 2. 0.]
[1. 0. 2. 1. 0.]]
$

The script starts with the import of the modules and type declarations.

146 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.10: Data parallelism in matrix multiplication.

Fig. 4.11: The operating principle of GPU code generation.

4.2. Programming GPUs with PyCUDA and Julia 147

Introduction to Supercomputing, Release 1.2.5

import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy

(n, m, p) = (3, 4, 5)

n = numpy.int32(n)
m = numpy.int32(m)
p = numpy.int32(p)

a = numpy.random.randint(2, size=(n, m))
b = numpy.random.randint(2, size=(m, p))
c = numpy.zeros((n, p), dtype=numpy.float32)

a = a.astype(numpy.float32)
b = b.astype(numpy.float32)

The script then continues with the memory allocation and the copying from host to device.

a_gpu = cuda.mem_alloc(a.size * a.dtype.itemsize)
b_gpu = cuda.mem_alloc(b.size * b.dtype.itemsize)
c_gpu = cuda.mem_alloc(c.size * c.dtype.itemsize)

cuda.memcpy_htod(a_gpu, a)
cuda.memcpy_htod(b_gpu, b)

The definition of the kernel follows:

mod = SourceModule("""
__global__ void multiply
(int n, int m, int p,
float *a, float *b, float *c)

{
int idx = p*threadIdx.x + threadIdx.y;

c[idx] = 0.0;
for(int k=0; k<m; k++)

c[idx] += a[m*threadIdx.x+k]
*b[threadIdx.y+k*p];

}
""")

To understand the code in the kernel, observe that a linear address system is used for the 2-dimensional array. Consider
a 3-by-5 matrix stored row-wise (as in C), as shown in Fig. 4.12.

When defining the kernel, we assign inner products to threads. For example, consider a 3-by-4 matrix 𝐴 and a 4-by-5
matrix 𝐵, as in Fig. 4.13.

The i = blockIdx.x*blockDim.x + threadIdx.x determines what entry in 𝐶 = 𝐴 ·𝐵 will be computed:

• the row index in 𝐶 is i divided by 5 and

• the column index in 𝐶 is the remainder of i divided by 5.

The launching of the kernel and printing the result is the last stage.

148 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.12: Storing a matrix as a one dimensional array.

Fig. 4.13: Assigning inner products to threads.

4.2. Programming GPUs with PyCUDA and Julia 149

Introduction to Supercomputing, Release 1.2.5

func = mod.get_function("multiply")
func(n, m, p, a_gpu, b_gpu, c_gpu, \

block=(int(n), int(p), 1), \
grid=(1, 1), shared=0)

cuda.memcpy_dtoh(c, c_gpu)

print("matrix A:")
print(a)
print("matrix B:")
print(b)
print("multiplied A*B:")
print(c)

4.2.4 Vendor Agnostic GPU Computing in Julia

The package CUDA.jl allows GPU programming in Julia, on computers with an NVIDIA GPU and provided that the
CUDA Software Development Kit is installed. The compilation process for Julia is illustrated in Fig. 4.14.

Fig. 4.14: The compilation process, copied from Besard et al., 2019.

The site JuliaGPU documents the organization to unify the many packages for programming GPUs in Julia. A first
kernel is taken from the tutorials at the JuliaGPU site:

150 Chapter 4. Acceleration with Graphics Processing Units

https://juliagpu.org

Introduction to Supercomputing, Release 1.2.5

using CUDA
using Test

function gpu_add1!(y, x)
for i = 1:length(y)

@inbounds y[i] += x[i]
end
return nothing

end

N = 2^20 # adding one million Float32 numbers
x_d = CUDA.fill(1.0f0, N) # stored on GPU filled with 1.0
y_d = CUDA.fill(2.0f0, N) # stored on GPU filled with 2.0

fill!(y_d, 2)
@cuda gpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))
println(result)

Observe that, unlike with PyCUDA, the kernel is defined as a Julia function.

To make the point of {vendor agnostic GPU computing, in addition to CUDA.jl, the following packages are available:

• AMDGPU.jl for AMD GPUs,

• oneAPI.jl for the Intel oneAPI,

• Metal.jl to program GPUs in Apple hardware.

The code to add vectors on an M1 MacBook Air GPU with Metal looks very similar to the code with CUDA.jl.

using Metal
using Test

function gpu_add1!(y, x)
for i = 1:length(y)

@inbounds y[i] += x[i]
end
return nothing

end

N = 32
x_d = Metal.fill(1.0f0, N) # filled with Float32 1.0 on GPU
y_d = Metal.fill(2.0f0, N) # filled with Float32 2.0

run with N threads

@metal threads=N gpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))

println(result)

As a last illustration, consider the multiplying of matrices with Metal. The CUDA version of the example is copied
from the Julia for High-Performance Scientific Computing web site, adjusted

1. using Metal instead of using CUDA,

4.2. Programming GPUs with PyCUDA and Julia 151

Introduction to Supercomputing, Release 1.2.5

2. work with Float32 instead of Float64,

3. use MtlArray instead of CuArray.

The code is below, using the operator *:

using Metal
using BenchmarkTools

dim = 2^10
A_h = rand(Float32, dim, dim);
A_d = MtlArray(A_h);

@btime $A_h * $A_h;
@btime $A_d * $A_d;

When executed on a 2020 M1 Macbook Air, what is printed is 6.229 ms and 23.625 𝜇s for CPU and GPU respectively.
Observe the difference in orders of magnitude, milliseconds versus microseconds. Even as the GPU on this laptop is
not intended for high performance scientific computations, it outperforms the CPU.

4.2.5 Bibliography

1. T. Besard, C. Foket, and B. De Sutter: Effective Extensible Programming: Unleashing Julia on GPUs. IEEE
Transactions on Parallel and Distributed Systems, Vol. 30, No. 4, pages 827–841, 2019.

2. A. Kloeckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Computing, 38(3):157–174, 2012.

3. U. Utkarsh, V. Churavy, Y. Ma, T. Besard, P. Srisuma, T. Gymnich, A. R. Gerlach, A. Edelman, G. Barbastathis,
R. D. Braatz, and C. Rackauckas: Automated Translation and Accelerated Solving of Differential Equations
on Multiple GPU Platforms. Computer Methods in Applied Mechanics and Engineering, Vol. 419, 2024,
article 116591.

4.2.6 Exercises

1. The matrix matrix multiplication example with PyCUDA uses (3, 4, 5) as values for (𝑛,𝑚, 𝑝). Considering
massive parallelism, what are the largest dimensions you could consider for one block of threads on the P100
and/or the A100? Illustrate your values for the dimensions experimentally.

2. In the PyCUDA matrix matrix multiplication, change the float32 types into float64 and redo the previous
exercise. Time the code. Do you notice a difference?

3. On your own computer, check the vendor of the GPU and run the equivalent gpuadd.jl after installing the
proper Julia package. Report on the performance, relative to the CPU in your computer.

152 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

4.3 Introduction to CUDA

CUDA (Compute Unified Device Architecture) is the parallel programming platform for the NVIDIA GPUs, for general
purpose processing.

4.3.1 Our first GPU Program

We will run Newton’s method in complex arithmetic as our first CUDA program.

To compute
√
𝑐 for 𝑐 ∈ 𝑐, we apply Newton’s method on 𝑥2 − 𝑐 = 0:

𝑥0 := 𝑐, 𝑥𝑘+1 := 𝑥𝑘 − 𝑥2
𝑘 − 𝑐

2𝑥𝑘
, 𝑘 = 0, 1, . . .

Five iterations suffice to obtain an accurate value for
√
𝑐.

Finding roots is relevant for scientific computing. But, is this computation suitable for the GPU? The data parallelism
we can find in this application is that we can run Newton’s method for many different 𝑐’s. With a little more effort, the
code in this section can be extended to a complex root finder for polynomials in one variable.

Definition of Compute Capability

The compute capability of an NVIDIA GPU is represented by a version number in the format x.y, it identifies the
features supported by the hardware.

What does compute capability mean for the programmer? Some examples of the supported features:

• 1.3: double-precision floating-point operations

• 2.0: synchronizing threads

• 3.5: dynamic parallelism

• 5.3: half-precision floating-point operations

• 6.0: atomic addition operation on 64-bit floats

• 8.0: tensor cores supporting double float precision

The compute capability is not the same as the CUDA version.

To examine the CUDA Compute Capability, we check the card with deviceQuery. Below is the result on a computer
with a Pascal P100 NVIDIA GPU.

$ /usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery
/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla P100-PCIE-16GB"
CUDA Driver Version / Runtime Version 11.0 / 8.0
CUDA Capability Major/Minor version number: 6.0
Total amount of global memory: 16276 MBytes (17066885120 bytes)
(56) Multiprocessors, (64) CUDA Cores/MP: 3584 CUDA Cores

(continues on next page)

4.3. Introduction to CUDA 153

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

GPU Max Clock rate: 405 MHz (0.41 GHz)
Memory Clock rate: 715 Mhz
Memory Bus Width: 4096-bit
L2 Cache Size: 4194304 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),␣

→˓3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device␣
→˓simultaneously) >

Another standard check is the bandwidthTest, which runs as below on the same computer.

$ /usr/local/cuda/samples/1_Utilities/bandwidthTest/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: Tesla P100-PCIE-16GB
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11530.1

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 12848.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)

(continues on next page)

154 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

33554432 444598.8

Result = PASS

$

It is interesting to compare with a run on a computer which hosts an Ampere A100 NVIDIA GPU. The output of
DeviceQuery follows.

$ /usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery
/usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA A100 80GB PCIe"
CUDA Driver Version / Runtime Version 12.4 / 12.4
CUDA Capability Major/Minor version number: 8.0
Total amount of global memory: 81038 MBytes (84974239744 bytes)
(108) Multiprocessors, (064) CUDA Cores/MP: 6912 CUDA Cores
GPU Max Clock rate: 1410 MHz (1.41 GHz)
Memory Clock rate: 1512 Mhz
Memory Bus Width: 5120-bit
L2 Cache Size: 41943040 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),␣

→˓3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 167936 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 3 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 202 / 0

(continues on next page)

4.3. Introduction to CUDA 155

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device␣

→˓simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.4, CUDA Runtime
Version = 12.4, NumDevs = 1
Result = PASS

The output of bandwidthTest is below:

$ /usr/local/cuda/samples/bin/x86_64/linux/release/bandwidthTest
[CUDA Bandwidth Test] - Starting...
Running on...

Device 0: NVIDIA A100 80GB PCIe
Quick Mode

Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 25.2

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 26.3

Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 1313.8

Result = PASS

$

Observe the differences in magnitude between the A100 and the P100.

4.3.2 CUDA Program Structure

There are five steps to get GPU code running:

1. C and C++ functions are labeled with CUDA keywords __device__, __global__, or __host__.

2. Determine the data for each thread to work on.

3. Transferring data from/to host (CPU) to/from the device (GPU).

4. Statements to launch data-parallel functions, called kernels.

5. Compilation with nvcc.

The compilation process is illustrated in Fig. 4.15.

We will now examine every step in greater detail.

156 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.15: The compilation process with the NVIDIA compiler.

In the first step, we add CUDA extensions to functions. We distinguish between three keywords before a function
declaration:

• __host__: The function will run on the host (CPU).

• __device__: The function will run on the device (GPU).

• __global__: The function is called from the host but runs on the device. This function is called a kernel.

The CUDA extensions to C function declarations are summarized in Table 4.1.

Table 4.1: CUDA extensions to C function declarations.

executed on callable from
__device__ double D() device device
__global__ void K() device host
__host__ int H() host host

In the second step, we determine the data for each thread. The grid consists of N blocks, with blockIdx.x ∈ {0, 𝑁−1}.
Within each block, threadIdx.x ∈ {0, blockDim.x− 1}. This second step is illustrated in Fig. 4.16, taken from the
techical blog on An Even Easier Introduction to CUDA by Mark Harris.

In the third step, data is allocated and transferred from the host to the device. We illustrate this step with the code below.

cudaDoubleComplex *xhost = new cudaDoubleComplex[n];

// we copy n complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);

(continues on next page)

4.3. Introduction to CUDA 157

Introduction to Supercomputing, Release 1.2.5

Fig. 4.16: Defining the data for each thread.

(continued from previous page)

cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);

// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);

// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];

cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);

In the fourth step, the kernel is launched. The kernel is declared as

__global__ void squareRoot
(int n, cudaDoubleComplex *x, cudaDoubleComplex *y)
// Applies Newton's method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
...

For frequency f, dimension n, and block size w, we do:

// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);

In the fifth step, the code is compiled with nvcc. Then, if the makefile contains

158 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

runCudaComplexSqrt:
nvcc -o /tmp/run_cmpsqrt -arch=sm_13 \

runCudaComplexSqrt.cu

typing make runCudaComplexSqrt does

nvcc -o /tmp/run_cmpsqrt -arch=sm_13 runCudaComplexSqrt.cu

The -arch=sm_13 is needed for double arithmetic.

The code to compute complex roots is below. Complex numbers and their arithmetic is defined on the host and on the
device.

#ifndef __CUDADOUBLECOMPLEX_CU__
#define __CUDADOUBLECOMPLEX_CU__

#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <vector_types.h>
#include <math_functions.h>

typedef double2 cudaDoubleComplex;

We use the double2 of vector_types.h to define complex numbers because double2 is a native CUDA type allow-
ing for coalesced memory access.

Random complex numbers are generated with the function below.

__host__ cudaDoubleComplex randomDoubleComplex()
// Returns a complex number on the unit circle
// with angle uniformly generated in [0,2*pi].
{

cudaDoubleComplex result;
int r = rand();
double u = double(r)/RAND_MAX;
double angle = 2.0*M_PI*u;
result.x = cos(angle);
result.y = sin(angle);
return result;

}

Calling sqrt of math_functions.h is done in the function below.

__device__ double radius (const cudaDoubleComplex c)
// Returns the radius of the complex number.
{

double result;
result = c.x*c.x + c.y*c.y;
return sqrt(result);

}

We overload the output operator.

4.3. Introduction to CUDA 159

Introduction to Supercomputing, Release 1.2.5

__host__ std::ostream& operator<<
(std::ostream& os, const cudaDoubleComplex& c)
// Writes real and imaginary parts of c,
// in scientific notation with precision 16.
{

os << std::scientific << std::setprecision(16)
<< c.x << " " << c.y;

return os;
}

Complex addition is defined with operator overloading, as in the function below.

__device__ cudaDoubleComplex operator+
(const cudaDoubleComplex a, const cudaDoubleComplex b)
// Returns the sum of a and b.
{

cudaDoubleComplex result;
result.x = a.x + b.x;
result.y = a.y + b.y;
return result;

}

The rest of the arithmetical operations are defined in a similar manner. All definitions related to complex numbers are
stored in the file cudaDoubleComplex.cu.

The kernel function to compute the square root is listed below.

#include "cudaDoubleComplex.cu"

__global__ void squareRoot
(int n, cudaDoubleComplex *x, cudaDoubleComplex *y)
// Applies Newton's method to compute the square root
// of the n numbers in x and places the results in y.
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
cudaDoubleComplex inc;
cudaDoubleComplex c = x[i];
cudaDoubleComplex r = c;
for(int j=0; j<5; j++)
{

inc = r + r;
inc = (r*r - c)/inc;
r = r - inc;

}
y[i] = r;

}

The main function takes command line arguments as defined below.

int main (int argc, char*argv[])
{
if(argc < 5)
{

cout << "call with 4 arguments : " << endl;
(continues on next page)

160 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

cout << "dimension, block size, frequency, and check (0 or 1)"
<< endl;

}
else
{

int n = atoi(argv[1]); // dimension
int w = atoi(argv[2]); // block size
int f = atoi(argv[3]); // frequency
int t = atoi(argv[4]); // test or not

The main program generates n random complex numbers with radius one. After the generation of the data, the data is
transferred and the kernel is launched.

// we generate n random complex numbers on the host
cudaDoubleComplex *xhost = new cudaDoubleComplex[n];
for(int i=0; i<n; i++) xhost[i] = randomDoubleComplex();
// copy the n random complex numbers to the device
size_t s = n*sizeof(cudaDoubleComplex);
cudaDoubleComplex *xdevice;
cudaMalloc((void**)&xdevice,s);
cudaMemcpy(xdevice,xhost,s,cudaMemcpyHostToDevice);
// allocate memory for the result
cudaDoubleComplex *ydevice;
cudaMalloc((void**)&ydevice,s);
// invoke the kernel with n/w blocks per grid
// and w threads per block
for(int i=0; i<f; i++)

squareRoot<<<n/w,w>>>(n,xdevice,ydevice);
// copy results from device to host
cudaDoubleComplex *yhost = new cudaDoubleComplex[n];
cudaMemcpy(yhost,ydevice,s,cudaMemcpyDeviceToHost);

To verify the correctness, there is the option to test one random number.

if(t == 1) // test the result
{

int k = rand() % n;
cout << "testing number " << k << endl;
cout << " x = " << xhost[k] << endl;
cout << " sqrt(x) = " << yhost[k] << endl;
cudaDoubleComplex z = Square(yhost[k]);
cout << "sqrt(x)^2 = " << z << endl;

}
}
return 0;

}

To run the code, we first test the correctness.

$ /tmp/run_cmpsqrt 1 1 1 1
testing number 0

x = 5.3682227446949737e-01 -8.4369535119816541e-01
sqrt(x) = 8.7659063264145631e-01 -4.8123680528950746e-01

(continues on next page)

4.3. Introduction to CUDA 161

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

sqrt(x)^2 = 5.3682227446949726e-01 -8.4369535119816530e-01

On 64,000 numbers, 32 threads in a block, doing it 10,000 times:

$ time /tmp/run_cmpsqrt 64000 32 10000 1
testing number 50325

x = 7.9510606509728776e-01 -6.0647039931517477e-01
sqrt(x) = 9.4739275517002119e-01 -3.2007337822967424e-01

sqrt(x)^2 = 7.9510606509728765e-01 -6.0647039931517477e-01

real 0m1.618s
user 0m0.526s
sys 0m0.841s

Then we change the number of thread in a block. The output below are from the runs are on the NVIDIA P100.

$ time ./run_cmpsqrt 128000 32 100000 0

real 0m1.639s
user 0m0.989s
sys 0m0.650s

$ time ./run_cmpsqrt 128000 64 100000 0

real 0m1.640s
user 0m1.001s
sys 0m0.639s

$ time ./run_cmpsqrt 128000 128 100000 0

real 0m1.652s
user 0m0.952s
sys 0m0.700s

In five steps we wrote our first complete CUDA program. We started chapter 3 of the textbook by Kirk & Hwu, covering
more of the CUDA Programming Guide. Available in /usr/local/cuda/doc and at <http://www.nvidia.com> are
the CUDA C Best Practices Guide and the CUDA Programming Guide. Many examples of CUDA applications are
available in /usr/local/cuda/samples.

4.3.3 using CUDA.jl

To illustrate the launching of blocks of threads in Julia with CUDA.jl, we consider again the addition of two vectors,
using the example copied from the CUDA.jl tutorial. The complete code is listed below.

using CUDA
using Test

function gpu_add3!(y, x)
index = (blockIdx().x - 1) * blockDim().x

+ threadIdx().x
stride = gridDim().x * blockDim().x
for i = index:stride:length(y)

(continues on next page)

162 Chapter 4. Acceleration with Graphics Processing Units

http://www.nvidia.com

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

@inbounds y[i] += x[i]
end
return

end

N = 2^20
x_d = CUDA.fill(1.0f0, N) # N Float32 1.0 on GPU
y_d = CUDA.fill(2.0f0, N) # N Float32 2.0

run with 256 threads per block

numblocks = ceil(Int, N/256)
@cuda threads=256 blocks=numblocks gpu_add3!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))

println(result)

Observe the launching of the kernel with 256 threads per block after the computation of the number of blocks.

4.3.4 Exercises

1. Instead of 5 Newton iterations in runCudaComplexSqrt.cu use k iterations where k is entered by the user at
the command line. What is the influence of k on the timings?

2. Modify the kernel for the complex square root so it takes on input an array of complex coefficients of a polynomial
of degree 𝑑. Then the root finder applies Newton’s method, starting at random points. Test the correctness and
experiment to find the rate of success, i.e.: for polynomials of degree 𝑑 how many random trials are needed to
obtain 𝑑/2 roots of the polynomial?

3. Use the kernel in a python script with PyCUDA.

4. Use CUDA.jl (or Metal.jl, oneAPI.jl, AMDGPU.jl on your GPU) for the square roots example.

4.4 Data Parallelism and Matrix Multiplication

Matrix multiplication is one of the fundamental building blocks in numerical linear algebra, and therefore in scientific
computation. In this section, we investigate how data parallelism may be applied to solve this problem.

4.4.1 Data Parallelism

Many applications process large amounts of data. Data parallelism refers to the property where many arithmetic op-
erations can be safely performed on the data simultaneously. Consider the multiplication of matrices 𝐴 and 𝐵 which
results in 𝐶 = 𝐴 ·𝐵, with

𝐴 = [𝑎𝑖,𝑗] ∈ R𝑛×𝑚, 𝐵 = [𝑏𝑖,𝑗] ∈ R𝑚×𝑝, 𝐶 = [𝑐𝑖,𝑗] ∈ R𝑛×𝑝.

𝑐𝑖,𝑗 is the inner product of the i-th row of 𝐴 with the j-th column of 𝐵:

𝑐𝑖,𝑗 =

𝑚∑︁
𝑘=1

𝑎𝑖,𝑘 · 𝑏𝑘,𝑗 .

All 𝑐𝑖,𝑗’s can be computed independently from each other. For 𝑛 = 𝑚 = 𝑝 = 1, 024 we have 1,048,576 inner products.
The matrix multiplication is illustrated in Fig. 4.10.

4.4. Data Parallelism and Matrix Multiplication 163

Introduction to Supercomputing, Release 1.2.5

4.4.2 Code for Matrix-Matrix Multiplication

Code for a device (the GPU) is defined in functions using the keyword __global__ before the function definition.
Data parallel functions are called kernels. Kernel functions generate a large number of threads.

In matrix-matrix multiplication, the computation can be implemented as a kernel where each thread computes one
element in the result matrix. To multiply two 1,000-by-1,000 matrices, the kernel using one thread to compute one
element generates 1,000,000 threads when invoked.

CUDA threads are much lighter weight than CPU threads: they take very few cycles to generate and schedule thanks
to efficient hardware support whereas CPU threads may require thousands of cycles.

A CUDA program consists of several phases, executed on the host: if no data parallelism, or on the device: for data
parallel algorithms. The NVIDIA C compiler nvcc separates phases at compilation. Code for the host is compiled
on host’s standard C compilers and runs as ordinary CPU process. device code is written in C with keywords for data
parallel functions and further compiled by nvcc.

A CUDA program has the following structure:

CPU code
kernel<<<numb_blocks,numb_threads_per_block>>>(args)
CPU code

The number of blocks in a grid is illustrated in Fig. 4.17.

Fig. 4.17: The organization of the threads of execution in a CUDA program.

For the matrix multiplication 𝐶 = 𝐴 ·𝐵, we run through the following stages:

1. Allocate device memory for 𝐴, 𝐵, and 𝐶.

2. Copy 𝐴 and 𝐵 from the host to the device.

3. Invoke the kernel to have device do 𝐶 = 𝐴 ·𝐵.

4. Copy 𝐶 from the device to the host.

5. Free memory space on the device.

A linear address system is used for the 2-dimensional array. Consider a 3-by-5 matrix stored row-wise (as in C), as
shown in Fig. 4.12. Code to generate a random matrix is below:

#include <stdlib.h>

__host__ void randomMatrix (int n, int m, float *x, int mode)
(continues on next page)

164 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

/*
* Fills up the n-by-m matrix x with random
* values of zeroes and ones if mode == 1,
* or random floats if mode == 0. */
{

int i,j,r;
float *p = x;

for(i=0; i<n; i++)
for(j=0; j<m; j++)
{
if(mode == 1)

r = rand() % 2;
else

r = ((float) rand())/RAND_MAX;
*(p++) = (float) r;

}
}

The writing of a matrix is defined by the following code:

#include <stdio.h>

__host__ void writeMatrix (int n, int m, float *x)
/*
* Writes the n-by-m matrix x to screen. */
{

int i,j;
float *p = x;

for(i=0; i<n; i++,printf("\n"))
for(j=0; j<m; j++)

printf(" %d", (int)*(p++));
}

In defining the kernel, we assign inner products to threads. For example, consider a 3-by-4 matrix 𝐴 and a 4-by-5
matrix 𝐵, as in Fig. 4.13. The i = blockIdx.x*blockDim.x + threadIdx.x determines what entry in 𝐶 = 𝐴 ·𝐵
will be computed:

• the row index in 𝐶 is i divided by 5 and

• the column index in 𝐶 is the remainder of i divided by 5.

The kernel function is defined below:

__global__ void matrixMultiply
(int n, int m, int p, float *A, float *B, float *C)
/*
* Multiplies the n-by-m matrix A
* with the m-by-p matrix B into the matrix C.
* The i-th thread computes the i-th element of C. */
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
C[i] = 0.0;

(continues on next page)

4.4. Data Parallelism and Matrix Multiplication 165

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int rowC = i/p;
int colC = i%p;
float *pA = &A[rowC*m];
float *pB = &B[colC];
for(int k=0; k<m; k++)
{

pB = &B[colC+k*p];
C[i] += (*(pA++))*(*pB);

}
}

Running the program in a terminal window is shown below.

$ /tmp/matmatmul 3 4 5 1
a random 3-by-4 0/1 matrix A :
1 0 1 1
1 1 1 1
1 0 1 0
a random 4-by-5 0/1 matrix B :
0 1 0 0 1
0 1 1 0 0
1 1 0 0 0
1 1 0 1 0
the resulting 3-by-5 matrix C :
2 3 0 1 1
2 4 1 1 1
1 2 0 0 1
$

The main program takes four command line arguments: the dimensions of the matrices, that is: the number of rows
and columns of 𝐴, and the number of columns of 𝐵. The fourth element is the mode, whether output is needed or not.
The parsing of the command line arguments is below:

int main (int argc, char*argv[])
{
if(argc < 4)
{

printf("Call with 4 arguments :\n");
printf("dimensions n, m, p, and the mode.\n");

}
else
{

int n = atoi(argv[1]); /* number of rows of A */
int m = atoi(argv[2]); /* number of columns of A */

/* and number of rows of B */
int p = atoi(argv[3]); /* number of columns of B */
int mode = atoi(argv[4]); /* 0 no output, 1 show output */
if(mode == 0)

srand(20140331)
else

srand(time(0));

The next stage in the main program is the allocation of memories, on the host and on the device, as listed below:

166 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

float *Ahost = (float*)calloc(n*m,sizeof(float));
float *Bhost = (float*)calloc(m*p,sizeof(float));
float *Chost = (float*)calloc(n*p,sizeof(float));
randomMatrix(n,m,Ahost,mode);
randomMatrix(m,p,Bhost,mode);
if(mode == 1)
{

printf("a random %d-by-%d 0/1 matrix A :\n",n,m);
writeMatrix(n,m,Ahost);
printf("a random %d-by-%d 0/1 matrix B :\n",m,p);
writeMatrix(m,p,Bhost);

}
/* allocate memory on the device for A, B, and C */
float *Adevice;
size_t sA = n*m*sizeof(float);
cudaMalloc((void**)&Adevice,sA);
float *Bdevice;
size_t sB = m*p*sizeof(float);
cudaMalloc((void**)&Bdevice,sB);
float *Cdevice;
size_t sC = n*p*sizeof(float);
cudaMalloc((void**)&Cdevice,sC);

After memory allocation, the data is copied from host to device and the kernels are launched.

/* copy matrices A and B from host to the device */
cudaMemcpy(Adevice,Ahost,sA,cudaMemcpyHostToDevice);
cudaMemcpy(Bdevice,Bhost,sB,cudaMemcpyHostToDevice);

/* kernel invocation launching n*p threads */
matrixMultiply<<<n*p,1>>>(n,m,p,

Adevice,Bdevice,Cdevice);

/* copy matrix C from device to the host */
cudaMemcpy(Chost,Cdevice,sC,cudaMemcpyDeviceToHost);
/* freeing memory on the device */
cudaFree(Adevice); cudaFree(Bdevice); cudaFree(Cdevice);
if(mode == 1)
{

printf("the resulting %d-by-%d matrix C :\n",n,p);
writeMatrix(n,p,Chost);

}

4.4. Data Parallelism and Matrix Multiplication 167

Introduction to Supercomputing, Release 1.2.5

4.4.3 Two Dimensional Arrays of Threads

Using threadIdx.x and threadIdx.y instead of a one dimensional organization of the threads in a block we can
make the (𝑖, 𝑗)-th thread compute 𝑐𝑖,𝑗 . The main program is then changed into

/* kernel invocation launching n*p threads */
dim3 dimGrid(1,1);
dim3 dimBlock(n,p);
matrixMultiply<<<dimGrid,dimBlock>>>

(n,m,p,Adevice,Bdevice,Cdevice);

The above construction creates a grid of one block. The block has 𝑛× 𝑝 threads:

• threadIdx.x will range between 0 and 𝑛− 1, and

• threadIdx.y will range between 0 and 𝑝− 1.

The new kernel is then:

__global__ void matrixMultiply
(int n, int m, int p, float *A, float *B, float *C)
/*
* Multiplies the n-by-m matrix A
* with the m-by-p matrix B into the matrix C.
* The (i,j)-th thread computes the (i,j)-th element of C. */
{

int i = threadIdx.x;
int j = threadIdx.y;
int ell = i*p + j;
C[ell] = 0.0;
float *pB;
for(int k=0; k<m; k++)
{

pB = &B[j+k*p];
C[ell] += A[i*m+k]*(*pB);

}
}

4.4.4 Examining Performance

Performance is often expressed in terms of flops.

• 1 flops = one floating-point operation per second;

• use perf: Performance analysis tools for Linux

• run the executable, with perf stat

perf stat ./matmatmul0 1024 1024 1024 0

• with the events following the -e flag we count the floating-point operations.

perf stat -e fp_arith_inst_retired.scalar_single \
./matmatmul0 1024 1024 1024 0

Executables are compiled with the option -O2.

168 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Running on one Intel Xeon E5-2699v4 Broadwell core, the output is listed below:

$ perf stat -e fp_arith_inst_retired.scalar_single \
./matmatmul0 768 768 768 0

Performance counter stats for './matmatmul0 768 768 768 0':

905,969,664 fp_arith_inst_retired.scalar_single:u

1.039681742 seconds time elapsed

1.036818000 seconds user
0.002999000 seconds sys

Did 905,969,664 operations in 1.037 seconds:

⇒ (905, 969, 664/1.037)/(230) = 0.81GFlops.

Let us compared this run with the P100:

$ perf stat -e fp_arith_inst_retired.scalar_single
./matmatmul1 768 768 768 0

Performance counter stats for './matmatmul1 768 768 768 0':

6,123 fp_arith_inst_retired.scalar_single:u

0.207871212 seconds time elapsed

0.039441000 seconds user
0.167880000 seconds sys

The drop from 1.037 seconds to 0.28 seconds is not impressive. The dimension 768 is too small for the GPU to be able
to improve much. Let us run this on larger dimensions. First on the CPU:

$ perf stat -e fp_arith_inst_retired.scalar_single
./matmatmul0 4096 4096 4096 0

Performance counter stats for './matmatmul0 4096 4096 4096 0':

137,438,953,472 fp_arith_inst_retired.scalar_single:u

416.494934403 seconds time elapsed

416.466205000 seconds user
0.047003000 seconds sys

and then on the GPU:

$ perf stat ./matmatmul1 4096 4096 4096 0

which shows 0.569705088 seconds time elapsed.

The speedup is 416.495/0.570 = 730, which is significant. Counting flops, f = 137,438,953,472, the performance is

• 𝑡cpu = 415.495 and 𝑓/𝑡cpu/(230) = 0.3 GFlops.

4.4. Data Parallelism and Matrix Multiplication 169

Introduction to Supercomputing, Release 1.2.5

• 𝑡gpu = 0.570 and 𝑓/𝑡gpu/(230) = 224.5 GFlops.

The performance is far from optimal, both for CPU and GPU. Therefore, we will examine improved versions in the
next lectures.

4.4.5 using CUDA.jl and Metal.jl

A plain matrix matrix multiplication in Julia with CUDA.jl is listed below:

using CUDA

function matmul!(C, A, B)
i = threadIdx().x
j = threadIdx().y
for k=1:size(A, 2)

@inbounds C[i, j] = C[i, j] + A[i, k]*B[k, j]
end

end

dim = 2^2
A_h = rand(dim, dim)
B_h = rand(dim, dim)
C_h = A_h * B_h
A_d = CuArray(A_h)
B_d = CuArray(B_h)
C_d = CuArray(zeros(dim, dim))

@cuda threads=(dim, dim) matmul!(C_d, A_d, B_d)

println(C_h)
println(C_d)

On a macOS GPU using Apple’s Metal framework, the equivalent code uses Metal.jl, listed below.

using Metal

function matmul!(C, A, B)
threadpos = thread_position_in_grid_2d()
i = threadpos[1]
j = threadpos[2]
for k=1:size(A, 2)

@inbounds C[i, j] = C[i, j] + A[i, k]*B[k, j]
end

end

Observe the threadpos to work with the two dimensional grid of threads. The code continues below. Because the
GPU in an M1 MacBook Air does not support 64-bit floats, we use Float32 instead of the default Float64:

dim = 2^2
A_h = rand(Float32, dim, dim)
B_h = rand(Float32, dim, dim)
C_h = A_h * B_h
A_d = MtlArray(A_h)

(continues on next page)

170 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

B_d = MtlArray(B_h)
C_d = MtlArray(zeros(Float32, dim, dim))

@metal threads=(dim, dim) matmul!(C_d, A_d, B_d)

println(C_h)
println(C_d)

Observe the launching of the kernel.

4.4.6 Exercises

1. The perf was illustrated on on older computer. Redo the illustrations on ampere.

2. Modify matmatmul0.c and matmatmul1.cu to work with doubles instead of floats. Examine the performance.

3. Modify matmatmul2.cu to use double indexing of matrices, e.g.: C[i][j] += A[i][k]*B[k][j].

4. Compare the performance of matmatmul1.cu and matmatmul2.cu, taking larger and larger values for 𝑛, 𝑚,
and 𝑝. Which version scales best?

5. Compare the performance of matmatmul1.cu and mmmulcuda2.jl. Does the Julia code achieve the same
performance as the C CUDA program?

4.5 Device Memories and Matrix Multiplication

The performance of our first, straightforward definition of an accelerated matrix matrix multiplication was disappoint-
ing. Tiling the matrices and paying attention to the memory hierarchies dramatically improves the performance.

4.5.1 Device Memories

Before we launch a kernel, we have to allocate memory on the device, and to transfer data from the host to the device.
By default, memory on the device is global memory. In addition to global memory, we distinguish between

• registers for storing local variables,

• shared memory for all threads in a block,

• constant memory for all blocks on a grid.

The importance of understanding different memories is in the calculation of the expected performance level of kernel
code.

the Compute to Global Memory Access (CGMA) ratio

The Compute to Global Memory Access (CGMA) ratio is the number of floating-point calculations performed for
each access to the global memory within a region of a CUDA program.

If the CGMA ratio is 1.0, then the memory clock rate determines the upper limit for the performance. This corresponds
to the roofline model discussed earlier, see Fig. 3.17 and Fig. 3.18. While memory bandwidth on a GPU is superior to
that of a CPU, we will miss the theoretical peak performance by a factor of ten.

The different types of memory are schematically presented in Fig. 4.18.

4.5. Device Memories and Matrix Multiplication 171

Introduction to Supercomputing, Release 1.2.5

Fig. 4.18: The CUDA device memory types.

172 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Registers are allocated to individual threads. Each thread can access only its own registers. A kernel function typically
uses registers to hold frequently accessed variables that are private to each thread.

Number of 32-bit registers available per block:

• 8,192 on the GeForce 9400M,

• 32,768 on the Tesla C2050/C2070,

• 65,536 on the K20C, P100, V100, and A100.

A typical CUDA kernel may launch thousands of threads. However, having too many local variables in a kernel function
may prevent all blocks from running in parallel.

Like registers, shared memory is an on-chip memory. Variables residing in registers and shared memory can be accessed
at very high speed in a highly parallel manner. Unlike registers, which are private to each thread, all threads in the same
block have access to shared memory.

Amount of shared memory per block:

• 16,384 byes on the GeForce 9400M,

• 49,152 bytes on the Tesla C2050/C2070,

• 49,152 bytes on the K20c, P100, V100, and A100.

The constant memory supports short-latency, high-bandwidth, read-only access by the device when all threads simul-
taneously access the same location.

• The GeForce 9400M has 65,536 bytes of constant memory, the total amount of global memory is 254 MBytes.

• The Tesla C2050/C2070 has 65,536 bytes of constant memory, the total amount of global memory is 2,687
MBytes, with 786,432 bytes of L2 Cache.

• The K20c has 65,536 bytes of constant memory, the total amount of global memory is 4,800 MBytes
(5,032,706,048 bytes) with 1,310,720 bytes of L2 Cache.

• The constant memory remained the same for the P100, V100, and A100, but the global memory and L2 cache
increased, see the summary in Table 4.2.

Table 4.2: constant, global, and cache memory, in bytes (b) and
megabytes (Mb)

GPU type constant global L2 cache
GeForce 9400 M 65,536 b 254 Mb
Tesla C2050 65,536 b 2,687 Mb 786,432 b
Kepler K20C 65,536 b 4,800 Mb 1,310,720 b
Pascal P100 65,536 b 16,376 Mb 4,194,304 b
Volta V100 65,536 b 32,505 Mb 6,291,456 b
Ampere A100 65,536 b 81,038 Mb 41,943,040 b

The relationshiop between thread organization and different types of device memories is shown in Fig. 4.19, copied
from the NVIDIA Whitepaper on Kepler GK110.

Each variable is stored in a particular type of memory, has a scope and a lifetime.

Scope is the range of threads that can access the variable. If the scope of a variable is a single thread, then a private
version of that variable exists for every single thread. Each thread can access only its private version of the variable.

Lifetime specifies the portion of the duration of the program execution when the variable is available for use. If a
variable is declared in the kernel function body, then that variable is available for use only by the code of the kernel. If
the kernel is invoked several times, then the contents of that variable will not be maintained across these invocations.

4.5. Device Memories and Matrix Multiplication 173

Introduction to Supercomputing, Release 1.2.5

Fig. 4.19: Registers, shared, and global memory per thread, thread block, and grid.

174 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

We distinguish between five different variable declarations, based on their memory location, scope, and lifetime, sum-
marized in Table 4.3.

Table 4.3: CUDA variable declarations.

variable declaration memory scope lifetime
atomic variables register thread kernel
array variables local thread kernel
__device__.__shared__.int v shared block kernel
__device__.int v global grid program
__device__.__constant__.int v constant grid program

The __device__ in front of __shared__ is optional.

4.5.2 Matrix Multiplication

In an application of tiling, let us examine the CGMA ratio. In our simple implementation of the matrix-matrix multi-
plication 𝐶 = 𝐴 ·𝐵, we have the statement

C[i] += (*(pA++))*(*pB);

where

• C is a float array; and

• pA and pB are pointers to elements in a float array.

For the statement above, the CGMA ratio is 2/3:

• for one addition and one multiplication,

• we have three memory accesses.

To improve the CGMA ratio, we apply tiling. For 𝐴 ∈ R𝑛×𝑚 and 𝐵 ∈ R𝑚×𝑝, the product 𝐶 = 𝐴 · 𝐵 ∈ R𝑛×𝑝.
Assume that 𝑛, 𝑚, and 𝑝 are multiples of some 𝑤, e.g.: 𝑤 = 8. We compute 𝐶 in tiles of size 𝑤 × 𝑤:

• Every block computes one tile of 𝐶.

• All threads in one block operate on submatrices:

𝐶𝑖,𝑗 =

𝑚/𝑤∑︁
𝑘=1

𝐴𝑖,𝑘 ·𝐵𝑘,𝑗 .

• The submatrices 𝐴𝑖,𝑘 and 𝐵𝑘,𝑗 are loaded from global memory into shared memory of the block.

The tiling of matrix multiplication as it relates to shared memory is shown in Fig. 4.20.

The GPU computing SDK contains as one of the examples matrixMul and this matrixMul is explained in great detail
in the CUDA programming guide. We run it on the GeForce 9400M, the Tesla C2050/C2070, and the K20C, P100,
V100, A100.

A session on the A100 is below:

$ /usr/local/cuda/samples/bin/x86_64/linux/release/matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Ampere" with compute capability 8.0

(continues on next page)

4.5. Device Memories and Matrix Multiplication 175

Introduction to Supercomputing, Release 1.2.5

Fig. 4.20: Tiled matrix multiplication and shared memory.

176 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done

Performance= 4303.49 GFlop/s, Time= 0.030 msec, Size= 131072000 Ops,
WorkgroupSize= 1024 threads/block

Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements.

Results may vary when GPU Boost is enabled.

Observe the 4.303 TFlop/s performance. The theoretical peak performance (with GPU Boost) is 78 TFlop/s (half),
19.5 TFlop/s (single), 9.7 TFlop/s (double). The performance improves with CUBLAS, the CUDA libraries for the
Basic Linear Algebra Software. A session on the A100 with CUBLAS is below:

$ /usr/local/cuda/samples/bin/x86_64/linux/release/matrixMulCUBLAS
[Matrix Multiply CUBLAS] - Starting...
GPU Device 0: "Ampere" with compute capability 8.0

GPU Device 0: "NVIDIA A100 80GB PCIe" with compute capability 8.0

MatrixA(640,480), MatrixB(480,320), MatrixC(640,320)
Computing result using CUBLAS...done.
Performance= 11076.92 GFlop/s, Time= 0.018 msec, Size= 196608000 Ops
Computing result using host CPU...done.
Comparing CUBLAS Matrix Multiply with CPU results: PASS

NOTE: The CUDA Samples are not meant for performance measurements.

Results may vary when GPU Boost is enabled.

Observe the 11.076 TFlop/s performance. For single floats, the theoretical peak precision is 17.6 TFlop/s, or 19.5
TFlop/s with GPU Boost.

The comparison of several generations of NVIDIA GPUs is summarized in table Table 4.4. The units in Table 4.4 are
GFlop/s for the performance of matrixMul and CUBLAS, but then TFlop/s for the peak performance in the last column.

Table 4.4: evolution of matrixMul performance.

GPU matrixMul CUBLAS peak
K20C 264 1,171 3.5
P100 1,909 3,089 9.3
V100 2,974 7,146 14.8
A100 4,303 11,076 19.5

The code of the kernel of matrixMul is listed next.

template <int BLOCK_SIZE> __global__ void
matrixMul(float* C, float* A, float* B, int wA, int wB)
{

(continues on next page)

4.5. Device Memories and Matrix Multiplication 177

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int bx = blockIdx.x; // Block index
int by = blockIdx.y;
int tx = threadIdx.x; // Thread index
int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

(continues on next page)

178 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

The emphasis in this lecture is on

1. the use of device memories; and

2. data organization (tiling) and transfer.

In the next lecture we will come back to this code, and cover thread scheduling

1. the use of blockIdx; and

2. thread synchronization.

4.5.3 using shared memory with CUDA.jl

We end the lecture with an illustration of the use of shared memory with CUDA.jl, using an example from the docu-
mentation. The example computes a dot product. The kernel computes

𝑐𝑖 =

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑘,

where 𝑛 equals the number of threads per block. The main program adds up the 𝑐𝑖 for each block. In this section we
highlight the syntax. The code starts as follows:

using CUDA
"""

function dot(a,b,c, N, threadsPerBlock, blocksPerGrid)

computes the dot product of two vectors a and b of length N
and places the result in c, using shared memory.
"""
function dot(a,b,c, N, threadsPerBlock, blocksPerGrid)

Set up shared memory cache for this current block.
cache = @cuDynamicSharedMem(Int64, threadsPerBlock)

Then, inside the kernel, the shared memory cache is used in the reduction as follows:

i::Int = blockDim().x/2
while i!=0
if cacheIndex < i

cache[cacheIndex+1] += cache[cacheIndex+i+1]
end
sync_threads()
i = i/2

end

At the end of the kernel, the first element in the cache is what is computed by each thread block and that first element
is stored in global memory as follows:

4.5. Device Memories and Matrix Multiplication 179

Introduction to Supercomputing, Release 1.2.5

if cacheIndex == 0
c[blockIdx().x] = cache[1]

end

The main program launches the kernel. We start with the dimensions:

N::Int64 = 33 * 1024
threadsPerBlock::Int64 = 256
blocksPerGrid::Int64 = min(32, (N + threadsPerBlock - 1) / threadsPerBlock)

Then comes the setup of the data (omitted). The launching of the kernels happens as

@cuda blocks = blocksPerGrid
threads = threadsPerBlock
shmem = (threadsPerBlock * sizeof(Int64))

dot(a,b,c, N, threadsPerBlock, blocksPerGrid)

The purpose of this short subsection is to demonstrate that a Julia program can define and use shared memory. Reduction
algorithms will be covered in a later lecture.

4.5.4 Bibliography

1. Vasily Volkov and James W. Demmel:

Benchmarking GPUs to tune dense linear algebra.

In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press, 2008. Article No. 31.

4.5.5 Exercises

1. Compile the matrixMul of the GPU Computing SDK on your laptop and desktop and run the program.

2. Consider the matrix multiplication code of last lecture and compute the CGMA ratio.

3. Adjust the code for matrix multiplication we discussed last time to use shared memory.

4.6 Thread Organization and Matrix Multiplication

In this lecture we look at the problem of multiplying two matrices, from the perspective of the thread organization.

4.6.1 Thread Organization

The code that runs on the GPU is defined in a function, the kernel. A kernel launch creates a grid of blocks, and each
block has one or more threads. The organization of the grids and blocks can be 1D, 2D, or 3D.

During the running of the kernel:

• Threads in the same block are executed simultaneously.

• Blocks are scheduled by the streaming multiprocessors.

180 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

The P100 has 56 Streaming Multiprocessors (SMs) and threads are executed in groups of 32 (the warp size). Each SM
has 64 cores. This implies: 56 × 64 = 3584 threads can run simultaneously. The A100 has 108 SMs, also with 64
cores each. A picture of the scalable programming model was shown in Fig. 4.7.

All threads execute the same code, defined by the kernel. The builtin variable threadIdx

• identifies every thread in a block uniquely; and

• defines the data processed by the thread.

The builtin variable blockDim holds the number of threads in a block. In a one dimensional organization, we use only
threadIdx.x and blockDim.x. For 2D and 3D, the other components

• threadIdx.y belongs to the range 0 .. blockDim.y;

• threadIdx.z belongs to the range 0 .. blockDim.z.

The grid consists of N blocks, with blockIdx.x ∈ {0, 𝑁−1}. Within each block, threadIdx.x ∈ {0, blockDim.x−
1}. The organization of the data for each thread is in Fig. 4.21.

Fig. 4.21: Data mapped to threads with block and thread indices.

Suppose the kernel is defined by the function F with input arguments x and output arguments y, then the execution
configuration parameters are set as below:

dim3 dimGrid(128,1,1);
dim3 dimBlock(32,1,1);
F<<<dimGrid,dimBlock>>>(x,y);

which launches a grid of 128 blocks. The grid is a one dimensional array. Each block in the grid is also one dimensional
and has 32 threads.

begin{frame}{multidimensional thread organization}

The limitations of the P100 and V100 are as follows:

• Maximum number of threads per block: 1,024.

4.6. Thread Organization and Matrix Multiplication 181

Introduction to Supercomputing, Release 1.2.5

• Maximum sizes of each dimension of a block: 1, 024 × 1, 024 × 64.

Because 1,024 is the upper limit for the number of threads in a block, the largest square 2D block is 32 × 32, as
322 = 1, 024.

• Maximum sizes of each dimension of a grid: 2, 147, 483, 647 × 65, 535 × 65, 535.

2,147,483,647 is the upper limit for the builtin variable gridDim.x, while 65,535 is the upper limit for the builtin
variables gridDim.y and gridDim.z.

The same limitations apply for the A100.

Consider the following 3D example. Suppose the function F defines the kernel, with argument x, then

dim3 dimGrid(3,2,4);
dim3 dimBlock(5,6,2);
F<<<dimGrid,dimBlock>>>(x);

launches a grid with

• 3 × 2 × 4 blocks; and

• each block has 5 × 6 × 2 threads.

4.6.2 Matrix Matrix Multiplication

With a three dimensional grid we can define submatrices. Consider for example a grid of dimension 2× 2× 1 to store
a 4-by-4 matrix in tiles of dimensions 2 × 2 × 1, as in Fig. 4.22.

Fig. 4.22: Storing a tiled matrix in a grid.

A kernel launch with a grid of dimensions 2 × 2 × 1 where each block has dimensions 2 × 2 × 1 creates 16 threads.
The mapping of the entries in the matrix to threads is illustrated in Fig. 4.23.

A kernel launch with a grid of dimensions 2 × 2 × 1 where each block has dimensions 2 × 2 × 1 creates 16 threads.
The linear address calculation is illustrated in Fig. 4.24.

The main function in the CUDA code to organized the threads is listed below.

182 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.23: Mapping threads to entries in the matrix.

Fig. 4.24: Linear address calculation for threads and submatrices.

4.6. Thread Organization and Matrix Multiplication 183

Introduction to Supercomputing, Release 1.2.5

int main (int argc, char* argv[])
{

const int xb = 2; /* gridDim.x */
const int yb = 2; /* gridDim.y */
const int zb = 1; /* gridDim.z */
const int xt = 2; /* blockDim.x */
const int yt = 2; /* blockDim.y */
const int zt = 1; /* blockDim.z */
const int n = xb*yb*zb*xt*yt*zt;

printf("allocating array of length %d...\n",n);

/* allocating and initializing on the host */

int *xhost = (int*)calloc(n,sizeof(int));
for(int i=0; i<n; i++) xhost[i] = -1.0;

/* copy to device and kernel launch */

int *xdevice;
size_t sx = n*sizeof(int);
cudaMalloc((void**)&xdevice,sx);
cudaMemcpy(xdevice,xhost,sx,cudaMemcpyHostToDevice);

/* set the execution configuration for the kernel */

dim3 dimGrid(xb,yb,zb);
dim3 dimBlock(xt,yt,zt);
matrixFill<<<dimGrid,dimBlock>>>(xdevice);

The kernel is defined in the code below.

__global__ void matrixFill (int *x)
/*
* Fills the matrix using blockIdx and threadIdx. */
{

int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;
int dim = gridDim.x*blockDim.x;
int i = row*dim + col;
x[i] = i;

}

Then the main program continues with the copying to host and writing the result.

/* copy data from device to host */
cudaMemcpy(xhost,xdevice,sx,cudaMemcpyDeviceToHost);
cudaFree(xdevice);

(continues on next page)

184 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int *p = xhost;
for(int i1=0; i1 < xb; i1++)
for(int i2=0; i2 < yb; i2++)
for(int i3=0; i3 < zb; i3++)
for(int i4=0; i4 < xt; i4++)
for(int i5=0; i5 < yt; i5++)
for(int i6=0; i6 < zt; i6++)
printf("x[%d][%d][%d][%d][%d][%d] = %d\n",

i1,i2,i3,i4,i5,i6,*(p++));
return 0;

}

4.6.3 Submatrices with Threads in CUDA.jl

The equivalent computation in Julia, on an NVIDIA GPU with CUDA.jl uses the kernel below:

using CUDA

"""
function matFill!(A)

fills the array using the blockIdx and threadIdx.
"""
function matFill!(A)

bx = blockIdx().x - 1
by = blockIdx().y - 1
tx = threadIdx().x - 1
ty = threadIdx().y - 1
row = by*blockDim().y + ty
col = bx*blockDim().x + tx
dim = gridDim().x*blockDim().x
idx = 1 + row*dim + col
A[idx] = idx
return nothing

end

Observe the - 1 after the block and thread indices. Similar to arrays in Julia starting at index 1, the block and thread
indices in CUDA.jl also start at 1. For - 1 happens then for the index calculation to be the same as in the C code.

The kernel matFill! is launched as follows:

xb = 2 # gridDim.x
yb = 2 # gridDim.y
zb = 1 # gridDim.z
xt = 2 # blockDim.x
yt = 2 # blockDim.y
zt = 1 # blockDim.z

dim = xb*yb*zb*xt*yt*zt
A_h = zeros(dim)
A_d = CuArray(A_h)

(continues on next page)

4.6. Thread Organization and Matrix Multiplication 185

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

@cuda threads=(xt, yt, zt) blocks=(xb, yb, zb) matFill!(A_d)

A_h = Array(A_d)
println(A_d)
println(A_h)

4.6.4 Thread Synchronization

In a block all threads run independently. CUDA allows threads in the same block to coordinate their activities using
a barrier synchronization function: __syncthreads(). The thread executing __syncthreads() will be held at the
calling location in the code until every thread in the block reaches the location. Placing a __syncthreads() ensures
that all threads in a block have completed a task before moving on.

Consider the tiled matrix multiplication, as shown in Fig. 4.25.

Fig. 4.25: Tiled matrix multiplication with shared memory.

With tiled matrix matrix multiplication using shared memory, all threads in the block collaborate to copy the tiles 𝐴𝑖,𝑘

and 𝐵𝑘,𝑗 from global memory to shared memory. Here is the need for thread synchronization. Before the calculation of
the inner products, all threads must finish their copy statement: they all execute the __syncthreads(). Every thread
computes one inner product. After this computation, another synchronization is needed. Before moving on to the next
tile, all threads must finish, therefore, they all execute the __syncthreads() after computing their inner product and
moving on to the next phase.

186 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Let us then revisit the kernel of matrixMul and consider the code below.

template <int BLOCK_SIZE> __global__ void
matrixMul(float* C, float* A, float* B, int wA, int wB)
{

int bx = blockIdx.x; // Block index
int by = blockIdx.y;
int tx = threadIdx.x; // Thread index
int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix

#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);
(continues on next page)

4.6. Thread Organization and Matrix Multiplication 187

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

4.6.5 Bibliography

1. NVIDIA CUDA Programming Guide. Available at <http://developer.nvdia.com>.

2. Vasily Volkov and James W. Demmel: Benchmarking GPUs to tune dense linear algebra. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008. Article No. 31.

4.6.6 Exercises

1. Investigate the performance for the matrix-matrix multiplication with PyCUDA, comparing with the numpy im-
plementation.

2. Find the limitations of the grid and block sizes for the graphics card on your laptop or desktop.

3. Extend the simple code with the three dimensional thread organization to a tiled matrix-vector multiplication for
numbers generated at random as 0 or 1.

4.7 Warps and Reduction Algorithms

We discuss warp scheduling, latency hiding, SIMT, and thread divergence. To illustrate the concepts we discussed two
reduction algorithms.

4.7.1 More on Thread Execution

The grid of threads are organized in a two level hierarchy:

• the grid is 1D, 2D, or 3D array of blocks; and

• each block is 1D, 2D, or 3D array of threads.

Blocks can execute in any order. Threads are bundled for execution. Each block is partitioned into warps.

Definition of warp

A warp is a unit of 32 threads, executed simultaneously by a streaming multiprocessor.

188 Chapter 4. Acceleration with Graphics Processing Units

http://developer.nvdia.com

Introduction to Supercomputing, Release 1.2.5

On the Tesla C2050/C2070, K20C, P100, V100, and A100, each warp consists of 32 threads.

The scheduling of threads is represented schematically in Fig. 4.26.

Fig. 4.26: Scheduling of threads by a streaming multiprocessor.

Let us consider the thread indices of warps. All threads in the same warp run at the same time. The partitioning of
threads in a one dimensional block, for warps of size 32:

• warp 0 consists of threads 0 to 31 (value of threadIdx),

• warp 𝑤 starts with thread 32𝑤 and ends with thread 32(𝑤 + 1) − 1,

• the last warp is padded so it has 32 threads.

In a two dimensional block, threads in a warp are ordered along a lexicographical order of (threadIdx.x, threadIdx.
y). For example, an 8-by-8 block has 2 warps (of 32 threads):

• warp 0 has threads (0, 0), (0, 1), . . . , (0, 7), (1, 0), (1, 1), . . . , (1, 7), (2, 0), (2, 1), . . . , (2, 7),
(3, 0), (3, 1), . . . , (3, 7); and

• warp 1 has threads (4, 0), (4, 1), . . . , (4, 7), (5, 0), (5, 1), . . . , (5, 7), (6, 0), (6, 1), . . . , (6, 7),
(7, 0), (7, 1), . . . , (7, 7).

As shown in Fig. 4.8, each streaming multiprocessor of the Fermi architecture has a dual warp scheduler.

Why give so many warps to a streaming multiprocessor if there only 32 can run at the same time? The answer is to
efficiently execute long latency operations. What is this latency?

• A warp must often wait for the result of a global memory access and is therefore not scheduled for execution.

4.7. Warps and Reduction Algorithms 189

Introduction to Supercomputing, Release 1.2.5

• If another warp is ready for execution, then that warp can be selected to execute the next instruction.

Definition of latency hiding

The mechanism of filling the latency of an expensive operation with work from other threads is known as latency
hiding.

Warp scheduling is used for other types of latency operations, for example: pipelined floating point arithmetic and
branch instructions. With enough warps, the hardware will find a warp to execute, in spite of long latency operations.
The selection of ready warps for execution introduces no idle time and is referred to as zero overhead thread scheduling.
The long waiting time of warp instructions is hidden by executing instructions of other warps. In contrast, CPUs tolerate
latency operations with cache memories, and branch prediction mechanisms.

Let us consider how this applies to matrix-matrix multiplication For matrix-matrix multiplication, what should the
dimensions of the blocks of threads be? We narrow the choices to three: 8 × 8, 16 × 16, or 32 × 32?

Considering that the C2050/C2070 has 14 streaming multiprocessors:

1. 32 × 32 = 1, 024 equals the limit of threads per block.

2. 8 × 8 = 64 threads per block and 1, 024/64 = 12 blocks.

3. 16 × 16 = 256 threads per block and 1, 024/256 = 4 blocks.

Note that we must also take into account the size of shared memory when executing tiled matrix matrix multiplication.

In multicore CPUs, we use Single-Instruction, Multiple-Data (SIMD): the multiple data elements to be processed by a
single instruction must be first collected and packed into a single register.

In SIMT, all threads process data in their own registers. In SIMT, the hardware executes an instruction for all threads in
the same warp, before moving to the next instruction. This style of execution is motivated by hardware costs constraints.
The cost of fetching and processing an instruction is amortized over a large number of threads.

Single-Instruction, Multiple-Thread works well when all threads within a warp follow the same control flow path. For
example, for an if-then-else construct, it works well

• when either all threads execute the then part,

• or all execute the else part.

If threads within a warp take different control flow paths, then the SIMT execution style no longer works well.

Considering the if-then-else example, it may happen that

• some threads in a warp execute the then part,

• other threads in the same warp execute the else part.

In the SIMT execution style, multiple passes are required:

• one pass for the then part of the code, and

• another pass for the else part.

These passes are sequential to each other and thus increase the execution time.

Definition of thread divergence

If threads in the same warp follow different paths of control flow, then we say that these threads diverge in their
execution.

190 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Next are other examples of thread divergence. Consider an iterative algorithm with a loop some threads finish in 6
iterations, other threads need 7 iterations. In this example, two passes are required: * one pass for those threads that
do the 7th iteration, * another pass for those threads that do not.

In some code, decisions are made on the threadIdx values:

• For example: if(threadIdx.x > 2){ ... }.

• The loop condition may be based on threadIdx.

An important class where thread divergence is likely to occur is the class of reduction algorithms.

4.7.2 Parallel Reduction Algorithms

Typical examples of reduction algorithms are the computation of the sum or the maximum of a sequence of numbers.
Another example is a tournament, shown in Fig. 4.27. A reduction algorithm extracts one value from an array, e.g.:
the sum of an array of elements, the maximum or minimum element in an array. A reduction algorithm visits every
element in the array, using a current value for the sum or the maximum/minimum. Large enough arrays motivate
parallel execution of the reduction. To reduce 𝑛 elements, 𝑛/2 threads take log2(𝑛) steps.

Reduction algorithms take only 1 flop per element loaded. They are

• not compute bound, that is: limited by flops performance,

• but memory bound, that is: limited by memory bandwidth.

When judging the performance of code for reduction algorithms, we have to compare to the peak memory bandwidth
and not to the theoretical peak flops count.

Fig. 4.27: A example of a reduction: a tournament.

As an introduction to a kernel for the parallel sum, consider the summation of 32 numbers, see Fig. 4.28.

The original array is in the global memory and copied to shared memory for a thread block to sum. A code snippet in
the kernel to sum number follows.

__shared__ float partialSum[];

(continues on next page)

4.7. Warps and Reduction Algorithms 191

Introduction to Supercomputing, Release 1.2.5

Fig. 4.28: Summing 32 numbers in a parallel reduction.

(continued from previous page)

int t = threadIdx.x;
for(int stride = 1; stride < blockDim.x; stride *= 2)
{

__syncthreads();
if(t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

The reduction is done in place, replacing elements. The __syncthreads() ensures that all partial sums from the
previous iteration have been computed.

Because of the statement

if(t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

the kernel clearly has thread divergence. In each iteration, two passes are needed to execute all threads, even though
fewer threads will perform an addition. Let us see if we can develop a kernel with less thread divergence.

Consider again the example of summing 32 numbers, but now with a different organization, as shown in Fig. 4.29.

The original array is in the global memory and copied to shared memory for a thread block to sum. The kernel for the
revised summation is below.

__shared__ float partialSum[];

int t = threadIdx.x;
for(int stride = blockDim.x >> 1; stride > 0;

(continues on next page)

192 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

Fig. 4.29: The parallel summation of 32 number revised.

(continued from previous page)

stride >> 1)
{

__syncthreads();
if(t < stride)

partialSum[t] += partialSum[t+stride];
}

The division by 2 is done by shifting the stride value to the right by 1 bit.

Why is there less thread divergence? Af first, there seems no improvement, because of the if. Consider a block of
1,024 threads, partitioned in 32 warps. A warp consists of 32 threads with consecutive threadIdx values:

• all threads in warp 0 to 15 execute the add statement,

• all threads in warp 16 to 31 skip the add statement.

All threads in each warp take the same path ⇒ no thread divergence. If the number of threads that execute the add
drops below 32, then thread divergence still occurs. Thread divergence occurs in the last 5 iterations.

4.7.3 Julia Defined Kernels

The summing of 32 numbers in five steps with Metal on a M1 Macbook Air can be coded as below.

using Metal

"""
function gpusum32!(a)

(continues on next page)

4.7. Warps and Reduction Algorithms 193

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

sums the 32 numbers in the array a.
On return a[1] contains the sum.
"""
function gpusum32!(a)

i = thread_position_in_grid_1d()
a[i] += a[i+16]
a[i] += a[i+8]
a[i] += a[i+4]
a[i] += a[i+2]
a[i] += a[i+1]
return nothing

end

a_h = [convert(Float32, k) for k=1:32]
z_h = [0.0f0 for k=1:32] # padding with zeros
x_h = vcat(a_h, z_h)
println("the numbers to sum : ", x_h)
x_d = MtlArray(x_h)

@metal threads=32 gpusum32!(x_d)

println("the summed numbers : ", Array(x_d))

which prints the numbers 528.0, 527.0, 525.0, 522.0, etc.

The equivalent code to add 32 numbers in five steps with CUDA on an NVIDIA GPU is below.

using CUDA

"""
function gpusum32!(a)

sums the 32 numbers in the array a.
On return a[1] contains the sum.
"""
function gpusum32!(a)

i = threadIdx().x
a[i] += a[i+16]
a[i] += a[i+8]
a[i] += a[i+4]
a[i] += a[i+2]
a[i] += a[i+1]
return nothing

end

a_h = [convert(Float32, k) for k=1:32]
z_h = [0.0f0 for k=1:32] # padding with zeros
x_h = vcat(a_h, z_h)
println("the numbers to sum : ", x_h)
x_d = CuArray(x_h)

@cuda threads=32 gpusum32!(x_d)

(continues on next page)

194 Chapter 4. Acceleration with Graphics Processing Units

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

println("the summed numbers : ", Array(x_d))

which prints the same numbers as in the other program.

To illustrate shared memory with CUDA.jl consider the summation of the first 𝑁 natural numbers. The output of
running firstsum.jl on an NVIDIA GPU is as follows:

$ julia firstsum.jl
size of the vector : 33792
number of blocks : 32

threads per block : 256
number of threads : 8192
Does GPU value 570966528 = 570966528 ? true
$

In the check, we use
𝑁∑︁

𝑘=1

𝑘 =
𝑁(𝑁 + 1)

2
. The definition of the kernel is below.

using CUDA

"""
function sum(x, y, N, threadsPerBlock, blocksPerGrid)

computes the sum product of N numbers in x and
places the results in y, using shared memory.
"""
function sum(x, y, N, threadsPerBlock, blocksPerGrid)

set up shared memory cache for this current block
cache = @cuDynamicSharedMem(Int64, threadsPerBlock)
initialise the indices
tid = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
totalThreads = blockDim().x * gridDim().x
cacheIndex = threadIdx().x - 1
run over the vector
temp = 0
while tid < N

temp += x[tid + 1]
tid += totalThreads

end
set cache values
cache[cacheIndex + 1] = temp
synchronise threads
sync_threads()
we add up all of the values stored in the cache
i::Int = blockDim().x ÷ 2
while i!=0

if cacheIndex < i
cache[cacheIndex + 1] += cache[cacheIndex + i + 1]

end
sync_threads()
i = i ÷ 2

end
cache[1] now contains the sum of the numbers in the block

(continues on next page)

4.7. Warps and Reduction Algorithms 195

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

if cacheIndex == 0
y[blockIdx().x] = cache[1]

end
return nothing

end

The launching of the kernels happens in the main program below.

"""
Tests the kernel on the first N natural numbers.

"""
function main()

N::Int64 = 33 * 1024
threadsPerBlock::Int64 = 256
blocksPerGrid::Int64 = min(32, (N + threadsPerBlock - 1) / threadsPerBlock)
println("size of the vector : ", N)
println(" number of blocks : ", blocksPerGrid)
println(" threads per block : ", threadsPerBlock)
println(" number of threads : ", blocksPerGrid*threadsPerBlock)
input arrays on the host
x_h = [i for i=1:N]
make the arrays on the device
x_d = CuArray(x_h)
y_d = CuArray(fill(0, blocksPerGrid))
execute the kernel. Note the shmem argument - this is necessary to allocate
space for the cache we allocate on the gpu with @cuDynamicSharedMem
@cuda blocks = blocksPerGrid threads = threadsPerBlock shmem =
(threadsPerBlock * sizeof(Int64)) sum(x_d, y_d, N, threadsPerBlock, blocksPerGrid)
copy the result from device to the host
y_h = Array(y_d)
local result = 0
for i in 1:blocksPerGrid

result += y_h[i]
end
check whether output is correct
print("Does GPU value ", result, " = ", N*(N+1) ÷ 2, " ? ")
println(result == N*(N+1) ÷ 2)

end

4.7.4 Bibliography

• S. Sengupta, M. Harris, and M. Garland. Efficient parallel scan algorithms for GPUs. Technical Report NVR-
2008-003, NVIDIA, 2008.

• M. Harris. Optimizing parallel reduction in CUDA. White paper available at <http://docs.nvidia.com>.

196 Chapter 4. Acceleration with Graphics Processing Units

http://docs.nvidia.com

Introduction to Supercomputing, Release 1.2.5

4.7.5 Exercises

1. Consider the code matrixMul of the GPU computing SDK. Look up the dimensions of the grid and blocks of
threads. Can you (experimentally) justify the choices made?

2. Write code for the two summation algorithms we discussed. Do experiments to see which algorithm performs
better.

3. Apply the summation algorithm to the composite trapezoidal rule. Use it to estimate 𝜋 via
𝜋

4
=

∫︁ 1

0

√︀
1 − 𝑥2𝑑𝑥.

4.7. Warps and Reduction Algorithms 197

Introduction to Supercomputing, Release 1.2.5

198 Chapter 4. Acceleration with Graphics Processing Units

CHAPTER 5

Review for the Midterm Exam

At the middle of the course, there is a midterm exam. We consider some representative questions.

5.1 Four Sample Questions

The four questions in this lecture are representative for some of the topics covered in the course.

5.1.1 Scaled Speedup

Benchmarking of a program running on a 12-processor machine shows that 5% of the operations are done sequentially,
i.e.: that 5% of the time only one single processor is working while the rest is idle.

Compute the scaled speedup.

The formula for scaled speedup is 𝑆𝑠(𝑝) ≤ 𝑠𝑡 + 𝑝(1 − 𝑠)𝑡

𝑡
= 𝑠 + 𝑝(1 − 𝑠) = 𝑝 + (1 − 𝑝)𝑠. Evaluating this formula

for 𝑠 = 0.05, 𝑝 = 12 yields

𝑆𝑠(12) = 12 + (1 − 12)0.05 = 11.45.

5.1.2 Network Topologies

Show that a hypercube network topology has enough connections for a fan-in gathering of results.

Consider Fig. 5.1, which illustrates the fan-in algorithm for 8 nodes.

For the example in Fig. 5.1, three steps are executed:

1. 001 → 000; 011 → 010; 101 → 100; 111 → 110

2. 010 → 000; 110 → 100

3. 100 → 000

199

Introduction to Supercomputing, Release 1.2.5

Fig. 5.1: Fanning in the result for 8 nodes.

200 Chapter 5. Review for the Midterm Exam

Introduction to Supercomputing, Release 1.2.5

To show a hypercube network has sufficiently many connections for the fan-in algorithm, we proceed via a proof by
induction.

• The base case: we verified for 1, 2, 4, and 8 nodes.

• Assume we have enough connections for a 2𝑘 hypercube.

We need to show that we have enough connections for a 2𝑘+1 hypercube:

1. In the first 𝑘 steps:

– node 0 gathers from nodes 1, 2, . . . 2𝑘 − 1;

– node 2𝑘 gathers from nodes 2𝑘 + 1, 2𝑘 + 2, . . . , 2𝑘+1 − 1.

2. In step 𝑘 + 1: node 2𝑘 can send to node 0, because only one bit in 2𝑘 is different from 0.

5.1.3 Task Graph Scheduling

Given are two vectors x and y, both of length 𝑛, with 𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗. Consider the code below:

for i from 2 to n do
for j from i to n do

y[j] = (y[i-1] - y[j])/(x[i-1] - x[j])

1. Define the task graph for a parallel computation of y.

2. Do a critical path analysis on the graph to determine the upper limit of the speedup.

For 𝑛 = 4, the numbers are in the table below:

𝑦2 =
𝑦1 − 𝑦2
𝑥1 − 𝑥2

𝑦3 =
𝑦1 − 𝑦3
𝑥1 − 𝑥3

𝑦3 =
𝑦2 − 𝑦3
𝑥2 − 𝑥3

𝑦4 =
𝑦1 − 𝑦4
𝑥1 − 𝑥4

𝑦4 =
𝑦2 − 𝑦4
𝑥2 − 𝑥4

𝑦4 =
𝑦3 − 𝑦4
𝑥3 − 𝑥4

If the computations happen row by row, then there is no parallelism. Observe that the elements in each column can be
computed independently from each other. Label the computation on row 𝑖 and column 𝑗 by 𝑇𝑖,𝑗 and consider the graph
in Fig. 5.2.

For 𝑛 = 4, with 3 processors, it takes three steps to compute the table. The speedup is 6/3 = 2. Each path leading to
𝑇4,4 has two edges or three nodes. So, the length of the critical path is 2.

For any 𝑛, with 𝑛− 1 processors, it takes 𝑛− 1 steps, leading to a speedup of 𝑛(𝑛− 1)/2 × 1/(𝑛− 1) = 𝑛/2.

5.1.4 Compute Bound or Memory Bound

A kernel performs 36 floating-point operations and seven 32-bit global memory accesses per thread.

Consider two GPUs 𝐴 and 𝐵, with the following properties:

• 𝐴 has peak FLOPS of 200 GFLOPS and 100 GB/second as peak memory bandwidth;

• 𝐵 has peak FLOPS of 300 GFLOPS and 250 GB/second as peak memory bandwidth.

For each GPU, is the kernel compute bound or memory bound?

The CGMA ratio of the kernel is
36

7 × 4
=

36

28
=

9

7

operations
byte

.

5.1. Four Sample Questions 201

Introduction to Supercomputing, Release 1.2.5

Fig. 5.2: The task graph for 𝑛 = 4.

202 Chapter 5. Review for the Midterm Exam

Introduction to Supercomputing, Release 1.2.5

Taking the ratio of the peak performance and peak memory bandwidth of GPU 𝐴 gives 200/100 = 2 operations per
byte. As 9/7 < 2, the kernel is memory bound on GPU 𝐴.

Alternatively, it takes GPU 𝐴 per thread
36

200 × 230
seconds for the operations and

28

100 × 230
seconds for the memory

transfers. As 0.18 < 0.28, more time is spent on transfers than on operations.

For GPU 𝐵, the ratio is 300/250 = 6/5 operations per byte. As 9/7 > 6/5, the kernel is compute bound on GPU 𝐵.

Alternatively, it takes GPU 𝐵 per thread
36

300 × 230
seconds for the operations and

28

250 × 230
seconds for the memory

transfers. As 0.12 > 0.112, more time is spent on computations than on transfers.

5.2 Fall 2024 Midterm Questions

The four questions below appeared on the midterm exam of Fall 2024.

5.2.1 Question 1 : Isoefficiency

Consider the communication and computation costs (as functions of dimension 𝑛 and number of processors 𝑝) in the
running times 𝑡(𝐴)(𝑛, 𝑝) and 𝑡(𝐵)(𝑛, 𝑝) of two programs, respectively 𝐴 and 𝐵:

𝑡(𝐴)(𝑛, 𝑝) = 𝑡(𝐴)
comm(𝑛, 𝑝) + 𝑡(𝐴)

comp(𝑛, 𝑝), 𝑡(𝐴)
comm(𝑛, 𝑝) = 𝑛 log(𝑝), 𝑡(𝐴)

comp(𝑛, 𝑝) = 𝑛2/𝑝,

𝑡(𝐵)(𝑛, 𝑝) = 𝑡(𝐵)
comm(𝑛, 𝑝) + 𝑡(𝐵)

comp(𝑛, 𝑝), 𝑡(𝐵)
comm(𝑛, 𝑝) = 𝑝 + 𝑛2𝑝, 𝑡(𝐵)

comp(𝑛, 𝑝) = 𝑛3/𝑝.

Which program scales best? Use isoefficiency to justify your answer.

Illustrate with values for 𝑝 between from 2 and 256, and for 𝑛 between 10,000 and 100,000.

Evaluating the efficiencies for both programs gives Table 5.1 and Table 5.2, indexed by the number of processors in 2,
4, 8, 16, 32, 64, 128, 256, in the rows, and for the columns by the dimensions in 10000, 20000, 50000, 100000.

Table 5.1: efficiency of program 𝐴

10000 20000 50000 100000
2 99.98 99.99 100.00 100.00
4 99.92 99.96 99.98 99.99
8 99.76 99.88 99.95 99.98
16 99.36 99.68 99.87 99.94
32 98.43 99.21 99.68 99.84
64 96.30 98.12 99.24 99.62
128 91.78 95.71 98.24 99.11
256 83.00 90.71 96.07 97.99

5.2. Fall 2024 Midterm Questions 203

Introduction to Supercomputing, Release 1.2.5

Table 5.2: efficiency of program 𝐵

10000 20000 50000 100000
2 99.97 99.99 99.99 100.00
4 99.85 99.93 99.97 99.99
8 99.37 99.69 99.87 99.94
16 97.51 98.74 99.49 99.75
32 90.72 95.13 98.00 98.99
64 70.95 83.01 92.43 96.07
128 37.91 54.97 75.32 85.92
256 13.24 23.38 43.28 60.41

As the efficiency of program 𝐴 is better than program 𝐵 for increasing number of processors and dimensions, program
𝐴 scales best.

5.2.2 Question 2 : the roofline model

A processor has 800 GFLOPS as peak performance and 400 GB/s as peak memory bandwidth.

The arithmetic intensity of a computation is 3 flops per byte.

1. Given the processor specifications, draw the roofline model.

Apply your model to justify whether the computation is compute bound or memory bound.

2. If the arithmetic intensity of the computation is 1 flop per byte, then what is the maximal performance the
computation can attain?

The roofline model is drawn in Fig. 5.3.

On Fig. 5.3 we see two vertical lines. The first vertical line at 1 flop per byte contains the points of the possible
performance, capped at 400 Gigaflops. At 1 flop per byte, the computation is memory bound. At 3 flops per byte, the
maximum performance is 800 Gigaflops and the computation is compute bound.

5.2.3 Question 3 : tasking for enumeration

Consider three sets 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}, 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} of vertices in a tripartite graph
𝐺 with edges in the set 𝐸.

Each edge 𝑒 ∈ 𝐸 is a pair of the form (𝑎𝑖, 𝑏𝑗) or (𝑏𝑖, 𝑐𝑗), for 𝑖 and 𝑗 in {1, 2, . . . , 𝑛}.

A matching is a subset of 𝐸 where every element of 𝐴, 𝐵, and 𝐶 occurs exactly once.

Consider the straightforward enumeration of all triplets to compute all matchings in 𝐺.

1. Explain how tasking can be applied to speed up the enumeration.

2. What speedup do you expect? Relate the speedup to 𝑛 and the size of 𝐸.

Below is the outline of a possible solution.

1. The matching consists of a set of triplets (𝑎, 𝑏, 𝑐), where each 𝑎, 𝑏, 𝑐 occurs exactly once in each triplet, (𝑎, 𝑏)
and (𝑏, 𝑐) are edges.

In exploring the search space, we can enumerate the triplets as follows, for each edge (𝑢, 𝑣) ∈ 𝐸, consider
the matching once with, and once without (𝑢, 𝑣), spawning two tasks for each case, with (𝑢, 𝑣) ∈ 𝐴 × 𝐵 or
(𝑢, 𝑣) ∈ 𝐵 × 𝐶.

Each task maintains its path of selected edges and set of triplets.

204 Chapter 5. Review for the Midterm Exam

Introduction to Supercomputing, Release 1.2.5

Fig. 5.3: Roofline model for 800 GFLOP/s and 400 GB/s.

5.2. Fall 2024 Midterm Questions 205

Introduction to Supercomputing, Release 1.2.5

2. The number of possible edges grows as 𝑛 choose 2 squared, as an upper bound between the edges between
vertices of sets 𝐴 and 𝐵, and combined with all edges of vertices of sets 𝐵 and 𝐶. The search space grows much
faster than we can scale the number of threads and the search space can be explored independently by many
threads.

With 𝑝 threads, we expect the search space to be explored 𝑝 times faster, and we may hope for an optimal speedup.

Superlinear speedup could occur if one task finds a matching when less than 1/𝑝-th of the search space has been
explored, where 𝑝 is the number of threads, but then if we want only one matching, and the question asked for
all matchings.

5.2.4 Question 4 : CGMA ratio

Consider the kernel below.

__global__ SumOfSquares (int n, float *x, float *y)
{

int bdx = blockIdx.x;
int tdx = threadIdx.x;
int offset = bdx*n;

y[idx] = 0.0;
for(int i=0; i<n; i++)

y[idx] = y[idx] + x[offset+i]*x[offset+i];
}

1. Compute the CGMA ratio for this kernel.

2. Explain how the use of registers and shared memory improves the CGMA ratio.

Below is an outline of a possible solution.

1. The CGMA ratio is
2𝑛

4𝑛 + 1
.

2. Using two registers xi and yr, as below

__global__ SumOfSquares (int n, float *x, float *y)
{

int bdx = blockIdx.x;
int tdx = threadIdx.x;
int offset = bdx*n;
float xi;
float yr = 0.0;

for(int i=0; i<n; i++)
{

xi = x[offset+i];
yr = yr + xi*xi;

}
y[idx] = yr;

}

improves the CGMA ratio to
2𝑛

𝑛 + 1
.

206 Chapter 5. Review for the Midterm Exam

CHAPTER 6

Pipelining and Synchronized Computations

6.1 Pipelined Computations

Although a process may consist in stages that have to be executed in order and thus there may not be much speedup
possible for the processing of one item, arranging the stages in a pipeline speeds up the processing of many items.

6.1.1 Functional Decomposition

Car manufacturing is a successful application of pipelines. Consider a simplified car manufacturing process in three
stages: (1) assemble exterior, (2) fix interior, and (3) paint and finish, as shown schematically Fig. 6.1.

Fig. 6.1: A schematic of a 3-stage pipeline at the left, with the corresponding space-time diagram at the right. After 3
time units, one car per time unit is completed. It takes 7 time units to complete 5 cars.

Definition of a Pipeline

A pipeline with p processors is a p-stage pipeline. A time unit is called a pipeline cycle. The time taken by the first
p-1 cycles is the pipeline latency.

Suppose every process takes one time unit to complete. How long does it take till a p-stage pipeline completes n inputs?
A p-stage pipeline on n inputs. After p time units the first input is done. Then, for the remaining 𝑛−1 items, the pipeline

207

Introduction to Supercomputing, Release 1.2.5

completes at a rate of one item per time unit. So, it takes 𝑝 + 𝑛 − 1 time units for the p-stage pipeline to complete n
inputs. The speedup S(p) for n inputs in a p-stage pipeline is thus

𝑆(𝑝) =
𝑛× 𝑝

𝑝 + 𝑛− 1
.

For a fixed number p of processors:

lim
𝑛→∞

𝑝× 𝑛

𝑛 + 𝑝− 1
= 𝑝.

Pipelining is a functional decomposition method to develop parallel programs. Recall the classification of Flynn: MISD
= Multiple Instruction Single Data stream.

Another successful application of pipelining is floating-point addition. The parts of a floating-point number are shown
in Fig. 6.2.

Fig. 6.2: A floating-point number has a sign bit, exponent, and fraction.

Adding to floats could be done in 6 cycles:

1. unpack fractions and exponents;

2. compare the exponents;

3. align the fractions;

4. add the fractions;

5. normalize the result; and

6. pack the fraction and the exponent of the result.

Adding two vectors of 𝑛 floats with 6-stage pipeline takes 𝑛 + 6 − 1 pipeline cycles, instead of 6𝑛 cycles.

The functionality of the pipelines in Intel Core processors is shown in Fig. 6.3.

Our third example of a successful application of pipelining is the denoising a signal. Every second we take 256 samples
of a signal:

• 𝑃1: apply FFT,

• 𝑃2: remove low amplitudes, and

• 𝑃3: inverse FFT,

as shown in Fig. 6.4. Observe: the consumption of a signal is sequential.

6.1.2 Loop Unrolling

The example below is taken from section 3.2.2 on loop unrolling in Scientific Programming and Computer Architecture
by Divakar Viswanath, Springer-Verlag, 2017.

The Leibniz series
𝜋

4
= 1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

converges very slowly.

The branching in the straightforward code in Julia prevents a pipelined execution of the floating-point operations.

208 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.3: Copied from the Intel Architecture Software Developer’s Manual.

Fig. 6.4: Pipeline to denoising a signal at the left, with space-diagram at the right.

6.1. Pipelined Computations 209

Introduction to Supercomputing, Release 1.2.5

function leibniz1(N::Int)
s = 1.0
for i=1:N

if(i%2 == 1)
s = s - 1.0/(2.0*i + 1.0)

else
s = s + 1.0/(2.0*i + 1.0)

end
end
return s

end

Applying loop unrolling, summing the even and odd terms separately avoids branching, allows a pipelined executions
of the floating-point operations.

function leibniz2(N::Int)
s = 1.0
for i=2:2:N

s = s + 1.0/(2.0*i + 1.0)
end
for i=1:2:N

s = s - 1.0/(2.0*i + 1.0)
end
return s

end

The second function leibniz2 rewrites leibniz1 as

1 − 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = 1 +

1

5
+

1

9
+ · · · − 1

3
− 1

7
− 1

11
− · · ·

The code below benchmarks the two different functions.

using BenchmarkTools

println(4.0*leibniz1(10^8))
@btime leibniz1(10^8)

println(4.0*leibniz2(10^8))
@btime leibniz2(10^8)

which gives the output:

3.141592663589326
239.600 ms (0 allocations: 0 bytes)
3.1415926635801443
125.266 ms (0 allocations: 0 bytes)

Executed with Julia 1.8.5 on two 22-core Intel Xeon E5-2699v4 Broadwell at 2.20GHz, 256GB of internal memory at
2400MHz.

On more recent versions of Julia, and in particular 1.11, there is no longer a difference in performance between the two
functions.

210 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

6.1.3 Pipeline Implementations

A ring topology of processors is a natural way to implement a pipeline. In Fig. 6.5, the stages in a pipeline are performed
by the processes organized in a ring.

Fig. 6.5: Four stages in a pipeline executed by four processes in a ring.

In a manager/worker organization, node 0 receives the input and sends it to node~1. Every node 𝑖, for 𝑖 = 1, 2, . . . , 𝑝−1,
does the following.

• It receives an item from node 𝑖− 1,

• performs operations on the item, and

• sends the processed item to node (𝑖 + 1) mod 𝑝.

At the end of one cycle, node 0 has the output.

6.1.4 Using MPI to implement a pipeline

Consider the following calculation with 𝑝 processes. Process 0 prompts the user for a number and sends it to process
1. For 𝑖 > 0: process 𝑖 receives a number from process 𝑖− 1, doubles the number and sends it to process 𝑖 mod 𝑝. A
session of an MPI implementation of one pipeline cycle for this calculation shows the following:

$ mpirun -np 4 /tmp/pipe_ring
One pipeline cycle for repeated doubling.
Reading a number...
2
Node 0 sends 2 to the pipe...
Processor 1 receives 2 from node 0.
Processor 2 receives 4 from node 1.
Processor 3 receives 8 from node 2.
Node 0 received 16.
$

This example is a type 1 pipeline: efficient only if we have more than one instance to compute. The MPI code for the
manager is below:

void manager (int p)
/*
* The manager prompts the user for a number and passes this number to node 1 for␣
→˓doubling.
* The manager receives from node p-1 the result. */
{

int n;
MPI_Status status;

printf("One pipeline cycle for repeated doubling.\n");
printf("Reading a number...\n"); scanf("%d",&n);
printf("Node 0 sends %d to the pipe...\n",n);

(continues on next page)

6.1. Pipelined Computations 211

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

fflush(stdout);
MPI_Send(&n,1,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n,1,MPI_INT,p-1,tag,MPI_COMM_WORLD,&status);
printf("Node 0 received %d.\n",n);

}

Following is the MPI code for the workers.

void worker (int p, int i)
/*
* Worker with identification label i of p receives a number,
* doubles it, and sends it to node i+1 mod p. */
{

int n;
MPI_Status status;

MPI_Recv(&n,1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
printf("Processor %d receives %d from node %d.\n",i,n,i-1);
fflush(stdout);
n *= 2; /* double the number */
if(i < p-1)

MPI_Send(&n,1,MPI_INT,i+1,tag,MPI_COMM_WORLD);
else

MPI_Send(&n,1,MPI_INT,0,tag,MPI_COMM_WORLD);
}

Let us consider the pipelined addition. Consider 4 processors in a ring topology as in Fig. 6.5. To add a sequence of
32 numbers, with data partitioning:

𝑎0, 𝑎1, . . . , 𝑎7⏟ ⏞
𝐴𝑘 =

𝑘∑︁
𝑗=0

𝑎𝑗

, 𝑏0, 𝑏1, . . . , 𝑏7⏟ ⏞
𝐵𝑘 =

𝑘∑︁
𝑗=0

𝑏𝑗

, 𝑐0, 𝑐1, . . . , 𝑐7⏟ ⏞
𝐶𝑘 =

𝑘∑︁
𝑗=0

𝑐𝑗

, 𝑑0, 𝑑1, . . . , 𝑑7⏟ ⏞
𝐷𝑘 =

𝑘∑︁
𝑗=0

𝑑𝑗

.

The final sum is 𝑆 = 𝐴7 + 𝐵7 + 𝐶7 + 𝐷7. Fig. 6.6 shows the space-time diagram for pipeline addition.

Fig. 6.6: Space-time diagram for pipelined addition, where 𝑆1 = 𝐴7 + 𝐵7, 𝑆2 = 𝑆1 + 𝐶7, 𝑆 = 𝑆2 + 𝐷7.

Let us compute the speedup for this pipelined addition. We finished addition of 32 numbers in 12 cycles: 12 = 32/4 +

212 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

4. In general, with p-stage pipeline to add n numbers:

𝑆(𝑝) =
𝑛− 1
𝑛

𝑝
+ 𝑝

For fixed p: lim
𝑛→∞

𝑆(𝑝) = 𝑝.

A pipelined addition implemented with MPI using 5-stage pipeline shows the following on screen:

mpirun -np 5 /tmp/pipe_sum
The data to sum : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26␣
→˓27 28 29 30
Manager starts pipeline for sequence 0...
Processor 1 receives sequence 0 : 3 3 4 5 6
Processor 2 receives sequence 0 : 6 4 5 6
Processor 3 receives sequence 0 : 10 5 6
Processor 4 receives sequence 0 : 15 6
Manager received sum 21.
Manager starts pipeline for sequence 1...
Processor 1 receives sequence 1 : 15 9 10 11 12
Processor 2 receives sequence 1 : 24 10 11 12
Processor 3 receives sequence 1 : 34 11 12
Processor 4 receives sequence 1 : 45 12
Manager received sum 57.
Manager starts pipeline for sequence 2...
Processor 1 receives sequence 2 : 27 15 16 17 18
Processor 2 receives sequence 2 : 42 16 17 18
Processor 3 receives sequence 2 : 58 17 18
Processor 4 receives sequence 2 : 75 18
Manager received sum 93.
Manager starts pipeline for sequence 3...
Processor 1 receives sequence 3 : 39 21 22 23 24
Processor 2 receives sequence 3 : 60 22 23 24
Processor 3 receives sequence 3 : 82 23 24
Processor 4 receives sequence 3 : 105 24
Manager received sum 129.
Manager starts pipeline for sequence 4...
Processor 1 receives sequence 4 : 51 27 28 29 30
Processor 2 receives sequence 4 : 78 28 29 30
Processor 3 receives sequence 4 : 106 29 30
Processor 4 receives sequence 4 : 135 30
Manager received sum 165.
The total sum : 465
$

The MPI code is defined in the function below.

void pipeline_sum (int i, int p) /* performs a pipeline sum of p*(p+1) numbers */
{

int n[p][p-i+1];
int j,k;
MPI_Status status;

if(i==0) /* manager generates numbers */
(continues on next page)

6.1. Pipelined Computations 213

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

{
for(j=0; j<p; j++)
for(k=0; k<p+1; k++) n[j][k] = (p+1)*j+k+1;

if(v>0)
{

printf("The data to sum : ");
for(j=0; j<p; j++)
for(k=0; k<p+1; k++) printf(" %d",n[j][k]);

printf("\n");
}

}
for(j=0; j<p; j++)
if(i==0) /* manager starts pipeline of j-th sequence */
{

n[j][1] += n[j][0];
printf("Manager starts pipeline for sequence %d...\n",j);
MPI_Send(&n[j][1],p,MPI_INT,1,tag,MPI_COMM_WORLD);
MPI_Recv(&n[j][0],1,MPI_INT,p-1,tag,MPI_COMM_WORLD,&status);
printf("Manager received sum %d.\n",n[j][0]);

}
else /* worker i receives p-i+1 numbers */
{

MPI_Recv(&n[j][0],p-i+1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
printf("Processor %d receives sequence %d : ",i,j);
for(k=0; k<p-i+1; k++) printf(" %d", n[j][k]);
printf("\n");
n[j][1] += n[j][0];
if(i < p-1)

MPI_Send(&n[j][1],p-i,MPI_INT,i+1,tag,MPI_COMM_WORLD);
else

MPI_Send(&n[j][1],1,MPI_INT,0,tag,MPI_COMM_WORLD);
}

if(i==0) /* manager computes the total sum */
{
for(j=1; j<p; j++) n[0][0] += n[j][0];
printf("The total sum : %d\n",n[0][0]);

}
}

6.1.5 Exercises

1. Describe the application of pipelining technique for grading n copies of an exam that has p questions. Explain
the stages and make a space-time diagram.

2. Write code to use the 4-stage pipeline to double numbers for a sequence of 10 consecutive numbers starting at 2.

3. Consider the evaluation of a polynomial 𝑓(𝑥) of degree 𝑛 given by its coefficient vector (𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛),
using Horner’s method, e.g., for 𝑛 = 4: 𝑓(𝑥) = (((𝑎4𝑥+𝑎3)𝑥+𝑎2)𝑥+𝑎1)𝑥+𝑎0. Give code of this algorithm
to evaluate 𝑓 at a sequence of n values for x by a p-stage pipeline.

214 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

6.2 Pipelined Sorting, Sieving, Substitution

We continue our study of pipelined computations, for sorting, prime number generation, and solving triangular linear
systems.

6.2.1 Sorting Numbers

As a data archival application, consider a pipeline with four computers in Fig. 6.7.

Fig. 6.7: A 4-stage pipeline in a data archival application.

The most recent data is stored on 𝑃0.

1. When 𝑃0 receives new data, its older data is moved to 𝑃1.

2. When 𝑃1 receives new data, its older data is moved to 𝑃2.

3. When 𝑃2 receives new data, its older data is moved to 𝑃3.

4. When 𝑃3 receives new data, its older data is archived to tape.

This is a type 1 pipeline. Every processor does the same three steps:

1. receive new data,

2. sort data,

3. send old data.

medskip

This leads to a pipelined sorting of numbers.

We consider a parallel version of insertion sort, sorting p numbers with p processors. Processor i does p-i steps in
the algorithm:

for step 0 to p-i-1 do
manager receives number
worker i receives number from i-1
if step = 0 then

initialize the smaller number
else if number > smaller number then

send number to i+1
else

send smaller number to i+1;
assign number to smaller number;

end if;
end for.

A pipeline session with MPI can go as below.

6.2. Pipelined Sorting, Sieving, Substitution 215

Introduction to Supercomputing, Release 1.2.5

$ mpirun -np 4 /tmp/pipe_sort
The 4 numbers to sort : 24 19 25 66
Manager gets 24.
Manager gets 19.
Node 0 sends 24 to 1.
Manager gets 25.
Node 0 sends 25 to 1.
Manager gets 66.
Node 0 sends 66 to 1.
Node 1 receives 24.
Node 1 receives 25.
Node 1 sends 25 to 2.
Node 1 receives 66.
Node 1 sends 66 to 2.
Node 2 receives 25.
Node 2 receives 66.
Node 2 sends 66 to 3.
Node 3 receives 66.
The sorted sequence : 19 24 25 66

MPI code for a pipeline version of insertion sort is in the program pipe_sort.c below:

int main (int argc, char *argv[])
{

int i,p,*n,j,g,s;
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&i);
if(i==0) /* manager generates p random numbers */
{

n = (int*)calloc(p,sizeof(int));
srand(time(NULL));
for(j=0; j<p; j++) n[j] = rand() % 100;
if(v>0)
{

printf("The %d numbers to sort : ",p);
for(j=0; j<p; j++) printf(" %d", n[j]);
printf("\n"); fflush(stdout);

}
}
for(j=0; j<p-i; j++) /* processor i performs p-i steps */
if(i==0)
{

g = n[j];
if(v>0) { printf("Manager gets %d.\n",n[j]); fflush(stdout); }
Compare_and_Send(i,j,&s,&g);

}
else
{

MPI_Recv(&g,1,MPI_INT,i-1,tag,MPI_COMM_WORLD,&status);
if(v>0) { printf("Node %d receives %d.\n",i,g); fflush(stdout); }
Compare_and_Send(i,j,&s,&g);

(continues on next page)

216 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

}
MPI_Barrier(MPI_COMM_WORLD); /* to synchronize for printing */
Collect_Sorted_Sequence(i,p,s,n);
MPI_Finalize();
return 0;

}

The function Compare_and_Send is defined next.

void Compare_and_Send (int myid, int step, int *smaller, int *gotten)
/* Processor "myid" initializes smaller with gotten at step zero,
* or compares smaller to gotten and sends the larger number through. */
{
if(step==0)

*smaller = *gotten;
else
if(*gotten > *smaller)
{

MPI_Send(gotten,1,MPI_INT,myid+1,tag,MPI_COMM_WORLD);
if(v>0)
{

printf("Node %d sends %d to %d.\n",
myid,*gotten,myid+1);

fflush(stdout);
}

}
else
{

MPI_Send(smaller,1,MPI_INT,myid+1,tag,
MPI_COMM_WORLD);

if(v>0)
{

printf("Node %d sends %d to %d.\n",
myid,*smaller,myid+1);

fflush(stdout);
}
*smaller = *gotten;

}
}

The function Collect_Sorted_Sequence follows:

void Collect_Sorted_Sequence (int myid, int p, int smaller, int *sorted)
/* Processor "myid" sends its smaller number to the manager who collects
* the sorted numbers in the sorted array, which is then printed. */
{

MPI_Status status;
int k;
if(myid==0) {

sorted[0] = smaller;
for(k=1; k<p; k++)

MPI_Recv(&sorted[k],1,MPI_INT,k,tag,
(continues on next page)

6.2. Pipelined Sorting, Sieving, Substitution 217

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

MPI_COMM_WORLD,&status);
printf("The sorted sequence : ");
for(k=0; k<p; k++) printf(" %d",sorted[k]);
printf("\n");

}
else

MPI_Send(&smaller,1,MPI_INT,0,tag,MPI_COMM_WORLD);
}

6.2.2 Prime Number Generation

The sieve of Erathostenes is shown in Fig. 6.8.

Fig. 6.8: Wiping out all multiples of 2 and 3 gives all prime numbers between 2 and 21.

A pipelined sieve algorithm is defined as follows. One stage in the pipeline

1. receives a prime,

2. receives a sequence of numbers,

3. extracts from the sequence all multiples of the prime, and

4. sends the filtered list to the next stage.

This pipeline algorithm is of type 2. As in type 1, multiple input items are needed for speedup; but the amount of work
in every stage will complete fewer steps than in the preceding stage.

For example, consider a 2-stage pipeline to compute all primes ≤ 21 with the sieve algorithm:

1. wipe out all multiples of 2, in nine multiplications;

2. wipe out all multiples of 3, in five multiplications.

Although the second stage in the pipeline starts only after we determined that 3 is not a multiple of 2, there are fewer
multiplications in the second stage. The space-time diagram with the multiplications is in Fig. 6.9.

A parallel implementation of the sieve of Erathostenes is in the examples collection of the Intel TBB distribution, in
/usr/local/tbb40_20131118oss/examples/parallel_reduce/primes. Computations on a 16-core computer
kepler:

$ make
g++ -O2 -DNDEBUG -o primes main.cpp primes.cpp -ltbb -lrt
./primes
#primes from [2..100000000] = 5761455 (0.106599 sec with serial code)

(continues on next page)

218 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.9: A 2-stage pipeline to compute all primes ≤ 21.

(continued from previous page)

#primes from [2..100000000] = 5761455 (0.115669 sec with 1-way parallelism)
#primes from [2..100000000] = 5761455 (0.059511 sec with 2-way parallelism)
#primes from [2..100000000] = 5761455 (0.0393051 sec with 3-way parallelism)
#primes from [2..100000000] = 5761455 (0.0287207 sec with 4-way parallelism)
#primes from [2..100000000] = 5761455 (0.0237532 sec with 5-way parallelism)
#primes from [2..100000000] = 5761455 (0.0198929 sec with 6-way parallelism)
#primes from [2..100000000] = 5761455 (0.0175456 sec with 7-way parallelism)
#primes from [2..100000000] = 5761455 (0.0168987 sec with 8-way parallelism)
#primes from [2..100000000] = 5761455 (0.0127005 sec with 10-way parallelism)
#primes from [2..100000000] = 5761455 (0.0116965 sec with 12-way parallelism)
#primes from [2..100000000] = 5761455 (0.0104559 sec with 14-way parallelism)
#primes from [2..100000000] = 5761455 (0.0109771 sec with 16-way parallelism)
#primes from [2..100000000] = 5761455 (0.00953452 sec with 20-way parallelism)
#primes from [2..100000000] = 5761455 (0.0111944 sec with 24-way parallelism)
#primes from [2..100000000] = 5761455 (0.0107475 sec with 28-way parallelism)
#primes from [2..100000000] = 5761455 (0.0151389 sec with 32-way parallelism)
elapsed time : 0.520726 seconds
$

6.2.3 Solving Triangular Systems

We apply a type 3 pipeline to solve a triangular linear system. With forward substitution formulas we solve a lower
triangular system.

The LU factorization of a matrix 𝐴 reduces the solving of a linear system to solving two triangular systems. To solve
an n-dimensional linear system 𝐴x = b we factor A as a product of two triangular matrices, 𝐴 = 𝐿𝑈 :

• 𝐿 is lower triangular, 𝐿 = [ℓ𝑖,𝑗], ℓ𝑖,𝑗 = 0 if 𝑗 > 𝑖 and ℓ𝑖,𝑖 = 1.

• 𝑈 is upper triangular 𝑈 = [𝑢𝑖,𝑗], 𝑢𝑖,𝑗 = 0 if 𝑖 > 𝑗.

Solving 𝐴x = b is equivalent to solving 𝐿(𝑈x) = b:

1. Forward substitution: 𝐿y = b.

2. Backward substitution: 𝑈x = y.

Factoring 𝐴 costs 𝑂(𝑛3), solving triangular systems costs 𝑂(𝑛2).

6.2. Pipelined Sorting, Sieving, Substitution 219

Introduction to Supercomputing, Release 1.2.5

Expanding the matrix-vector product 𝐿y in 𝐿y = b leads to formulas for forward substitution:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦1 = 𝑏1
ℓ2,1𝑦1 + 𝑦2 = 𝑏2
ℓ3,1𝑦1 + ℓ3,2𝑦2 + 𝑦3 = 𝑏3

...
ℓ𝑛,1𝑦1 + ℓ𝑛,2𝑦2 + ℓ𝑛,3𝑦3 + · · · + ℓ𝑛,𝑛−1𝑦𝑛−1 + 𝑦𝑛 = 𝑏𝑛

and solving for the diagonal elements gives

𝑦1 = 𝑏1
𝑦2 = 𝑏2 − ℓ2,1𝑦1
𝑦3 = 𝑏3 − ℓ3,1𝑦1 − ℓ3,2𝑦2

...
𝑦𝑛 = 𝑏𝑛 − ℓ𝑛,1𝑦1 − ℓ𝑛,2𝑦2 − · · · − ℓ𝑛,𝑛−1𝑦𝑛−1

The formulas lead to an algorithm. For 𝑘 = 1, 2, . . . , 𝑛:

𝑦𝑘 = 𝑏𝑘 −
𝑘−1∑︁
𝑖=1

ℓ𝑘,𝑖𝑦𝑖.

Formulated as an algorithm, in pseudocode:

for k from 1 to n do
y[k] := b[k]
for i from 1 to k-1 do

y[k] := y[k] - L[k][i]*y[i].

We count 1 + 2 + · · · + 𝑛− 1 =
𝑛(𝑛− 1)

2
multiplications and subtractions.

Pipelines are classified into three types:

1. Type 1: Speedup only if multiple instances. Example: instruction pipeline.

2. Type 2: Speedup already if one instance. Example: pipeline sorting.

3. Type 3: Worker continues after passing information through. Example: solve 𝐿y = b.

Typical for the 3rd type of pipeline is the varying length of each job, as exemplified in Fig. 6.10.

Fig. 6.10: Space-time diagram for pipeline with stages of varying length.

Using an n-stage pipeline, we assume that L is available on every processor.

220 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.11: 4-stage pipeline to solve a 4-by-4 lower triangular system.

Fig. 6.12: Space-time diagram for solving a 4-by-4 lower triangular system.

The corresponding 4-stage pipeline is shown in Fig. 6.11 with the space-time diagram in Fig. 6.12.

In type 3 pipelining, a worker continues after passing results through. The making of 𝑦1 available in the next pipeline
cycle is illustrated in Fig. 6.13. The corresponding space-time diagram is in Fig. 6.14 and the space-time diagram in
Fig. 6.15 shows at what time step which component of the solution is.

Fig. 6.13: Passing 𝑦1 through the type 3 pipeline.

We count the steps for 𝑝 = 4 or in general, for 𝑝 = 𝑛 as follows. The latency takes 4 steps for 𝑦1 to be at 𝑃4, or in
general: n steps for 𝑦1 to be at 𝑃𝑛. It takes then 6 additional steps for 𝑦4 to be computed by 𝑃4, or in general: 2𝑛− 2
additional steps for 𝑦𝑛 to be computed by 𝑃𝑛. So it takes 𝑛+2𝑛−2 = 3𝑛−2 steps to solve an n-dimensional triangular
system by an n-stage pipeline.

y := b
for i from 2 to n do

for j from i to n do
y[j] := y[j] - L[j][i-1]*y[i-1]

Consider for example the solving of 𝐿y = b for 𝑛 = 5.

1. 𝑦 := b;

2. 𝑦2 := 𝑦2 − ℓ2,1 ⋆ 𝑦1;

𝑦3 := 𝑦3 − ℓ3,1 ⋆ 𝑦1;

𝑦4 := 𝑦4 − ℓ4,1 ⋆ 𝑦1;

𝑦5 := 𝑦5 − ℓ5,1 ⋆ 𝑦1;

3. 𝑦3 := 𝑦3 − ℓ3,2 ⋆ 𝑦2;

𝑦4 := 𝑦4 − ℓ4,2 ⋆ 𝑦2;

𝑦5 := 𝑦5 − ℓ5,2 ⋆ 𝑦2;

6.2. Pipelined Sorting, Sieving, Substitution 221

Introduction to Supercomputing, Release 1.2.5

Fig. 6.14: Space-time diagram of a type 3 pipeline.

Fig. 6.15: Space-time diagram illustrates the component of the solutions.

4. 𝑦4 := 𝑦4 − ℓ4,3 ⋆ 𝑦3;

𝑦5 := 𝑦5 − ℓ5,3 ⋆ 𝑦3;

5. 𝑦5 := 𝑦5 − ℓ5,4 ⋆ 𝑦4;

Observe that all instructions in the j loop are independent from each other!

Consider the inner loop in the algorithm to solve 𝐿y = b. We distribute the update of 𝑦𝑖, 𝑦𝑖+1, . . . , 𝑦𝑛 among p
processors. If 𝑛 ≫ 𝑝, then we expect a close to optimal speedup.

6.2.4 Bibliography

1. Shahid H. Bokhari. Multiprocessing the Sieve of Eratosthenes. Computer 20(4):50-58, 1987.

2. B. Wilkinson and M. Allen. Parallel Programming. Techniques and Applications Using Networked Workstations
and Parallel Computers. Prentice Hall, 2nd edition, 2005.

222 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

6.2.5 Exercises

1. Write the pipelined sorting algorithm with OpenMP or Julia.

Demonstrate the correctness of your implementation with some good examples.

2. Use message passing to implement the pipelined sieve algorithm.

Relate the number of processors in the network to the number of multiples which must be computed before
sending off the sequence to the next processor.

3. Implement the pipelined sieve algorithm with OpenMP and Julia.

Can the constraint on the number of computed multiples be formulated with dependencies?

4. Consider the upper triangular system 𝑈x = y, with 𝑈 = [𝑢𝑖,𝑗], 𝑢𝑖,𝑗 = 0 if 𝑖 > 𝑗.

Derive the formulas and general algorithm to compute the components of the solution x.

For 𝑛 = 4, draw the third type of pipeline.

6.3 Solving Triangular Systems

Triangular linear system occur as the result of an LU or a QR decomposition.

6.3.1 Ill Conditioned Matrices and Quad Doubles

Consider the 4-by-4 lower triangular matrix

𝐿 =

⎡⎢⎢⎣
1 0 0 0

−2 1 0 0
−2 −2 1 0
−2 −2 −2 1

⎤⎥⎥⎦ .

What we know from numerical analysis:

1. The condition number of a matrix magnifies roundoff errors.

2. The hardware double precision is 2−52 ≈ 2.2 × 10−16.

3. We get no accuracy from condition numbers larger than 1016.

An experiment in an interactive Julia session illustate that ill conditioned matrices occur already in modest dimensions.

julia> using LinearAlgebra

julia> A = ones(32,32);

julia> D = Diagonal(A);

julia> L = LowerTriangular(A);

julia> LmD = L - D;

julia> L2 = D - 2*LmD;

julia> cond(L2)
2.41631630569077e16

6.3. Solving Triangular Systems 223

Introduction to Supercomputing, Release 1.2.5

The condition number is estimated at 2.4 × 1016.

A floating-point number consists of a sign bit, exponent, and a fraction (also known as the mantissa). Almost all
microprocessors follow the IEEE 754 standard. GPU hardware supports 32-bit (single float) and for compute capability
≥ 1.3 also double floats.

Numerical analysis studies algorithms for continuous problems, problems for their sensitivity to errors in the input; and
algorithms for their propagation of roundoff errors.

The floating-point addition is not associative! Parallel algorithms compute and accumulate the results in an order that
is different from their sequential versions. For example, adding a sequence of numbers is more accurate if the numbers
are sorted in increasing order.

Instead of speedup, we can ask questions about quality up:

• If we can afford to keep the total running time constant, does a faster computer give us more accurate results?

• How many more processors do we need to guarantee a result?

A quad double is an unevaluated sum of 4 doubles, improves the working precision from 2.2 × 10−16 to 2.4 × 10−63.
The software QDlib is presented in the paper Algorithms for quad-double precision floating point arithmetic by Y.
Hida, X.S. Li, and D.H. Bailey, published in the 15th IEEE Symposium on Computer Arithmetic, pages 155-162.
IEEE, 2001. The software is available at <http://crd.lbl.gov/~dhbailey/mpdist>.

A quad double builds on double double. Some features of working with doubles double are:

• The least significant part of a double double can be interpreted as a compensation for the roundoff error.

• Predictable overhead: working with double double is of the same cost as working with complex numbers.

Consider Newton’s method to compute :math:sqrt{x}: as defined in the code below.

#include <iostream>
#include <iomanip>
#include <qd/qd_real.h>
using namespace std;

qd_real newton (qd_real x)
{

qd_real y = x;
for(int i=0; i<10; i++)

y -= (y*y - x)/(2.0*y);
return y;

}

The main program is as follows.

int main (int argc, char *argv[])
{

cout << "give x : ";
qd_real x; cin >> x;
cout << setprecision(64);
cout << " x : " << x << endl;

qd_real y = newton(x);
cout << " sqrt(x) : " << y << endl;

qd_real z = y*y;
cout << "sqrt(x)^2 : " << z << endl;

(continues on next page)

224 Chapter 6. Pipelining and Synchronized Computations

http://crd.lbl.gov/~dhbailey/mpdist

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

return 0;
}

If the program is in the file newton4sqrt.cpp and the makefile contains

QD_ROOT=/usr/local/qd-2.3.13
QD_LIB=/usr/local/lib

newton4sqrt:
g++ -I$(QD_ROOT)/include newton4sqrt.cpp \

$(QD_LIB)/libqd.a -o /tmp/newton4sqrt

then we can create the executable, simply typing make newton4sqrt. A run with the code for 𝑠𝑞𝑟𝑡2 is shown below.

2.00e+00
1.5000e+00
1.416667e+00
1.4142156862745098039215686274509803921568627450980392156862745098e+00
1.4142135623746899106262955788901349101165596221157440445849050192e+00
1.4142135623730950488016896235025302436149819257761974284982894987e+00
1.4142135623730950488016887242096980785696718753772340015610131332e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
1.4142135623730950488016887242096980785696718753769480731766797380e+00
residual : 0.0000e+00

6.3.2 On a Parallel Shared Memory Computer with OpenMP

We will rewrite the formulas for forward substitution. Expanding the matrix-vector product 𝐿y in 𝐿y = b leads to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑦1 = 𝑏1
ℓ2,1𝑦1 + 𝑦2 = 𝑏2
ℓ3,1𝑦1 + ℓ3,2𝑦2 + 𝑦3 = 𝑏3

...
ℓ𝑛,1𝑦1 + ℓ𝑛,2𝑦2 + ℓ𝑛,3𝑦3 + · · · + ℓ𝑛,𝑛−1𝑦𝑛−1 + 𝑦𝑛 = 𝑏𝑛

and solving for the diagonal elements gives

𝑦1 = 𝑏1
𝑦2 = 𝑏2 − ℓ2,1𝑦1
𝑦3 = 𝑏3 − ℓ3,1𝑦1 − ℓ3,2𝑦2

...
𝑦𝑛 = 𝑏𝑛 − ℓ𝑛,1𝑦1 − ℓ𝑛,2𝑦2 − · · · − ℓ𝑛,𝑛−1𝑦𝑛−1

In rewriting the formulas, consider the case for 𝑛 = 5. Solving 𝐿y = b for 𝑛 = 5:

1. y := b

2. 𝑦2 := 𝑦2 − ℓ2,1 ⋆ 𝑦1

𝑦3 := 𝑦3 − ℓ3,1 ⋆ 𝑦1

𝑦4 := 𝑦4 − ℓ4,1 ⋆ 𝑦1

𝑦5 := 𝑦5 − ℓ5,1 ⋆ 𝑦1

6.3. Solving Triangular Systems 225

Introduction to Supercomputing, Release 1.2.5

3. 𝑦3 := 𝑦3 − ℓ3,2 ⋆ 𝑦2

𝑦4 := 𝑦4 − ℓ4,2 ⋆ 𝑦2

𝑦5 := 𝑦5 − ℓ5,2 ⋆ 𝑦2

4. 𝑦4 := 𝑦4 − ℓ4,3 ⋆ 𝑦3

𝑦5 := 𝑦5 − ℓ5,3 ⋆ 𝑦3

5. 𝑦5 := 𝑦5 − ℓ5,4 ⋆ 𝑦4

In the algorithm

y := b
for 𝑖 from 2 to 𝑛 do

for 𝑗 from 𝑖 to 𝑛 do
𝑦𝑗 := 𝑦𝑗 − ℓ𝑗,𝑖−1 ⋆ 𝑦𝑖−1

Observe that all instructions in the 𝑗 loop are independent from each other! Considering the inner loop in the algorithm
to solve 𝐿y = b, we distribute the update of 𝑦𝑖, 𝑦𝑖+1, . . . , 𝑦𝑛 among 𝑝 processors. If 𝑛 ≫ 𝑝, then we expect a close to
optimal speedup.

For our parallel solver for triangular systems:

• For 𝐿 = [ℓ𝑖,𝑗], we generate random numbers for ℓ𝑖,𝑗 ∈ [0, 1].

The exact solution y: 𝑦𝑖 = 1, for 𝑖 = 1, 2, . . . , 𝑛.

We compute the right hand side b = 𝐿y.

• Even already in small dimensions, the condition number may grow exponentially.

Hardware double precision is insufficient. Therefore, we use quad double arithmetic.

• We use a straightforward OpenMP implementation.

In solving random lower triangular systems, relying on hardware doubles is problematic:

$ time ./trisol 10
last number : 1.0000000000000009e+00

real 0m0.003s user 0m0.001s sys 0m0.002s

$ time ./trisol 100
last number : 9.9999999999974221e-01

real 0m0.005s user 0m0.001s sys 0m0.002s

$ time ./trisol 1000
last number : 2.7244600009080568e+04

real 0m0.036s user 0m0.025s sys 0m0.009s

For a matrix of quad doubles, allocating data in the main program is done in the code snippet below.

qd_real b[n],y[n];

qd_real **L;
L = (qd_real**) calloc(n,sizeof(qd_real*));
for(int i=0; i<n; i++)

(continues on next page)

226 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

L[i] = (qd_real*) calloc(n,sizeof(qd_real));

srand(time(NULL));
random_triangular_system(n,L,b);

Generating a random triangular system happens through the function defined next.

void random_triangular_system
(int n, qd_real **L, qd_real *b)
{
for(int i=0; i<n; i++)
{

L[i][i] = 1.0;
for(j=0; j<i; j++)
{

double r = ((double) rand())/RAND_MAX;
L[i][j] = qd_real(r);

}
for(int j=i+1; j<n; j++)

L[i][j] = qd_real(0.0);
}
for(int i=0; i<n; i++)
{

b[i] = qd_real(0.0);
for(int j=0; j<n; j++)

b[i] = b[i] + L[i][j];
}

}

Then the triangular system is solved by the following code.

void solve_triangular_system_swapped
(int n, qd_real **L, qd_real *b, qd_real *y)
{
for(int i=0; i<n; i++) y[i] = b[i];

for(int i=1; i<n; i++)
{
for(int j=i; j<n; j++)

y[j] = y[j] - L[j][i-1]*y[i-1];
}

}

Using OpenMP, we add directives, creating a parallel section, declaring which variables are shared, and which are not.

void solve_triangular_system_swapped
(int n, qd_real **L, qd_real *b, qd_real *y)
{

int j;

for(int i=0; i<n; i++) y[i] = b[i];

for(int i=1; i<n; i++)
(continues on next page)

6.3. Solving Triangular Systems 227

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

{
#pragma omp parallel shared(L,y) private(j)
{
#pragma omp for
for(j=i; j<n; j++)

y[j] = y[j] - L[j][i-1]*y[i-1];
}

}
}

For dimension 𝑛 = 8, 000, for varying number p of cores, Table 6.1 summarizes the running of time ./
trisol_qd_omp n p on 12-core Intel X5690, 3.47 GHz.

Table 6.1: solving a triangular system for p cores.

p cpu time real user sys
1 21.240s 35.095s 34.493s 0.597s
2 22.790s 25.237s 36.001s 0.620s
4 22.330s 19.433s 35.539s 0.633s
8 23.200s 16.726s 36.398s 0.611s
12 23.260s 15.781s 36.457s 0.626s

The serial part is the generation of the random numbers for 𝐿 and the computation of b = 𝐿y. Recall Amdahl’s Law.

We can compute the serial time, subtracting for 𝑝 = 1, from the real time the cpu time spent in the solver, i.e.:
35.095 − 21.240 = 13.855. For 𝑝 = 12, time spent on the solver is 15.781 − 13.855 = 1.926. Compare 1.926 to
21.240/12 = 1.770.

6.3.3 Accelerated Back Substitution

Consider a 3-by-3-tiled upper triangular system 𝑈x = b.

𝑈 =

⎡⎣ 𝑈1 𝐴1,2 𝐴1,3

𝑈2 𝐴2,3

𝑈3

⎤⎦ , x =

⎡⎣ x1

x2

x3

⎤⎦ , b =

⎡⎣ b1

b2

b3

⎤⎦ ,

where 𝑈1, 𝑈2, 𝑈3 are upper triangular, with nonzero diagonal elements.

Invert all diagonal tiles: ⎡⎣ 𝑈−1
1 𝐴1,2 𝐴1,3

𝑈−1
2 𝐴2,3

𝑈−1
3

⎤⎦ .

• The inverse of an upper triangular matrix is upper triangular.

• Solve an upper triangular system for each column of the inverse.

• The columns of the inverse can be computed independently.

⇒ Solve many smaller upper triangular systems in parallel.

After inverting the diagonal tiles, in the second stage, we solve 𝑈x = b for

𝑈 =

⎡⎣ 𝑈−1
1 𝐴1,2 𝐴1,3

𝑈−1
2 𝐴2,3

𝑈−1
3

⎤⎦
228 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

in the following steps:

1. x3 := 𝑈−1
3 b3,

2. b2 := b2 −𝐴2,3x3, b1 := b1 −𝐴1,3x3,

4. x2 := 𝑈−1
2 b2,

5. b1 := b1 −𝐴1,2x2,

6. x1 := 𝑈−1
1 b1.

Statements on the same line can be executed in parallel. In multiple double precision, several blocks of threads collab-
orate in the computation of one matrix-vector product.

The two stages are executed by three kernels.

Algorithm 1: Tiled Accelerated Back Substitution.

On input are the following :

• 𝑁 is the number of tiles,

• 𝑛 is the size of each tile,

• 𝑈 is an upper triangular 𝑁𝑛-by-𝑁𝑛 matrix,

• b is a vector of size 𝑁𝑛.

The output is x is a vector of size 𝑁𝑛: 𝑈x = b.

1. Let 𝑈1, 𝑈2, . . . , 𝑈𝑁 be the diagonal tiles.

The k-th thread solves 𝑈𝑖v𝑘 = e𝑘, computing the k-th column 𝑈−1
𝑖 .

2. For 𝑖 = 𝑁,𝑁 − 1, . . . , 1 do

1. 𝑛 threads compute x𝑖 = 𝑈−1b𝑖;

2. simultaneously update b𝑗 with b𝑗 −𝐴𝑗,𝑖x𝑖, 𝑗 ∈ {1, 2, . . . , 𝑖− 1} with 𝑖− 1 blocks of 𝑛 threads.

A parallel execution could run in time proportional to 𝑁𝑛.

For efficiency, we must stage the data right. A matrix 𝑈 of multiple doubles is stored as [𝑈1, 𝑈2, . . . , 𝑈𝑚],

• 𝑈1 holds the most significant doubles of 𝑈 ,

• 𝑈𝑚 holds the least significant doubles of 𝑈 .

Similarly, b is an array of 𝑚 arrays [b1,b2, . . . ,b𝑚], sorted in the order of significance. In complex data, real and
imaginary parts are stored separately.

The main advantages of this representation are twofold:

• facilitates staggered application of multiple double arithmetic,

• benefits efficient memory coalescing, as adjacent threads in one block of threads read/write adjacent data in
memory, avoiding bank conflicts.

In the experimental setup, about the input matrices:

• Random numbers are generated for the input matrices.

• Condition numbers of random triangular matrices almost surely grow exponentially [Viswanath and Trefethen,
1998].

• In the standalone tests, the upper triangular matrices are the Us of an LU factorization of a random matrix,
computed by the host.

Two input parameters are set for every run:

6.3. Solving Triangular Systems 229

Introduction to Supercomputing, Release 1.2.5

• The size of each tile is the number of threads in a block. The tile size is a multiple of 32.

• The number of tiles equals the number of blocks. As the V100 has 80 streaming multiprocessors, the number of
tiles is at least 80.

The units of the flops in Table 6.2 and Table 6.3 are Gigaflops.

Table 6.2: Back substitution in double double precision on the V100.

stage in Algorithm 1 64 × 80 128 × 80 256 × 80

invert diagonal tiles 1.2 9.3 46.3
multiply with inverses 1.7 3.3 8.9
back substitution 7.9 4.7 12.2
time spent by kernels 5.0 17.3 67.4
wall clock time 82.0 286.0 966.0
kernel time flops 190.6 318.7 525.1
wall clock flops 11.7 19.2 36.7

Table 6.3: Back substitution in quad double precision on the V100.

stage in Algorithm 1 64 × 80 128 × 80 256 × 80

invert diagonal tiles 6.2 38.3 137.4
multiply with inverses 12.2 23.8 63.1
back substitution 13.3 26.7 112.2
time spent by kernels 31.7 88.8 312.7
wall clock time 187.0 619.0 2268.0
kernel time flops 299.4 614.2 1122.3
wall clock flops 50.8 88.1 154.8

Consider the doubling of the dimension and the precision.

1. Double the dimension, expect the time to quadruple.

2. From double double to quad double: 11.7 is multiplier, from quad double to octo double: 5.4 times longer.

Fig. 6.16: 2-logarithms of times on the V100 in 3 precisions

230 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

In Fig. 6.16, the heights of the bars are closer to each other in higher dimensions.

The V100 has 80 multiprocessors, its theoretical peak performance is 1.68 times that of the P100.

The value for 𝑁 is fixed at 80, 𝑛 runs from 32 to 256, see Fig. 6.17.

Fig. 6.17: kernel times in quad double precision on 3 GPUs

In Fig. 6.17, observe the heights of the bars as the dimensions double and the relative performance of the three different
GPUs.

Considering 20480 = 320 × 64 = 160 × 128 = 80 × 256, we run back substitution in quad double precision, for
20480 = 𝑁 × 𝑛, for three different combinations of 𝑁 and 𝑛, on the V100. The results are summarized in Table 6.4.

Table 6.4: Back substitution in quad double precision.

stage in Algorithm 1 320 × 64 160 × 128 80 × 256

invert diagonal tiles 13.5 35.8 132.3
multiply with inverses 49.0 47.5 64.3
back substitution 84.6 91.7 112.3
time spent by kernels 147.1 175.0 308.9
wall clock time 2620.0 2265.0 2071.0
kernel time flops 683.0 861.1 1136.1
wall clock flops 38.3 66.5 169.5

The units of all times in Table 6.4 are milliseconds, flops unit is Gigaflops.

6.3. Solving Triangular Systems 231

Introduction to Supercomputing, Release 1.2.5

6.3.4 Bibliography

• T.J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik,
18(3):224-242, 1971.

• D. H. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Review, 20(4):740-777,
1978.

• Y. Hida, X.S. Li, and D.H. Bailey. Algorithms for quad-double precision floating point arithmetic. In
15th IEEE Symposium on Computer Arithmetic, pages 155-162. IEEE, 2001. Software at <http://crd.lbl.gov/
~dhbailey/mpdist>.

• N. J. Higham. Stability of parallel triangular system solvers. SIAM J. Sci. Comput., 16(2):400-413, 1995.

• M. Joldes, J.-M. Muller, V. Popescu, W. Tucker. CAMPARY: Cuda Multiple Precision Arithmetic Library
and Applications. In Mathematical Software – ICMS 2016, the 5th International Conference on Mathematical
Software, pages 232-240, Springer-Verlag, 2016.

• M. Lu, B. He, and Q. Luo. Supporting extended precision on graphics processors. In A. Ailamaki and
P.A. Boncz, editors, Proceedings of the Sixth International Workshop on Data Management on New Hardware
(DaMoN 2010), June 7, 2010, Indianapolis, Indiana, pages 19-26, 2010. Software at <https://code.google.com/
archive/p/gpuprec>.

• W. Nasri and Z. Mahjoub. Optimal parallelization of a recursive algorithm for triangular matrix inversion
on MIMD computers. Parallel Computing, 27:1767-1782, 2001.

• J. Verschelde. Least squares on GPUs in multiple double precision. In The 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 828-837. IEEE, 2022. Code at <https:
//github.com/janverschelde/PHCpack/src/GPU>.

• D. Viswanath and L. N. Trefethen. Condition numbers of random triangular matrices. SIAM J. Matrix Anal.
Appl., 19(2):564-581, 1998.

6.3.5 Exercises

1. Write a parallel solver with OpenMP to solve 𝑈x = y.

Take for𝑈 a matrix with random numbers in [0, 1], compute y so all components of x equal one. Test the speedup
of your program, for large enough values of 𝑛 and a varying number of cores.

2. Describe a parallel solver for upper triangular systems 𝑈y = b for distributed memory computers. Write a
prototype implementation using MPI and discuss its scalability.

3. Consider a tiled lower triangular system 𝐿x = b.

6.4 Barriers for Synchronizations

For message passing, we distinguish between a linear, a tree, and a butterfly barrier, introducing the sendrecv in MPI.
As an example of a data parallel algorithm, we describe the prefix sum algorithm. In the third subsection, Brent’s
theorem is stated and applied to the parallel summation problem.

232 Chapter 6. Pipelining and Synchronized Computations

http://crd.lbl.gov/~dhbailey/mpdist
http://crd.lbl.gov/~dhbailey/mpdist
https://code.google.com/archive/p/gpuprec
https://code.google.com/archive/p/gpuprec
https://github.com/janverschelde/PHCpack/src/GPU
https://github.com/janverschelde/PHCpack/src/GPU

Introduction to Supercomputing, Release 1.2.5

6.4.1 Synchronizing Computations

In synchronized computations, processors pass through a number of stages in an algorithm.

Definition of synchronization barrier

A synchronization barrier guarantees that no processor continues to the next stage until all processors have finished
the current stage.

In the above definition, the processor stands for a process, thread, or task. Examples in distributed memory, shared
memory, and accelerated parallel processing are

• Message passing defines MPI_Barrier(MPI_Comm comm).

• OpenMP has the #pragma omp barrier construct.

• CUDA provides the instruction __syncthreads().

A barrier has two phases. The arrival or trapping phase is followed by the departure or release phase. The manager
maintains a counter: only when all workers have sent to the manager, does the manager send messages to all workers.
Pseudo code for a linear barrier in a manager/worker model is shown below.

code for manager code for worker

for i from 1 to p-1 do
receive from i send to manager

for i from 1 to p-1 do
send to i receive from manager

The counter implementation of a barrier or linear barrier is effective but it takes 𝑂(𝑝) steps. A schematic of the steps
to synchronize 8 processes is shown in Fig. 6.18 for a linear and a tree barrier.

Fig. 6.18: A linear next to a tree barrier to synchronize 8 processes. For 8 processes, the linear barrier takes twice as
many time steps as the tree barrier.

Implementing a tree barrier we write pseudo code for the trapping and the release phase, for 𝑝 = 2𝑘 (recall the fan in
gather and the fan out scatter):

6.4. Barriers for Synchronizations 233

Introduction to Supercomputing, Release 1.2.5

The trapping phase is defined below:

for i from k-1 down to 0 do
for j from 2**i to 2**(i+1) do

node j sends to node j - 2**i
node j - 2**i receives from node j.

The release phase is defined below

for i from 0 to k-1 do
for j from 0 to 2**i-1 do

node j sends to j + 2**i
node j + 2**i receives from node j.

Observe that two processes can synchronize in one step. We can generalize this into a tree barrier so there are no idle
processes. This leads to a butterfly barrier shown in Fig. 6.19.

Fig. 6.19: Two processes can synchronize in one step as shown on the left. At the right is a schematic of the time steps
for a tree barrier to synchronize 8 processes.

The algorithm for a butterfly barrier, for 𝑝 = 2𝑘, is described is pseudo code below.

for i from 0 to k-1 do
s := 0
for j from 0 to p-1 do

if (j mod 2**(i+1) = 0) s := j
node j sends to node ((j + 2**i) mod 2**(i+1)) + s
node ((j + 2**i) mod 2^(i+1)) + s receives from node j

To avoid deadlock, ensuring that every send is matched with a corresponding receive, we can work with a sendrecv,
as shown in Fig. 6.20.

The sendrecv in MPI has the following form:

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status)

where the parameters are in Table 6.5.

234 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.20: The top picture is equivalent to the bottom picture.

Table 6.5: Parameters of sendrecv in MPI.

parameter description
sendbuf initial address of send buffer
sendcount number of elements in send buffer
sendtype type of elements in send buffer
dest rank of destination
sendtag send tag
recvbuf initial address of receive buffer
recvcount number of elements in receive buffer
sendtype type of elements in receive buffer
source rank of source or MPI_ANY_SOURCE
recvtag receive tag or MPI_ANY_TAG
comm communicator
status status object

We illustrate MPI_Sendrecv to synchronize two nodes. Processors 0 and 1 swap characters in a bidirectional data
transfer.

$ mpirun -np 2 /tmp/use_sendrecv
Node 0 will send a to 1
Node 0 received b from 1
Node 1 will send b to 0
Node 1 received a from 0
$

with code below:

6.4. Barriers for Synchronizations 235

Introduction to Supercomputing, Release 1.2.5

#include <stdio.h>
#include <mpi.h>

#define sendtag 100

int main (int argc, char *argv[])
{

int i,j;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

char c = 'a' + (char)i; /* send buffer */
printf("Node %d will send %c to %d\n",i,c,j);
char d; /* receive buffer */

MPI_Sendrecv(&c,1,MPI_CHAR,j,sendtag,&d,1,MPI_CHAR,MPI_ANY_SOURCE,
MPI_ANY_TAG,MPI_COMM_WORLD,&status);

printf("Node %d received %c from %d\n",i,d,j);
}

MPI_Finalize();
return 0;

6.4.2 The Prefix Sum Algorithm

A data parallel computation is a computation where the same operations are preformed on different data simultaneously.
The benefits of data parallel computations is that they are easy to program, scale well, and are fit for SIMD computers.

The problem we consider is to compute
𝑛−1∑︁
𝑖=0

𝑎𝑖 for 𝑛 = 𝑝 = 2𝑘. This problem is related to the composite trapezoidal

rule.

For 𝑛 = 8 and 𝑝 = 8, the prefix sum algorithm is illustrated in Fig. 6.21.

Pseudo code for the prefix sum algorithm for 𝑛 = 𝑝 = 2𝑘 is below. Processor i executes:

s := 1
x := a[i]
for j from 0 to k-1 do

if (j < p - s + 1) send x to processor i+s
if (j > s-1) receive y from processor i-s

add y to x: x := x + y
s := 2*s

The speedup:
𝑝

log2(𝑝)
. Communication overhead: one send/recv in every step.

The prefix sum algorithm can be coded up in MPI as in the program below.

#include <stdio.h>
#include "mpi.h"

(continues on next page)

236 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.21: The prefix sum for 𝑛 = 8 = 𝑝.

6.4. Barriers for Synchronizations 237

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

#define tag 100 /* tag for send/recv */

int main (int argc, char *argv[])
{

int i,j,nb,b,s;
MPI_Status status;
const int p = 8; /* run for 8 processors */

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&i);

nb = i+1; /* node i holds number i+1 */
s = 1; /* shift s will double in every step */

for(j=0; j<3; j++) /* 3 stages, as log2(8) = 3 */
{
if(i < p - s) /* every one sends, except last s ones */

MPI_Send(&nb,1,MPI_INT,i+s,tag,MPI_COMM_WORLD);
if(i >= s) /* every one receives, except first s ones */
{

MPI_Recv(&b,1,MPI_INT,i-s,tag,MPI_COMM_WORLD,&status);
nb += b; /* add received value to current number */

}
MPI_Barrier(MPI_COMM_WORLD); /* synchronize computations */
if(i < s)

printf("At step %d, node %d has number %d.\n",j+1,i,nb);
else

printf("At step %d, Node %d has number %d = %d + %d.\n",
j+1,i,nb,nb-b,b);

s *= 2; /* double the shift */
}
if(i == p-1) printf("The total sum is %d.\n",nb);

MPI_Finalize();
return 0;

}

Running the code prints the following to screen:

$ mpirun -np 8 /tmp/prefix_sum
At step 1, node 0 has number 1.
At step 1, Node 1 has number 3 = 2 + 1.
At step 1, Node 2 has number 5 = 3 + 2.
At step 1, Node 3 has number 7 = 4 + 3.
At step 1, Node 7 has number 15 = 8 + 7.
At step 1, Node 4 has number 9 = 5 + 4.
At step 1, Node 5 has number 11 = 6 + 5.
At step 1, Node 6 has number 13 = 7 + 6.
At step 2, node 0 has number 1.
At step 2, node 1 has number 3.
At step 2, Node 2 has number 6 = 5 + 1.
At step 2, Node 3 has number 10 = 7 + 3.

(continues on next page)

238 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

At step 2, Node 4 has number 14 = 9 + 5.
At step 2, Node 5 has number 18 = 11 + 7.
At step 2, Node 6 has number 22 = 13 + 9.
At step 2, Node 7 has number 26 = 15 + 11.
At step 3, node 0 has number 1.
At step 3, node 1 has number 3.
At step 3, node 2 has number 6.
At step 3, node 3 has number 10.
At step 3, Node 4 has number 15 = 14 + 1.
At step 3, Node 5 has number 21 = 18 + 3.
At step 3, Node 6 has number 28 = 22 + 6.
At step 3, Node 7 has number 36 = 26 + 10.
The total sum is 36.

6.4.3 Brent’s Theorem

PRAM stands for Parallel Random Access Machine The PRAM model is an idealized construct.

• It assumes any number of processors can access any items in memory instantly.

• An operation takes one unit time.

The PRAM model helps to derive bounds on the theoretical time of a parallel algorithm.

Brent’s theorem

Assume

1. a parallel computer where each processor can perform an arithmetic operation in unit time; and

2. the computer has exactly enough processors to exploit the maximum concurrency in an algorithm with 𝑁
operations, such that 𝑇 time steps suffice,

then a computer with 𝑃 processors can perform the algorithm in time

𝑇𝑃 ≤ 𝑇 +
𝑁 − 𝑇

𝑃
,

where 𝑃 is less than or equal to the number of processors needed to exploit the maximum concurrency in the
algorithm.

As an application of Brent’s theorem, we look at parallel summation. Consider the sum of 𝑛 numbers.

If 𝑛 = 2𝑇 , then the PRAM can do the sum in 𝑇 steps.

If the PRAM has 𝑃 processors and 𝑃 ≤ 𝑛/2, then

𝑇𝑃 ≤ ⌈log2(𝑛)⌉ +
(𝑛− 1) − log2(𝑛)

𝑃
,

where 𝑇𝑃 is the execution time with 𝑃 processors.

Typically, the number of processors is fixed, and then we want to find the best size 𝑛 of the problem so the theoretical
bounds on the execution time are within reach.

6.4. Barriers for Synchronizations 239

Introduction to Supercomputing, Release 1.2.5

6.4.4 Bibliography

1. R. P. Brent: The parallel evaluation of general arithmetic expressions. Journal of the ACM 12(2): 201-206,
1974.

2. John Gustafson: Brent’s Theorem. In Enclopedia of Parallel Computing, edited by David Padua, pages 182-
185, Springer 2011.

3. W. Daniel Hillis and Guy L. Steele. Data Parallel Algorithms. Communications of the ACM, vol. 29, no. 12,
pages 1170-1183, 1986.

6.4.5 Exercises

1. Does the hypercube topology support a butterfly barrier? If not, explain with an example. Otherwise, show that
the hypercube topology has sufficiently many connections for a butterfly barrier.

2. Write code using MPI_sendrecv for a butterfly barrier. Show that your code works for 𝑝 = 8.

3. Rewrite prefix_sum.c using MPI_sendrecv.

4. Consider the composite trapezoidal rule for the approximation of 𝜋 (see lecture 13), doubling the number of inter-
vals in each step. Can you apply the prefix sum algorithm so that at the end, processor 𝑖 holds the approximation
for 𝜋 with 2𝑖 intervals?

6.5 Parallel Iterative Methods for Linear Systems

We consider the method of Jacobi and introduce the MPI_Allgather command for the synchronization of the iterations.
In the analysis of the communication and the computation cost, we determine the optimal value for the number of
processors which minimizes the total cost.

6.5.1 Jacobi Iterations

We derive the formulas for Jacobi’s method, starting from a fixed point formula. We want to solve 𝐴x = b for A an
n-by-n matrix, and b an n-dimensional vector, for very large n. Consider 𝐴 = 𝐿 + 𝐷 + 𝑈 , where

• 𝐿 = [ℓ𝑖,𝑗], ℓ𝑖,𝑗 = 𝑎𝑖,𝑗 , 𝑖 > 𝑗, ℓ𝑖,𝑗 = 0, 𝑖 ≤ 𝑗. L is lower triangular.

• 𝐷 = [𝑑𝑖,𝑗], 𝑑𝑖,𝑖 = 𝑎𝑖,𝑖 ̸= 0, 𝑑𝑖,𝑗 = 0, 𝑖 ̸= 𝑗. D is diagonal.

• 𝑈 = [𝑢𝑖,𝑗], 𝑢𝑖,𝑗 = 𝑎𝑖,𝑗 , 𝑖 < 𝑗, 𝑢𝑖,𝑗 = 0, 𝑖 ≥ 𝑗. U is upper triangular.

Then we rewrite 𝐴x = b as

𝐴x = b ⇔ (𝐿 + 𝐷 + 𝑈)x = b
⇔ 𝐷x = b− 𝐿x− 𝑈x
⇔ 𝐷x = 𝐷x + b− 𝐿x− 𝑈x−𝐷x
⇔ 𝐷x = 𝐷x + b−𝐴x
⇔ x = x + 𝐷−1(b−𝐴x).

The fixed point formulax = x+𝐷−1(b−𝐴x) is well defined if 𝑎𝑖,𝑖 ̸= 0. The fixed point formulax = x+𝐷−1(b−𝐴x)
leads to

x(𝑘+1) = x(𝑘) + 𝐷−1
(︁
b−𝐴x(𝑘)

)︁
⏟ ⏞

Δx

, 𝑘 = 0, 1, . . .

Writing the formula as an algorithm:

240 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Input: A, b, x(0), eps, N.
Output: x(k), k is the number of iterations done.

for k from 1 to N do
dx := D**(-1) (b - A x(k))
x(k+1) := x(k) + dx
exit when (norm(dx) <= eps)

Counting the number of operations in the algorithm above, we have a cost of 𝑂(𝑁𝑛2), 𝑂(𝑛2) for 𝐴x(𝑘), if 𝐴 is dense.

Convergence of the Jacobi method

The Jacobi method converges for strictly row-wise or column-wise diagonally dominant matrices, i.e.: if

|𝑎𝑖,𝑖| >
∑︁
𝑗 ̸=𝑖

|𝑎𝑖,𝑗 | or |𝑎𝑖,𝑖| >
∑︁
𝑗 ̸=𝑖

|𝑎𝑗,𝑖|, 𝑖 = 1, 2, . . . , 𝑛.

To run the code above with 𝑝 processors:

• The 𝑛 rows of 𝐴 are distributed evenly (e.g.: 𝑝 = 4):

𝐷 ⋆

⎡⎢⎢⎣
∆x[0]

∆x[1]

∆x[2]

∆x[3]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b[0]

b[1]

b[2]

b[3]

⎤⎥⎥⎦−

⎡⎢⎢⎣
𝐴[0,0] 𝐴[0,1] 𝐴[0,2] 𝐴[0,3]

𝐴[1,0] 𝐴[1,1] 𝐴[1,2] 𝐴[1,3]

𝐴[2,0] 𝐴[2,1] 𝐴[2,2] 𝐴[2,3]

𝐴[3,0] 𝐴[3,1] 𝐴[3,2] 𝐴[3,3]

⎤⎥⎥⎦ ⋆

⎡⎢⎢⎣
x[0],(𝑘)

x[1],(𝑘)

x[2],(𝑘)

x[3],(𝑘)

⎤⎥⎥⎦
• Synchronization is needed for $(|| Delta {bf x} || leq epsilon)$.

For || · ||, use ||∆x||1 = |∆𝑥1| + |∆𝑥2| + · · · + |∆𝑥𝑛|, the butterfly synchronizations are displayed in Fig. 6.22.

Fig. 6.22: Butterfly synchronization of a parallel Jacobi iteration with 4 processors.

6.5. Parallel Iterative Methods for Linear Systems 241

Introduction to Supercomputing, Release 1.2.5

The communication stages are as follows. At the start, every node must have x(0), 𝜖, 𝑁 , a number of rows of 𝐴 and the
corresponding part of the right hand side b. After each update 𝑛/𝑝 elements of x(𝑘+1) must be scattered. The butterfly
synchronization takes log2(𝑝) steps. The scattering of x(𝑘+1) can coincide with the butterfly synchronization. The
computation effort: 𝑂(𝑛2/𝑝) in each stage.

6.5.2 A Parallel Implementation with MPI

For dimension 𝑛, we consider the diagonally dominant system:⎡⎢⎢⎢⎣
𝑛 + 1 1 · · · 1

1 𝑛 + 1 · · · 1
...

...
. . .

...
1 1 · · · 𝑛 + 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑥1

𝑥2

...
𝑥𝑛

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
2𝑛
2𝑛
...

2𝑛

⎤⎥⎥⎥⎦ .

The exact solution is x: for 𝑖 = 1, 2, . . . , 𝑛, 𝑥𝑖 = 1. We start the Jacobi iteration method at x(0) = 0. The parameters
are 𝜖 = 10−4 and 𝑁 = 2𝑛2. A session where we run the program displays on screen the following:

$ time /tmp/jacobi 1000
0 : 1.998e+03
1 : 1.994e+03

...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05

real 0m42.411s
user 0m42.377s
sys 0m0.028s

C code to run Jacobi iterations is below.

void run_jacobi_method
(int n, double **A, double *b, double epsilon, int maxit, int *numit, double *x);
/*
* Runs the Jacobi method for A*x = b.
*
* ON ENTRY :
* n the dimension of the system;
* A an n-by-n matrix A[i][i] /= 0;
* b an n-dimensional vector;
* epsilon accuracy requirement;
* maxit maximal number of iterations;
* x start vector for the iteration.
*
* ON RETURN :
* numit number of iterations used;
* x approximate solution to A*x = b. */

void run_jacobi_method
(int n, double **A, double *b, double epsilon, int maxit, int *numit, double *x)
{

(continues on next page)

242 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

double *dx,*y;
dx = (double*) calloc(n,sizeof(double));
y = (double*) calloc(n,sizeof(double));
int i,j,k;

for(k=0; k<maxit; k++)
{

double sum = 0.0;
for(i=0; i<n; i++)
{

dx[i] = b[i];
for(j=0; j<n; j++)

dx[i] -= A[i][j]*x[j];
dx[i] /= A[i][i];
y[i] += dx[i];
sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);

}
for(i=0; i<n; i++) x[i] = y[i];
printf("%3d : %.3e\n",k,sum);
if(sum <= epsilon) break;

}
*numit = k+1;
free(dx); free(y);

}

6.5.3 Gather-to-All with MPI_Allgather

Gathering the four elements of a vector to four processors is schematically depicted in Fig. 6.23.

Fig. 6.23: Gathering 4 elements to 4 processors.

The syntax of the MPI gather-to-all command is

MPI_Allgather(sendbuf,sendcount,sendtype,
recvbuf,recvcount,recvtype,comm)

where the parameters are in Table 6.6.

6.5. Parallel Iterative Methods for Linear Systems 243

Introduction to Supercomputing, Release 1.2.5

Table 6.6: The parameters of MPI_Allgather.

parameter description
sendbuf starting address of send buffer
sendcount number of elements in send buffer
sendtype data type of send buffer elements
recvbuf address of receive buffer
recvcount number of elements received from any process
recvtype data type of receive buffer elements
comm communicator

A program that implements the situation as in Fig. 6.23 will print the following to screen:

$ mpirun -np 4 /tmp/use_allgather
data at node 0 : 1 0 0 0
data at node 1 : 0 2 0 0
data at node 2 : 0 0 3 0
data at node 3 : 0 0 0 4
data at node 3 : 1 2 3 4
data at node 0 : 1 2 3 4
data at node 1 : 1 2 3 4
data at node 2 : 1 2 3 4
$

The code of the program use_allgather.c is below:

int i,j,p;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&i);
MPI_Comm_size(MPI_COMM_WORLD,&p);
{

int data[p];
for(j=0; j<p; j++) data[j] = 0;
data[i] = i + 1;
printf("data at node %d :",i);
for(j=0; j<p; j++) printf(" %d",data[j]); printf("\n");
MPI_Allgather(&data[i],1,MPI_INT,data,1,MPI_INT,MPI_COMM_WORLD);
printf("data at node %d :",i);
for(j=0; j<p; j++) printf(" %d",data[j]); printf("\n");

}

Applying the MPI_Allgather to a parallel version of the Jacobi method shows the following on screen:

$ time mpirun -np 10 /tmp/jacobi_mpi 1000
...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05

real 0m5.617s
user 0m45.711s
sys 0m0.883s

244 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Recall that the wall clock time of the run with the sequential program equals 42.411.s. The speedup is thus 42.411/
5.617 = 7.550. Code for the parallel run_jacobi_method is below.

void run_jacobi_method
(int id, int p, int n, double **A, double *b, double epsilon, int maxit, int *numit,␣
→˓double *x)
{

double *dx,*y;
dx = (double*) calloc(n,sizeof(double));
y = (double*) calloc(n,sizeof(double));
int i,j,k;
double sum[p];
double total;
int dnp = n/p;
int istart = id*dnp;
int istop = istart + dnp;
for(k=0; k<maxit; k++)
{

sum[id] = 0.0;
for(i=istart; i<istop; i++)
{

dx[i] = b[i];
for(j=0; j<n; j++)

dx[i] -= A[i][j]*x[j];
dx[i] /= A[i][i];
y[i] += dx[i];
sum[id] += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);

}
for(i=istart; i<istop; i++) x[i] = y[i];
MPI_Allgather(&x[istart],dnp,MPI_DOUBLE,x,dnp,MPI_DOUBLE,MPI_COMM_WORLD);
MPI_Allgather(&sum[id],1,MPI_DOUBLE,sum,1,MPI_DOUBLE,MPI_COMM_WORLD);
total = 0.0;
for(i=0; i<p; i++) total += sum[i];
if(id == 0) printf("%3d : %.3e\n",k,total);
if(total <= epsilon) break;

}
*numit = k+1;
free(dx);

}

Let us do an analysis of the computation and communication cost. Computing x(𝑘+1) := x(𝑘) + 𝐷−1(b − 𝐴x(𝑘))
with p processors costs

𝑡comp =
𝑛(2𝑛 + 3)

𝑝
.

We count 2𝑛 + 3 operations because of

• one − and one ⋆ when running over the columns of 𝐴; and

• one /, one + for the update and one + for the || · ||1.

The communication cost is

𝑡comm = 𝑝

(︂
𝑡startup +

𝑛

𝑝
𝑡data

)︂
.

6.5. Parallel Iterative Methods for Linear Systems 245

Introduction to Supercomputing, Release 1.2.5

In the examples, the time unit is the cost of one arithmetical operation. Then the costs 𝑡startup and 𝑡data are multiples
of this unit.

Finding the p with the minimum total cost is illustrated in Fig. 6.24 and Fig. 6.25.

Fig. 6.24: With increasing p, the (red) computation cost decreases, while the (blue) communication cost increases. The
minimum of the (black) total cost is the optimal value for p.

In Fig. 6.24, the communication, computation, and total cost is shown for p ranging from 2 to 32, for one iteration, with
𝑛 = 1, 000, 𝑡startup = 10, 000, and 𝑡data = 50. We see that the total cost starts to increase once p becomes larger than
16. For a larger dimension, after a ten-fold increase, 𝑛 = 10, 000, 𝑡startup = 10, 000, and 𝑡data = 50, the scalability
improves, as in Fig. 6.25, p ranges from 16 to 256.

6.5.4 Strip Partitioning and Reduce Barriers in Julia

If the dimension of the matrix is a multiple of the number of threads, for some matrix A and vectors x, y:

nt = nthreads()
size = 10
dim = nt*size

@threads for i=1:nt
tdx = threadid()

(continues on next page)

246 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.25: With increasing p, the (red) computation cost decreases, while the (blue) communication cost increases. The
minimum of the (black) total cost is the optimal value for p.

6.5. Parallel Iterative Methods for Linear Systems 247

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

idxstart = 1 + (tdx-1)*size
idxend = tdx*size
@inbounds y[idxstart:idxend] = A[idxstart:idxend, :]*x

end

Reduce barriers are provided by the package SyncBarriers in Julia, and can be applied as illustrated below.

using Base.Threads
using SyncBarriers

nt = nthreads()
nb = [k for k=1:nt]
barrier = reduce_barrier(+, Int, nt)
s = 0
@threads for i=1:nt

tdx = threadid()
global s = reduce!(barrier[tdx], nb[tdx])

end
println("The sum of ", nb, " is ", s, ".")

The output of julia -t 4 mtreduce.jl is

The sum of [1, 2, 3, 4] is 10.

In a multithreaded Jacobi method, with p threads:

1. The i-th thread

1. computes the i-th strip of the update ∆x𝑖,

2. updates the i-th strip of x𝑖 with ∆x𝑖,

3. computes the norm of the i-th update ‖∆x𝑖‖.

2. Given (‖∆x1‖, ‖∆x2‖, . . . , ‖∆x𝑝‖), a reduce barrier computes

‖∆x‖1 = ‖∆x1‖ + ‖∆x2‖ + · · · + ‖∆x𝑝‖

and that ‖∆x‖1 is used by every thread.

The full Julia program mtjacobi.jl is posted at the course web site.

The output of three runs on pascal are below.

time julia -t 2 mtjacobi.jl 8000
number of iterations : 40
the error : 1.9681077347290746e-5

real 0m15.390s
user 11m35.441s
sys 4m51.916s
$ time julia -t 4 mtjacobi.jl 8000
number of iterations : 20
the error : 2.3621495916454325e-5

real 0m5.400s
(continues on next page)

248 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

user 2m13.138s
sys 1m18.059s
$ time julia -t 8 mtjacobi.jl 8000
number of iterations : 39
the error : 1.7918058060438385e-5

real 0m5.400s
user 2m10.425s
sys 1m13.413s

We covered section 6.3.1 in the book of Wilkinson and Allen. Because of its slow convergence, the Jacobi method is
seldomly used.

6.5.5 Exercises

1. Use mpi4py or MPI.jl for the parallel Jacobi method. Compare with the C version to demonstrate the correctness.

2. Use OpenMP to write a parallel version of the Jacobi method. Do you observe a better speedup than with MPI?

3. The power method to compute the largest eigenvalue of a matrix A uses the formulas

y := 𝐴x(𝑘) and x(𝑘+1) := y/||y||.

Describe a parallel implementation of the power method.

4. Consider the formula for the total cost of the Jacobi method for an n-dimensional linear system with p processors.
Derive an analytic expression for the optimal value of p. What does this expression tell about the scalability?

6.6 Domain Decomposition Methods

THe method of Jacobi is an interative method which is not in place: we do not overwrite the current solution with
new components as soon as these become available. In contrast, the method of Gauss-Seidel does update the current
solution with newly computed components of the solution as soon as these are computed.

Domain decomposition methods to solve partial differential equations are another important class of synchronized
parallel computations, explaining the origin for the need to solve large linear systems. This chapter ends with an
introduction to the software PETSc, the Portable, Extensible Toolkit for Scientific Computation.

6.6.1 Gauss-Seidel Relaxation

The method of Gauss-Seidel is an iterative method for solving linear systems. We want to solve 𝐴x = b for a very
large dimension n. Writing the method of Jacobi componentwise:

𝑥
(𝑘+1)
𝑖 := 𝑥

(𝑘)
𝑖 +

1

𝑎𝑖,𝑖

⎛⎝𝑏𝑖 −
𝑛∑︁

𝑗=1

𝑎𝑖,𝑗𝑥
(𝑘)
𝑗

⎞⎠ , 𝑖 = 1, 2, . . . , 𝑛

We observe that we can already use 𝑥(𝑘+1)
𝑗 for 𝑗 < 𝑖. This leads to the following formulas

𝑥
(𝑘+1)
𝑖 := 𝑥

(𝑘)
𝑖 +

1

𝑎𝑖,𝑖

⎛⎝𝑏𝑖 −
𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗𝑥
(𝑘+1)
𝑗 −

𝑛∑︁
𝑗=𝑖

𝑎𝑖,𝑗𝑥
(𝑘)
𝑗

⎞⎠ , 𝑖 = 1, 2, . . . , 𝑛.

6.6. Domain Decomposition Methods 249

Introduction to Supercomputing, Release 1.2.5

The method of Gauss-Seidel is an in-place method: old values are overwritten by new ones as soon as computed. In
translating the formulas, we end up with two loops:

for 𝑗 from 1 to 𝑖− 1 do ∆𝑥𝑖 := ∆𝑥𝑖 − 𝑎𝑖,𝑗𝑥
(𝑘+1)
𝑗

for 𝑗 from 𝑖 to 𝑛 do ∆𝑥𝑖 := ∆𝑥𝑖 − 𝑎𝑖,𝑗𝑥
(𝑘)
𝑗

The two loops are fused into one loop as done below:

for 𝑗 from 1 to 𝑛 do ∆𝑥𝑖 := ∆𝑥𝑖 − 𝑎𝑖,𝑗𝑥𝑗

C code for the Gauss-Seidel method is below.

void run_gauss_seidel_method
(int n, double **A, double *b, double epsilon, int maxit, int *numit, double *x)
/*
* Runs the method of Gauss-Seidel for A*x = b.
*
* ON ENTRY :
* n the dimension of the system;
* A an n-by-n matrix A[i][i] /= 0;
* b an n-dimensional vector;
* epsilon accuracy requirement;
* maxit maximal number of iterations;
* x start vector for the iteration.
*
* ON RETURN :
* numit number of iterations used;
* x approximate solution to A*x = b. */
{

double *dx = (double*) calloc(n,sizeof(double));
int i,j,k;
for(k=0; k<maxit; k++)
{

double sum = 0.0;
for(i=0; i<n; i++)
{

dx[i] = b[i];
for(j=0; j<n; j++)

dx[i] -= A[i][j]*x[j];
dx[i] /= A[i][i]; x[i] += dx[i];
sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);

}
printf("%4d : %.3e\n",k,sum);
if(sum <= epsilon) break;

}
*numit = k+1; free(dx);

}

Running on the same example as in the previous chapter goes much faster:

$ time /tmp/gauss_seidel 1000
0 : 1.264e+03
1 : 3.831e+02
2 : 6.379e+01

(continues on next page)

250 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

3 : 1.394e+01
4 : 3.109e+00
5 : 5.800e-01
6 : 1.524e-01
7 : 2.521e-02
8 : 7.344e-03
9 : 1.146e-03
10 : 3.465e-04
11 : 5.419e-05

computed 12 iterations <----- 8407 with Jacobi
error : 1.477e-05

real 0m0.069s <----- 0m42.411s
user 0m0.063s <----- 0m42.377s
sys 0m0.005s <----- 0m0.028s

6.6.2 Parallel Gauss-Seidel with OpenMP

The method of Jacobi is suitable for strip partitioning of the (dense) matrix and in a parallel distributed memory
implementation, every processor can keep its own portion of the solution vector x. The Gauss-Seidel method makes
the new 𝑥𝑖 directly available which leads to communication overhead on distributed memory computers.

In a parallel shared memory implementation, consider:

1. Threads compute inner products of matrix rows with x.

2. Each ∆𝑥𝑖 is updated in a critical section.

So, many threads compute one inner product. For example, three threads, assuming 𝑛 is divisible by 3, compute:

[︂
𝑎𝑖,1 · · · 𝑎𝑖,𝑛/3

⃒⃒⃒⃒
𝑎𝑖,𝑛/3+1 · · · 𝑎𝑖,2𝑛/3

⃒⃒⃒⃒
𝑎𝑖,2𝑛/3+1 · · · 𝑎𝑖,𝑛

]︂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

...
𝑥𝑛/3

𝑥𝑛/3+1

...
𝑥2𝑛/3

𝑥2𝑛/3+1

...
𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Each thread has its own variable to accumulate its portion of the inner product.

Using p threads:

void run_gauss_seidel_method
(int p, int n, double **A, double *b, double epsilon, int maxit, int *numit, double *x␣
→˓)
{

double *dx;
dx = (double*) calloc(n,sizeof(double));
int i,j,k,id,jstart,jstop;

(continues on next page)

6.6. Domain Decomposition Methods 251

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int dnp = n/p;
double dxi;

for(k=0; k<maxit; k++)
{

double sum = 0.0;
for(i=0; i<n; i++)
{

dx[i] = b[i];
#pragma omp parallel shared(A,x) private(id,j,jstart,jstop,dxi)
{

id = omp_get_thread_num();
jstart = id*dnp;
jstop = jstart + dnp;
dxi = 0.0;
for(j=jstart; j<jstop; j++)

dxi += A[i][j]*x[j];
#pragma omp critical

dx[i] -= dxi;
}
dx[i] /= A[i][i];
x[i] += dx[i];
sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);

}
printf("%4d : %.3e\n",k,sum);
if(sum <= epsilon) break;

}
*numit = k+1;
free(dx);

}

The update instructions

dx[i] /= A[i][i];
x[i] += dx[i];
sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);

are executed after each parallel region. This ensures the synchronization and the execution of the stop test:

if(sum <= epsilon) break;

Observe that although the entire matrix A is shared between all threads, each threads needs only n/p columns of the
matrix. In the MPI version of the method of Jacobi, entire rows of the matrix were distributed among the processors.
If we were to make a distributed memory version of the OpenMP code, then we would distribute entire columns of the
matrix A over the processors.

Running times obtained via the command time on a 12-core Intel X5690 at 3.47 GHz, are in Table 6.7.

252 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Table 6.7: Times of a parallel Gauss-Seidel with OpenMP

p n real user sys speedup
1 10,000 7.165s 6.921s 0.242s

20,000 28.978s 27.914s 1.060s
30,000 1m 6.491s 1m 4.139s 2.341s

2 10,000 4.243s 7.621s 0.310s 1.689
20,000 16.325s 29.556s 1.066s 1.775
30,000 36.847s 1m 6.831s 2.324s 1.805

5 10,000 2.415s 9.440s 0.420s 2.967
20,000 8.403s 32.730s 1.218s 3.449
30,000 18.240s 1m 11.031s 2.327s 3.645

10 10,000 2.173s 16.241s 0.501s 3.297
20,000 6.524s 45.629s 1.521s 4.442
30,000 13.273s 1m 29.687s 2.849s 5.010

6.6.3 Solving the Heat Equation

We will be applying a time stepping method to the heat or diffusion equation:

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=

𝜕𝑢

𝜕𝑡

models the temperature distribution 𝑢(𝑥, 𝑦, 𝑡) evolving in time 𝑡 for (𝑥, 𝑦) in some domain.

Related Partial Differential Equations (PDEs) are

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 and

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦),

respectively called the Laplace and Poisson equations.

For the discretization of the derivatives, consider that at a point (𝑥0, 𝑦0, 𝑡0), we have

𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑦0,𝑡0)

= lim
ℎ→0

𝑢(𝑥0 + ℎ, 𝑦0, 𝑡0) − 𝑢(𝑥0, 𝑦0, ℎ)

ℎ⏟ ⏞
𝑢𝑥(𝑥0,𝑦0,𝑡0)

so for positive ℎ ≈ 0, 𝑢𝑥(𝑥0, 𝑦0, 𝑡0) ≈ 𝜕𝑢

𝜕𝑥

⃒⃒⃒⃒
(𝑥0,𝑦0,𝑡0)

.

For the second derivative we use the finite difference 𝑢𝑥𝑥(𝑥0, 𝑦0, 𝑡0)

=
1

ℎ

(︂
𝑢(𝑥0 + ℎ, 𝑦0, 𝑡0) − 𝑢(𝑥0, 𝑦0, 𝑡0)

ℎ
− 𝑢(𝑥0, 𝑦0, 𝑡0) − 𝑢(𝑥0 − ℎ, 𝑦0, 𝑡0)

ℎ

)︂
=

𝑢(𝑥0 + ℎ, 𝑦0, 𝑡0) − 2𝑢(𝑥0, 𝑦0, 𝑡0) + 𝑢(𝑥0 − ℎ, 𝑦0, 𝑡0)

ℎ2
.

Time stepping is then done along the formulas:`

𝑢𝑡(𝑥0, 𝑦0, 𝑡0) =
𝑢(𝑥0, 𝑦0, 𝑡0 + ℎ) − 𝑢(𝑥0, 𝑦0, 𝑡0)

ℎ

𝑢𝑥𝑥(𝑥0, 𝑦0, 𝑡0) =
𝑢(𝑥0 + ℎ, 𝑦0, 𝑡0) − 2𝑢(𝑥0, 𝑦0, 𝑡0) + 𝑢(𝑥0 − ℎ, 𝑦0, 𝑡0)

ℎ2

𝑢𝑦𝑦(𝑥0, 𝑦0, 𝑡0) =
𝑢(𝑥0, 𝑦0 + ℎ, 𝑡0) − 2𝑢(𝑥0, 𝑦0, 𝑡0) + 𝑢(𝑥0, 𝑦0 − ℎ, 𝑡0)

ℎ2

6.6. Domain Decomposition Methods 253

Introduction to Supercomputing, Release 1.2.5

Then the equation
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
becomes

𝑢(𝑥0, 𝑦0, 𝑡0 + ℎ) = 𝑢(𝑥0, 𝑦0, 𝑡0)

+
1

ℎ
[𝑢(𝑥0 + ℎ, 𝑦0, 𝑡0) + 𝑢(𝑥0 − ℎ, 𝑦0, 𝑡0)

+ 𝑢(𝑥0, 𝑦0 + ℎ, 𝑡0) + 𝑢(𝑥0, 𝑦0 − ℎ, 𝑡0) − 4𝑢(𝑥0, 𝑦0, 𝑡0)]

Locally, the error of this approximation is 𝑂(ℎ2).

The algorithm performs synchronous iterations on a grid. For (𝑥, 𝑦) ∈ [0, 1] × [0, 1], the division of [0, 1] in n equal
subintervals, with ℎ = 1/𝑛, leads to a grid (𝑥𝑖 = 𝑖ℎ, 𝑦𝑗 = 𝑗ℎ), for 𝑖 = 0, 1, . . . , 𝑛 and 𝑗 = 0, 1, . . . , 𝑛. For t, we use
the same step size h: 𝑡𝑘 = 𝑘ℎ. Denote 𝑢(𝑘)

𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘), then

𝑢
(𝑘+1)
𝑖,𝑗 = 𝑢

(𝑘)
𝑖,𝑗 +

1

ℎ

[︁
𝑢
(𝑘)
𝑖+1,𝑗 + 𝑢

(𝑘)
𝑖−1,𝑗 + 𝑢

(𝑘)
𝑖,𝑗+1 + 𝑢

(𝑘)
𝑖,𝑗−1 − 4𝑢

(𝑘)
𝑖,𝑗

]︁
.

Fig. 6.26 shows the labeling of the grid points.

Fig. 6.26: In every step, we update 𝑢𝑖,𝑗 based on 𝑢𝑖−1,𝑗 , 𝑢𝑖+1,𝑗 , 𝑢𝑖,𝑗−1, and 𝑢𝑖,𝑗+1.

We divide the grid in red and black points, as in Fig. 6.27.

Fig. 6.27: Organization of the grid 𝑢𝑖,𝑗 in red and black points.

The computation is organized in two phases:

1. In the first phase, update all black points simultaneously; and then

2. in the second phase, update all red points simultaneously.

254 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

We can decompose a domain in strips, but then there are n/p boundaries that must be shared. To reduce the overlap-
ping, we partition in squares, as shown in Fig. 6.28.

Fig. 6.28: Partitioning of the grid in squares.

Then the boundary elements are proportional to 𝑛/
√
𝑝.

In Fig. 6.28, two rows and two columns are shared between two partitions. To reduce the number of shared rows and
columns to one, we can take an odd number of rows and columns. In the example of Fig. 6.28, instead of 12 rows
and columns, we could take 11 or 13 rows and columns. Then only the middle row and column is shared between the
partitions.

Comparing communication costs, we make the following observations. In a square partition, every square has 4 edges,
whereas a strip has only 2 edges. For the communication cost, we multiply by 2 because for every send there is a
receive. Comparing the communication cost for a strip partitioning

𝑡stripcomm = 4 (𝑡startup + 𝑛𝑡data)

to the communication cost for a square partitioning (for 𝑝 ≥ 9):

𝑡squarecomm = 8

(︂
𝑡startup +

𝑛
√
𝑝
𝑡data

)︂
.

A strip partition is best if the startup time is large and if we have only very few processors.

If the startup time is low, and for 𝑝 ≥ 4, a square partition starts to look better.

This subsection ends with some numerical considerations. The discretization of the heat equation is the simplest one.

• The explicit forward difference method is conditionally stable: in order for the method to converge, the step size
in time depends on the step size in space.

• Methods that are unconditionally stable are implicit and require the solving of a linear system in each time step.

6.6. Domain Decomposition Methods 255

Introduction to Supercomputing, Release 1.2.5

6.6.4 Solving the Heat Equation with PETSc

The acronym PETSc stands for Portable, Extensible Toolkit for Scientific Computation. PETSc provides data structures
and routines for large-scale application codes on parallel (and serial) computers, using MPI. It supports Fortran, C, C++,
Python, and MATLAB (serial) and is free and open source, available at <https://petsc.org>.

6.6.5 Bibliography

1. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. Curfman McInnes,
B. Smith, and H. Zhang. PETSc Users Manual. Revision 3.2. Mathematics and Computer Science Division,
Argonne National Laboratory, September 2011.

2. Ronald F. Boisvert, L. A. Drummond, Osni A. Marques: Introduction to the special issue on the Advanced
CompuTational Software (ACTS) collection. ACM TOMS 31(3):281–281, 2005. Special issue on the Advanced
CompuTational Software (ACTS) Collection.

6.6.6 Exercises

1. Take the running times of the OpenMP version of the method of Gauss-Seidel and compute the efficiency for
each of the 9 cases. What can you conclude about the scalability?

2. Use MPI to write a parallel version of the method of Gauss-Seidel. Compare the speedups with the OpenMP
version.

3. Run an example of the PETSc tutorials collection with an increasing number of processes to investigate the
speedup.

4. Cellular automata (e.g.: Conway’s game of life) are synchronized computations. Discuss a parallel implementa-
tion of Conway’s game of life and illustrate your discussion with a computation.

6.7 Memory Coalescing Techniques

To take full advantage of the high memory bandwidth of the GPU, the reading from global memory must also run in
parallel. We consider memory coalescing techniques to organize the execution of load instructions by a warp.

6.7.1 Accessing Global and Shared Memory

Accessing data in the global memory is critical to the performance of a CUDA application. In addition to tiling
techniques utilizing shared memories we discuss memory coalescing techniques to move data efficiently from global
memory into shared memory and registers. Global memory is implemented with dynamic random access memories
(DRAMs). Reading one DRAM is a very slow process.

Modern DRAMs use a parallel process: Each time a location is accessed, many consecutive locations that includes
the requested location are accessed. If an application uses data from consecutive locations before moving on to other
locations, the DRAMs work close to the advertised peak global memory bandwidth.

Recall that all threads in a warp execute the same instruction. When all threads in a warp execute a load instruction, the
hardware detects whether the threads access consecutive memory locations. The most favorable global memory access
is achieved when the same instruction for all threads in a warp accesses global memory locations. In this favorable
case, the hardware coalesces all memory accesses into a consolidated access to consecutive DRAM locations.

256 Chapter 6. Pipelining and Synchronized Computations

https://petsc.org

Introduction to Supercomputing, Release 1.2.5

definition of memory coalescing

If, in a warp, thread 0 accesses location 𝑛, thread 1 accesses location 𝑛 + 1, . . . thread 31 accesses location 𝑛 + 31,
then all these accesses are coalesced, that is: combined into one single access.

The CUDA C Best Practices Guide gives a high priority recommendation to coalesced access to global memory. An
example is shown in Fig. 6.29, extracted from Figure G-1 of the NVIDIA Programming Guide.

Fig. 6.29: An example of a global memory access by a warp.

More recent examples from the 2016 NVIDIA Programming guide are in Fig. 6.30 and Fig. 6.31.

Fig. 6.30: An example of aligned memory access by a ward.

In /usr/local/cuda/include/vector_types.h we find the definition of the type double2 as

6.7. Memory Coalescing Techniques 257

Introduction to Supercomputing, Release 1.2.5

Fig. 6.31: An example of mis-aligned memory access by a ward.

struct __device_builtin__ __builtin_align__(16) double2
{

double x, y;
};

The __align__(16) causes the doubles in double2 to be 16-byte or 128-bit aligned. Using the double2 type for the
real and imaginary part of a complex number allows for coalesced memory access.

With a simple copy kernel we can explore what happens when access to global memory is misaligned:

__global__ void copyKernel
(float *output, float *input, int offset)
{

int i = blockIdx.x*blockDim.x + threadIdx.x + offset;
output[i] = input[i];

}

The bandwidth will decrease significantly for offset > 1.

Shared memory has 32 banks that are organized such that successive 32-bit words are assigned to successive banks,
i.e.: interleaved. The bandwidth of shared memory is 32 bits per bank per clock cycle. Because shared memory is on
chip, uncached shared memory latency is roughly 100 times slower than global memory.

definition of bank conflict

A bank conflict occurs if two or more threads access any bytes within different 32-bit words belonging to the same
bank.

If two or more threads access any bytes within the same 32-bit word, then there is no bank conflict between these threads.
The CUDA C Best Practices Guide gives a medium priority recommendation to shared memory access without bank
conflicts.

Memory accesses are illustrated in Fig. 6.32 and Fig. 6.33.

258 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.32: Examples of strided shared memory accesses, copied from Figure G-2 of the NVIDIA Programming Guide.

6.7. Memory Coalescing Techniques 259

Introduction to Supercomputing, Release 1.2.5

Fig. 6.33: Irregular and colliding shared memory accesses, is Figure G-3 of the NVIDIA Programming Guide.

260 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

6.7.2 Memory Coalescing Techniques

Consider two ways of accessing the elements in a matrix:

• elements are accessed row after row; or

• elements are accessed column after column.

These two ways are shown in Fig. 6.34.

Fig. 6.34: Two ways of accessing elements in a matrix.

Recall the linear address system to store a matrix. In C, the matrix is stored row wise as a one dimensional array, see
Fig. 4.12.

Threads 𝑡0, 𝑡1, 𝑡2, and 𝑡3 access the elements on the first two columns, as shown in Fig. 6.35.

Four threads 𝑡0, 𝑡1, 𝑡2, and 𝑡3 access elements on the first two rows, as shown in Fig. 6.36.

The differences between uncoalesced and coalesced memory accesses are shown in Fig. 6.37.

We can use shared memory for coalescing. Consider Fig. 4.25 for the tiled matrix-matrix multiplication.

For 𝐶𝑖,𝑗 =

𝑚/𝑤∑︁
𝑘=1

𝐴𝑖,𝑘 · 𝐵𝑘,𝑗 , 𝐴 ∈ R𝑛×𝑚, 𝐵 ∈ R𝑚×𝑝, 𝐴𝑖,𝑘, 𝐵𝑘,𝑗 , 𝐶𝑖,𝑗 ∈ R𝑤×𝑤, every warp reads one tile 𝐴𝑖,𝑘 of 𝐴

and one tile 𝐵𝑘,𝑗 of 𝐵: every thread in the warp reads one element of 𝐴𝑖,𝑘 and one element of 𝐵𝑘,𝑗 .

The number of threads equals w, the width of one tile, and threads are identified with tx = threadIdx.x and ty =
threadIdx.y. The by = blockIdx.y and bx = blockIdx.x correspond respectively to the first and the second
index of each tile, so we have row = by* w + ty and col = bx* w + tx.

Row wise access to A uses A [row*m + (k*w + tx)]. For B: B [(k*w+ty)*m + col] = B [(k*w+ty)*m +
bx*w+tx]. Adjacent threads in a warp have adjacent tx values so we have coalesced access also to B.

The tiled matrix multiplication kernel is below:

__global__ void mul (float *A, float *B, float *C, int m)
{

__shared__ float As[w][w];
__shared__ float Bs[w][w];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int col = bx*w + tx; int row = by*w + ty;
float Cv = 0.0;

(continues on next page)

6.7. Memory Coalescing Techniques 261

Introduction to Supercomputing, Release 1.2.5

Fig. 6.35: Accessing elements column after column.

Fig. 6.36: Accesing elements row after row.

262 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.37: Uncoalesced versus coalesced access.

6.7. Memory Coalescing Techniques 263

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

for(int k=0; k<m/w; k++)
{

As[ty][tx] = A[row*m + (k*w + tx)];
Bs[ty][tx] = B[(k*w + ty)*m + col];
__syncthreads();
for(int ell=0; ell<w; ell++)

Cv += As[ty][ell]*Bs[ell][tx];
C[row][col] = Cv;

}
}

6.7.3 Avoiding Bank Conflicts

All threads in the same warp execute the same instruction. When retrieving/storing data from global memory, one
instruction in a kernel defines the retrieval/storage of 32 data elements.

With memory coalescing, retrieving/storing 32 data elements requires as much time as retrieving/storing one data
element.

definition of data staging

A data staging algorithm arranges the data for memory coalescing.

Arranging data involves positioning the input and output data so that adjacent data elements are accessed by adjacent
threads.

Consider an array of complex numbers and/or multiple doubles.

The elements of such arrays are composite.

• Every complex number has a real and imaginary part.

• These parts can be one double, or a multiple double.

• A quad double consists of a most significant double, the second most, third most, fourth most significant double.

Using the straighforward representation will lead to bank conflicts.

Instead of an array of complex doubles, use two arrays:

1. one array with the real doubles,

2. another array with the imaginary doubles.

An array of complex quad doubles is stored in 8 arrays.

Consider the following problem:

On input are 𝑥0, 𝑥1, 𝑥2, . . . 𝑥31, all of type float.

The output is

𝑥2
0, 𝑥3

0, 𝑥4
0, . . . , 𝑥33

0 ,
𝑥2
1, 𝑥3

1, 𝑥4
1, . . . , 𝑥33

1 ,
𝑥2
2, 𝑥3

2, 𝑥4
2, . . . , 𝑥33

2 ,
...

...
...

...
𝑥2
31, 𝑥3

31, 𝑥4
31, . . . , 𝑥33

31.

264 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

This gives 32 threads in a warp 1,024 multiplications to do. Assume the input and output resides in shared memory.
How to compute without bank conflicts?

Suppose we observe the order of the output sequence. If thread 𝑖 computes 𝑥2
𝑖 , 𝑥

3
𝑖 , 𝑥

4
𝑖 , . . . , 𝑥

33
𝑖 , then after the first step,

all threads write 𝑥2
0, 𝑥

2
1, 𝑥

2
2, . . . , 𝑥

2
31 to shared memory. If the stride is 32, all threads write into the same bank. Instead

of a simultaneous computation of 32 powers at once, the writing to shared memory will be serialized.

Suppose we alter the order in the output sequence.

𝑥2
0, 𝑥2

1, 𝑥2
1, . . . , 𝑥2

31,
𝑥3
0, 𝑥3

1, 𝑥3
2, . . . , 𝑥3

31,
𝑥4
0, 𝑥4

1, 𝑥4
2, . . . , 𝑥4

31,
...

...
...

...
𝑥33
0 , 𝑥33

1 , 𝑥33
2 , . . . , 𝑥33

31.

After the first step, thread 𝑖 writes 𝑥2
𝑖 in adjacent memory, next to 𝑥2

𝑖−1 (if 𝑖 > 0) and 𝑥2
𝑖+1 (if 𝑖 < 31). Without bank

conflicts, the speedup will be close to 32.

Below is a basic Julia version of the kernel to solve this problem.

using CUDA

"""
function gpupwr32!(a, b)

raises the elements in the array a
to the powers 2, 3, .., 33,
writing the results in the array b.
"""
function gpupwr32!(a, b)

i = threadIdx().x # starts at 1
idx = 1 + 32*(i-1)
b[idx] = a[i]*a[i]
idx = idx + 1
for p=3:33

b[idx] = a[i]*b[idx-1]
idx = idx + 1

end
return nothing

end

The main program to launch the kernel follows:

dx = convert(Float32, 0.2/31)
x_h = [0.9f0 + (k-1)*dx for k=1:32]
y_h = [0.0f0 for k=1:32*32] # output
println("the input numbers : ", x_h)
x_d = CuArray(x_h)
y_d = CuArray(y_h)

run with 32 threads

@cuda threads=32 gpupwr32!(x_d, y_d)

For correctness, the code continues with a comparision with the vector computed on the host.

6.7. Memory Coalescing Techniques 265

Introduction to Supercomputing, Release 1.2.5

6.7.4 Exercises

1. Run copyKernel for large enough arrays for zero offset and an offset equal to two. Measure the timings
and deduce the differences in memory bandwidth between the two different values for offset.

2. Consider the kernel of matrixMul in the GPU computing SDK. Is the loading of the tiles into shared memory
coalesced? Justify your answer.

3. Write a CUDA program for the computation of consecutive powers, using coalesced access of the values for the
input elements. Compare the two orders of storing the output sequence in shared memory: once with and once
without bank conflicts.

6.8 Introduction to Tensor Cores

Training deep neural networks is computationally expensive. Tensor cores accelerate convolutions and matrix opera-
tions, for use to accelerate high performance computing, data center, and machine learning applications.

While targeted to General Matrix Multiply (GEMM), convolution operations can be reduced to GEMM. The tensor
core peak performance in double precision increased from 19.5 on Ampere A100 to 134 TFLOPS on Hopper H100.

6.8.1 High Throughput Computing

The Volta V100 gives a 12-fold increase in throughput, compared to the Pascal P100.

definition of throughput

Throughput measures how much information a system can process in a given amount of time.

High Performance Computing (HPC) measures FLOPS. High Throughput Computing (HTC) measures the number of
jobs that can be completed over a long period. While related, HPC is concerned with speed, HTC is also concerned
with robustness and reliability.

6.8.2 Volta, Ampere, Hopper Architectures

Each Streaming Multiprocessor (SM) on Volta, shown in Fig. 6.38 has 8 Tensor cores. With 80 SMs, there are 640
tensor cores in total, yielding 125 tensor TFLOPS of mixed precision.

The comparison between Volta V100 and Ampere A100 is illustrated in Fig. 6.39 and Fig. 6.40 compare the Ampere
A100 with the Hopper H100.

Tensor cores execute mixed precision matrix operations, illustrated in Fig. 6.41.

Reading Release 12.1 of the CUDA C++ Programming Guide, section 10.2.4, 28 February 2023, about Warp Matrix
Functions:

• For compute capability 7.0 or higher.

• Double precision is supported for compute capability at least 8.0.

• All threads in a warp must execute the same code. Code execution is likely to hang otherwise.

• A fragment is a templated type with template parameters describing which matrix the fragment holds (𝐴, 𝐵 or
accumulator), the shape of the overall WMMA operation, the data type and, for 𝐴 and 𝐵 matrices, whether the
data is row or column major.

266 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.38: The Volta Streaming Multiprocessor, picture from the NVIDIA Volta Architecture white paper.

6.8. Introduction to Tensor Cores 267

Introduction to Supercomputing, Release 1.2.5

Fig. 6.39: The V100 versus the A100, picture from the NVIDIA Ampere Architecture white paper.

Fig. 6.40: The A100 versus the H100, picture from the NVIDIA Hopper Architecture white paper.

268 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.41: Mixed Precision Matrix Math, picture taken from presentation at SC 2019 by Vishal Mehta on getting started
with tensor cores in HPC.

On a Volta computer, in the folder /usr/local/cuda/samples/0_Simple/cudaTensorCoreGemm the output of
running an example is below:

$./cudaTensorCoreGemm
Initializing...
GPU Device 0: "Quadro GV100" with compute capability 7.0

M: 4096 (16 x 256)
N: 4096 (16 x 256)
K: 4096 (16 x 256)
Preparing data for GPU...
Required shared memory size: 64 Kb
Computing... using high performance kernel compute_gemm
Time: 2.768896 ms
TFLOPS: 49.64
$

On ampere, in the folder cudaTensorCoreGemm of /usr/local/cuda/samples/Samples/3_CUDA_Features the
same example is found and below is the output on a a run on the A100.

$./cudaTensorCoreGemm
Initializing...
GPU Device 0: "Ampere" with compute capability 8.0

M: 4096 (16 x 256)
N: 4096 (16 x 256)
K: 4096 (16 x 256)
Preparing data for GPU...
Required shared memory size: 64 Kb

(continues on next page)

6.8. Introduction to Tensor Cores 269

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

Computing... using high performance kernel compute_gemm
Time: 1.756160 ms
TFLOPS: 78.26
$

Observe the increase in performance of the A100 over the V100. A short explanation of what was computed follows.
The Warp Matrix Multipy and Accumulate (WMMA) computes

𝐷 = 𝛼𝐴𝐵 + 𝛽𝐶

where

• matrix 𝐴 is M-by-K row major,

• matrix 𝐵 is K-by-N column major, and

• matrices 𝐶 and 𝐷 are M-by-N.

Each Cooperative Thread Array (CTA) consists of 8 warps and computes one 128-by-128 tile, using shared memory
for the matrix 𝐶.

6.8.3 Simple Matrix Multiplication

The explanations in this section are based on a 2017 NVIDIA Technical Blog, by Jeremy Appleyard and Scott Yokim,
available from <https://developer.nvidia.com/blog> on Programming Tensor Cores in CUDA 9.

The demonstration code is available on github via <https://github.com/NVIDIA-developer-blog/code-samples> posted
with a Makefile. It show the use of the WMMA (Warp Matrix Multiply Accumulate) API to perform a matrix
multiplication.

• For performance, use the cudaTensorCoreGemm in the CUDA Toolkit.

• For highest performance, use cuBLAS.

There are four steps in the demonstration code:

1. Use headers and namespaces.

2. Declarations and initialization:

A simple warp is responsible for a single 16-by-16 section of the output matrix. Tiling happens with a 2D grid:

int warpM = (blockIdx.x*blockDim.x+threadIdx.x)/ warpSize;
int warpN = (blockIdx.y*blockDim.y+threadIdx.y);

3. The inner loop performs the matrix multiplication.

4. Finishing up: store the accumulated data to memory.

A fragment is a templated type with parameters as follows:

1. which matrix the fragment holds, A, B, or accumulator;

2. the shape of the overall WMMA operation;

3. the data type;

4. for A and B matrices, whether the data is row or column major.

The parameters are specified at the declaration of the fragment. Accumulator fragments are filled with zeros at initial-
ization. Declaration of the fragments is done in the code below:

270 Chapter 6. Pipelining and Synchronized Computations

https://developer.nvidia.com/blog
https://github.com/NVIDIA-developer-blog/code-samples

Introduction to Supercomputing, Release 1.2.5

wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> a_frag;
wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> acc_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, float> c_frag;

Initialization of the accumulator fragment happens as follows:

wmma::fill_fragment(acc_frag, 0.0f);

One tile of the output matrix is computed by one warp.

• The loop runs over the rows of A and columns of B, to produce an m-by-n output tile.

• Data is loaded from global memory into a fragment.

• If a tile is discontinous in memory, the stride must be provided to the load function.

• The Matrix Multiply Accumulate (MMA) accumulates in place, so both first and last arguments are the accumu-
lator fragment previously initialized to zero.

The headers and declarations are in the code blocks below:

#include <mma.h>
using namespace nvcuda;

// Must be multiples of 16 for wmma code to work
#define MATRIX_M 16384
#define MATRIX_N 16384
#define MATRIX_K 16384

// The only dimensions currently supported by WMMA
const int WMMA_M = 16;
const int WMMA_N = 16;
const int WMMA_K = 16;

Below is the listing of the start of the kernel:

// Performs an MxNxK GEMM (C=alpha*A*B + beta*C) assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16.
// 3) Neither A nor B are transposed.
__global__ void wmma_example
(half *a, half *b, float *c,
int M, int N, int K, float alpha, float beta)

{
// Leading dimensions.
int lda = M;
int ldb = K;
int ldc = M;

That there is only a single loop is because of the two dimensional organization of the threads. Code for the loop is
below:

for (int i = 0; i < K; i += WMMA_K)
{

(continues on next page)

6.8. Introduction to Tensor Cores 271

Introduction to Supercomputing, Release 1.2.5

(continued from previous page)

int aRow = warpM * WMMA_M;
int aCol = i;

int bRow = i;
int bCol = warpN * WMMA_N;

// Bounds checking
if (aRow < M && aCol < K && bRow < K && bCol < N)
{

// Load the inputs
wmma::load_matrix_sync(a_frag, a+aRow+aCol*lda, lda);
wmma::load_matrix_sync(b_frag, b+bRow+bCol*ldb, ldb);

// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);

}
}

Observe the computation of the indices for the arguments of load_matrix_sync.

The code below loads the current value of c, scales it by beta and adds this to our result scaled by alpha.

int cRow = warpM * WMMA_M;
int cCol = warpN * WMMA_N;

if (cRow < M && cCol < N)
{

wmma::load_matrix_sync(c_frag, c + cRow + cCol * ldc,
ldc, wmma::mem_col_major);

#pragma unroll
for(int i=0; i < c_frag.num_elements; i++)
{

c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(c + cRow + cCol * ldc, c_frag,

ldc, wmma::mem_col_major);
}

The output of runs on volta and ampere are listed next:

$./TCGemm

M = 16384, N = 16384, K = 16384. alpha = 2.000000, beta = 2.000000

Running with wmma...
Running with cuBLAS...

Checking results...
Results verified: cublas and WMMA agree.

On the Volta V100, we obtain:

272 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

wmma took 631.051270ms
cublas took 99.577888ms

On the Ampere A100:

wmma took 501.762054ms
cublas took 38.711296ms

While A100 is (at least) twice as fast as V100, the performance of the simple matrix multiplication is disappointing,
which emphasizes the point that running simple code on faster computer is often pointless.

6.8.4 Bibliography

1. NVIDIA. CUDA C++ Programming Guide.

2. Da Yan, Wei Wang, Xiaowen Chu: Demystifying Tensor Cores to Optimize Half-Precision Matrix Multiply.
In the Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 634–643.

3. Thomas Faingnaert, Tim Besard, and Bjorn De Sutter: Flexible Performant GEMM Kernels on GPUs. IEEE
Transactions on Parallel and Distributed Systems 33:(9): 2230–2248, 2022.

4. Massimiliano Fasi, Nicholas J. Higham, Florent Lopez, Theo Mary, and Mantas Mikaitis: Matrix Multiplica-
tion in Multiword Arithmetic: Error Analysis and Application to GPU Tensor Cores. SIAM Journal on
Scientific Computing 45(1): C1–C19, 2023.

6.8.5 Exercises

1. Let x = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4) and y = (𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4) be two vectors and consider its convolution 𝑥0𝑦4 +
𝑥1𝑦3 + 𝑥2𝑦2 + 𝑥3𝑦1 + 𝑥4𝑦0.

Demonstrate how to rewrite convolutions as matrix products.

2. Install the Julia package GemmKernels.jl.

Read the paper by Faingnaert et al. and run an example of matrix multiplication with the package.

6.9 Performance Considerations

Our goal is to fully occupy the GPU. When launching a kernel, we set the number of blocks and number of threads per
block. For full occupancy, we want to reach the largest number of resident blocks and threads. The number of threads
ready for execution may be limited by constraints on the number of registers and shared memory.

6.9. Performance Considerations 273

Introduction to Supercomputing, Release 1.2.5

6.9.1 Dynamic Partitioning of Resources

In Table 6.8 we compare the compute capabilities of a Streaming Multiprocessor (SM) for the graphics cards with
respective compute capabilities 1.1, 2.0, 3.5, and 6.0: GeForce 9400M, Tesla C2050/C2070, K20C, and P100.

Table 6.8: Compute Capabilities 1.1, 2.0, 3.5, 6.0.

compute capability 1.1 2.0 3.5 6.0
maximum number of threads per block 512 1,024 1,024 1,024
maximum number of blocks per SM 8 8 16 32
warp size 32 32 32 32
maximum number of warps per SM 24 48 64 64
maximum number of threads per SM 768 1,536 2,048 2,048

During runtime, thread slots are partitioned and assigned to thread blocks. Streaming multiprocessors are versatile by
their ability to dynamically partition the thread slots among thread blocks. They can either execute many thread blocks
of few threads each, or execute a few thread blocks of many threads each. In contrast, fixed partitioning where the
number of blocks and threads per block are fixed will lead to waste.

We consider the interactions between resource limitations on the C2050. The Tesla C2050/C2070 has 1,536 thread
slots per streaming multiprocessor. As 1, 536 = 32 × 48, we have

number of thread slots = warp size × number of warps per block.

For 32 threads per block, we have 1,536/32 = 48 blocks. However, we can have at most 8 blocks per streaming multi-
processor. Therefore, to fully utilize both the block and thread slots, to have 8 blocks, we should have

• 1, 536/8 = 192 threads per block, or

• 192/32 = 6 warps per block.

On the K20C, the interaction between resource liminations differ. The K20C has 2,048 thread slots per streaming
multiprocessor. The total number of thread slots equals 2, 048 = 32 × 64. For 32 threads per block, we have 2,048/32
= 64 blocks. However, we can have at most 16 blocks per streaming multiprocessor. Therefore, to fully utilize both the
block and thread slots, to have 16 blocks, we should have

• 2, 048/16 = 128 threads per block, or

• 128/32 = 4 warps per block.

On the P100, there is another slight difference in the resource limitation, which leads to another outcome. In particular,
we now can have at most 32 blocks per streaming multiprocessor. To have 32 blocks, we should have

• 2, 048/32 = 64 threads per block, or

• 64/32 = 2 warps per block.

The memory resources of a streaming multiprocessor are compared in Table 6.9, for the graphics cards with respective
compute capabilities 1.1, 2.0, 3.5, and 6.0: GeForce 9400M, Tesla C2050/C2070, K20C, and P100.

Table 6.9: memory resources for several compute capabilities.

compute capability 1.1 2.0 3.5 6.0
number of 32-bit registers per SM 8K 32KB 64KB 64KB
maximum amount of shared memory per SM 16KB 48KB 48KB 64KB
number of shared memory banks 16 32 32 32
amount of local memory per thread 16KB 512KB 512KB 512KB
constant memory size 64KB 64KB 64KB 64KB
cache working set for constant memory per SM 8KB 8KB 8KB 10KB

274 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Local memory resides in device memory, so local memory accesses have the same high latency and low bandwidth as
global memory.

Registers hold frequently used programmer and compiler-generated variables to reduce access latency and conserve
memory bandwidth. Variables in a kernel that are not arrays are automatically placed into registers.

By dynamically partitioning the registers among blocks, a streaming multiprocessor can accommodate more blocks if
they require few registers, and fewer blocks if they require many registers. As with block and thread slots, there is a
potential interaction between register limitations and other resource limitations.

Consider the matrix-matrix multiplication example. Assume

• the kernel uses 21 registers, and

• we have 16-by-16 thread blocks.

How many threads can run on each streaming multiprocessor?

1. We calculate the number of registers for each block: 16 × 16 × 21 = 5, 376 registers.

2. We have 32 × 1, 024 registers per SM: 32 × 1, 024/5, 376 = 6 blocks; and 6 < 8 = the maximum number of
blocks per SM.

3. We calculate the number of threads per SM: 16×16×6 = 1, 536 threads; and we can have at most 1,536 threads
per SM.

We now introduce the performance cliff, assuming a slight increase in one resource. Suppose we use one extra register,
22 instead of 21. To answer how many threads now can run on each SM, we follow the same calculations.

1. We calculate the number of registers for each block: 16 × 16 × 22 = 5, 632 registers.

2. We have 32 × 1, 024 registers per SM: 32 × 1, 024/5, 632 = 5 blocks.

3. We calculate the number of threads per SM: 16 × 16 × 5 = 1, 280 threads; and with 21 registers we could use
all 1,536 threads per SM.

Adding one register led to a reduction of 17% in the parallelism.

Definition of performance cliff

When a slight increase in one resource leads to a dramatic reduction in parallelism and performance, one speaks of
a performance cliff.

The CUDA compiler tool set contains a spreadsheet to compute the occupancy of the GPU, as shown in Fig. 6.42.

6.9.2 The Compute Visual Profiler

The Compute Visual Profiler is a graphical user interface based profiling tool to measure performance and to find
potential opportunities for optimization in order to achieve maximum performance.

We look at one of the example projects matrixMul. The analysis of the kernel matrixMul is displayed in Fig. 6.43,
Fig. 6.44, Fig. 6.45, Fig. 6.46, and Fig. 6.47.

6.9. Performance Considerations 275

Introduction to Supercomputing, Release 1.2.5

Fig. 6.42: The CUDA occupancy calculator.

Fig. 6.43: GPU time summary of the matrixMul kernel.

276 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.44: Limiting factor identification of the matrixMul kernel, IPC = Instructions Per Cycle.

Fig. 6.45: Memory throughput analysis of the matrixMul kernel.

6.9. Performance Considerations 277

Introduction to Supercomputing, Release 1.2.5

Fig. 6.46: Instruction throughput analysis of the matrixMul kernel, IPC = Instructions Per Cycle.

Fig. 6.47: Occupancy analysis of the matrixMul kernel.

278 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

6.9.3 Data Prefetching and Instruction Mix

One of the most important resource limitations is access to global memory and long latencies. Scheduling other warps
while waiting for memory access is powerful, but often not enough. A complementary to warp scheduling solution
is to prefetch the next data elements while processing the current data elements. Combined with tiling, data prefetch-
ing provides extra independent instructions to enable the scheduling of more warps to tolerate long memory access
latencies.

For the tiled matrix-matrix multiplication, the pseudo code below combines prefetching with tiling:

load first tile from global memory into registers;
loop
{

deposit tile from registers to shared memory;
__syncthreads();
load next tile from global memory into registers;
process current tile;
__syncthreads();

}

The prefetching adds independent instructions between loading the data from global memory and processing the data.

The data in Table 6.10 is copied from Table 2 of the CUDA C Programming Guide. The ftp in Table 6.10 stands for
floating-point and int for integer.

Table 6.10: Number of operations per clock cycle per multiprocessor.

compute capability 1.x 2.0 3.5 6.0
32-bit fpt add, multiply, multiply-add 8 32 192 64
64-bit fpt add, multiply, multiply-add 1 16 64 4
32-bit int add, logical operation, shift, compare 8 32 160 128
32-bit fpt reciprocal, sqrt, log, exp, sin, cos 2 4 32 32

Consider the following code snippet:

for(int k = 0; k < m; k++)
C[i][j] += A[i][k]*B[k][j];

Counting all instructions:

• 1 loop branch instruction (k < m);

• 1 loop counter update instruction (k++);

• 3 address arithmetic instructions ([i][j], [i][k], [k][j]);

• 2 floating-point arithmetic instructions (+ and *).

Of the 7 instructions, only 2 are floating point.

Loop unrolling reduces the number of loop branch instructions, loop counter updates, address arithmetic instructions.
Note: gcc -funroll-loops is enabled with gcc -O2.

6.9. Performance Considerations 279

Introduction to Supercomputing, Release 1.2.5

6.9.4 Thread Coarsening

Acceleration by GPUs applies fine grained parallelism, often at the instruction level, following the single instruction
multiple data model.

definition of thread coarsening

By thread coarsening, each thread is given more work, to reduce the overhead caused by parallelism.

One typical situation occurs with the block size limitation, when the number of threads is insufficient. As a consequence
of thread coarsening, the number of threads in a block decreases, overcoming the block size limitation.

The application of thread coarsening to tiled matrix matrix multiplication is illustrated in a sequence of three pictures,
in Fig. 6.48, in Fig. 6.49, and in Fig. 6.49.

Fig. 6.48: Tiled matrix matrix multiplication.

In the matrix matrix multiplication with shared memory, one output tile is computed by one block of threads:

• Each block loads one tile of 𝐴 and one tile of 𝐵.

• Shared memory is not shared among the blocks.

280 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Fig. 6.49: In tiled matrix matrix multiplication, one block of threads computes one output tile.

6.9. Performance Considerations 281

Introduction to Supercomputing, Release 1.2.5

Fig. 6.50: In tiled matrix matrix multiplication, with thread coarsening, adjacent tiles of the second matrix are loaded
by the same block of threads.

282 Chapter 6. Pipelining and Synchronized Computations

Introduction to Supercomputing, Release 1.2.5

Each output tile is processed by a different block. The same input tiles for 𝐴 are loaded for output tiles.

With thread coarsening, one block of threads loads one tile of 𝐴, and several vertically adjacent tiles of 𝐵. The coarse
factor equals the number of tiles of 𝐵 that are multiplied in the inner loop of the new kernel.

To clarify, pseudo code is below, for the tiled matrix multiplication, to multiply matrices A and B to make C:

block of threads loads a tile of A
block of threads loads a tile of B
block of threads updates a tile of C

With thread coarsening, the code is expanded into:

block of threads loads a tile of A
for k in 1, 2, ..., coarse factor do

block of threads loads the next tile of B
block of threads updates the next tile of C

The fourth edition of Programming Massively Parallel Processors by Wen-mei Hwu, David B. Kirk, and Izzat El Hajj
contains explicit C code.

Thread coarsening is similar to the topic of granularity and while it is a powerful optimization, there are pitfalls:

1. Do not apply when not needed. Example: vector addition.

2. Thread coarsening may lead to underutilization. Coarsening factors depend on the type of a device and/or the
specifics of the data that is processed.

3. Thread coarsening may reduce the occupancy. After thread coarsening, threads may use more registers and/or
too much shared memory reducing the occupancy of the device.

It is important to know the performance bottleneck of a computation.

definition of performance bottleneck

The resource that limits the performance of a computation is a performance bottleneck.

If an optimization does not target the performance bottleneck, then the optimization attempt may even hurt performance.
For example, ask the following questions: Is the computation compute or memory bound? Is the performance limited
by occupancy? In answering those questions, understand the GPU architecture, and familiarize yourself with profiling
tools.

At this point in the course, we have covered the fundamental topics of GPU acceleration.

6.9.5 Exercises

1. Consider a GPU with 2048 threads/SM, 32 blocks/SM, 64K registers/SM, and 96KB of shared memory/SM.

• Kernel 𝐴 uses 64 threads/block, 27 registers per thread, and 4KB of shared memory/SM.

• Kernel 𝐵 uses 256 threads/block, 31 registers per thread, and 8KB of shared memory/SM.

Determine if the kernels achieve full occupancy. If not, specify the limiting factor(s).

2. Read the user guide of the compute visual profiler and perform a run on GPU code you wrote (of some previous
exercise or your code for the third project). Explain the analysis of the kernel.

3. Redo the first interactions between resource limitations of this lecture using the specifications for compute capa-
bility 1.1.

6.9. Performance Considerations 283

Introduction to Supercomputing, Release 1.2.5

284 Chapter 6. Pipelining and Synchronized Computations

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

285

Introduction to Supercomputing, Release 1.2.5

286 Chapter 7. Indices and tables

Index

Symbols
2-by-2 switches, 13

A
Ada, 22
array and ring topology, 11
arrival phase, 233
atomic variable, 88
attainable performance, 120

B
bandwidth, 10
bank conflict, 258
barrier, 233
Bernstein's conditions, 103, 118
bidirectional data transfer, 235
bisection bandwidth, 10
bisection width, 10
blocking communication, 13, 73
blocking receive, 40
blocking send, 40
Brent's theorem, 239
broadcast, 31
butterfly barrier, 234

C
circuit switching, 13
cluster, 14
coalesced access to global memory, 257
coarse granularity, 55
collective communication, 31, 35, 37, 49
communication granularity, 55
communication latency, 10
communication-to-computation ratio, 113
compiler directive, 81
Cooperative Thread Array, 270
critical path, 118
critical section, 84, 97
cross over, 13

crossbar switch, 11
CTA, 270
CUDA, 143

D
data parallel computation, 236
data parallelism, 143
data staging, 264
deadlock, 13, 234
departure phase, 233
diameter of network, 10
distributed memory multicomputer, 10
divide and conquer, 65
domain decomposition, 65
dynamic network topology, 11
dynamic work load balancing, 59

E
efficiency, 6, 114
ethernet, 14
execution time, 113

F
fan out broadcast, 41
fine granularity, 55
flops, 54, 113
fragment, 266, 270
functional decomposition, 65, 208

G
gather, 37
grain, 55
granularity, 55

H
heap, 86
High Performance Computing, 266
High Throughput Computing, 266
HPC, 266

287

Introduction to Supercomputing, Release 1.2.5

HTC, 266
hypercube network, 11

I
immediate receive, 73
immediate send, 73
isoefficiency function, 114

J
job queue, 95
job scheduling, 59

K
kernel, 143

L
latency, 10
lifetime, 173
livelock, 13

M
manager/worker model, 29
master construct, 82
matrix and torus topology, 11
MCA, 30
memory access-to-computation ratio, 113
memory allocation, 32
memory coalescing, 256
message latency, 10
MIMD, 9
MISD, 9
Monte Carlo, 46
MPI_Bcast, 31
MPI_Comm_rank, 30
MPI_Comm_size, 30
MPI_COMM_WORLD, 30
MPI_Finalize, 30
MPI_GATHER, 38
MPI_Init, 30
MPI_Iprobe, 60
MPI_IRECV, 73
MPI_ISEND, 73
MPI_RECV, 40
MPI_REDUCE, 49
MPI_SCATTER, 37
MPI_SEND, 40
MPI_Sendrecv, 234
MPI_SUM, 49
MPI_TEST, 73
MPI_WAIT, 73
MPI_Wtime, 41
Multiple Instruction Multiple Data stream, 9
Multiple Instruction Single Data stream, 9

multiprocessing module, 17
multistage network, 13
mutex, 97

N
network latency, 10
nonblocking communication, 60, 73
numerical integration, 18

O
Omega interconnection network, 14
omp_get_thread_num(), 82
omp_set_num_threads(), 82
overhead, 10
overhead time, 113

P
packet switching, 13
parallel construct, 82
parallel region, 79, 82
pass through, 13
performance bottleneck, 283
performance cliff, 275
pipeline, 207
pipeline cycle, 207
pipeline latency, 207
pleasingly parallel, 45
point-to-point communication, 35, 39
POSIX, 93
PRAM, 239
prefix sum, 236
prefix sum algorithm, 236
private clause, 84
process, 81, 86
pseudorandom numbers, 46
Python, 16

Q
quality up, 8, 79

R
race condition, 104
reduction algorithm, 191
release phase, 233
ridge point, 120
roofline model, 120
routing algorithm, 13

S
scalability, 10
scaled speedup, 7
scatter, 37
scope of a variable, 173

288 Index

Introduction to Supercomputing, Release 1.2.5

shared memory multicomputer, 10
SIMD, 9, 143, 236
Simpson rule, 16
SIMT, 190
single construct, 82
Single Instruction Multiple Data, 143
Single Instruction Multiple Data stream, 9
single instruction multiple thread, 190
Single Instruction Single Data stream, 9
Single Program Multiple Data stream, 9
Single Program, Multiple Data, 29
SISD, 9
space-time diagram, 207
speedup, 6, 114
SPMD, 9, 29
square partition, 255
stack, 86
static work load assignment, 55
strip partition, 255
supercomputer, 3
superlinear speedup, 6
switches, 13

T
task, 99
tasking, 22
thread, 81, 86
thread coarsening, 280
thread divergence, 190, 191
thread safe, 86
throughput, 266
trapping phase, 233
tree barrier, 233
tree network, 11
type 1 pipeline, 211, 220
type 2 pipeline, 220
type 3 pipeline, 220

W
warp, 143, 189
Warp Matrix Multipy and Accumulate, 270
WMMA, 270
work crew, 87

Index 289

	Preface
	Three Different Types of Parallelism
	Programming Languages
	Bibliography

	Introduction to Parallel Computing
	Introduction
	What is a Supercomputer?
	Measuring Performance
	Amdahl’s and Gustafson’s Law
	Bibliography
	Exercises

	Classifications and Scalability
	Types of Parallel Computers
	Clusters and Scalability
	Network Topologies
	Bibliography
	Exercises

	High Level Parallel Processing
	High-Level Parallel Programming
	Multiprocessing in Python
	Multithreading with Julia
	Tasking in Ada
	Performance Monitoring
	Bibliography
	Exercises

	Introduction to Message Passing
	Basics of MPI
	One Single Program Executed by all Nodes
	Initialization, Finalization, and the Universe
	Broadcasting Data
	Moving Data from Manager to Workers
	MPI for Python
	MPI wrappers for Julia
	Bibliography
	Exercises

	Using MPI
	Scatter and Gather
	Send and Recv
	Reducing the Communication Cost
	Point-to-Point Communication with MPI for Python
	Point-to-Point Communication with the MPI wrappers in Julia
	Bibliography
	Exercises

	Pleasingly Parallel Computations
	Ideal Parallel Computations
	Monte Carlo Simulations
	SPRNG: scalable pseudorandom number generator
	Bibliography
	Exercises

	Load Balancing
	the Mandelbrot set
	Granularity
	Static Work Load Assignment
	Static work load assignment with MPI
	an implementation with mpi4py
	Dynamic Work Load Balancing
	probing in Python and Julia
	Scalability
	Bibliography
	Exercises

	Handson Supercomputing
	working on a fast workstation
	using a real supercomputer

	Data Partitioning
	functional and domain decomposition
	parallel summation
	An Application
	Nonblocking Point-to-Point Communication
	Exercises

	Introduction to Threading and Tasking
	Introduction to OpenMP
	programming shared memory parallel computers
	multithreading in Julia
	the OpenMP Application Program Interface
	using OpenMP
	Numerical Integration with OpenMP
	Bibliography
	Exercises

	The Crew of Threads Model
	Multithreaded Processes
	The Work Crew Model
	A Crew of Workers with Julia
	Processing a Job Queue
	Processing the Jobs with OpenMP
	The POSIX Threads Programming Interface
	Implementing a Critical Section with mutex
	The Dining Philosophers Problem
	Bibliography
	Exercises

	Tasking with OpenMP
	Parallel Recursive Functions
	Parallel Recursive Quadrature
	Bernstein’s Conditions
	Task Dependencies
	Parallel Blocked Matrix Multiplication
	Bibliography
	Exercises

	Tasking with Julia
	Parallel Recursive Functions
	Parallel Recursive Quadrature
	Parallel Merge Sort
	Basic Linear Algebra Subprograms
	Exercises

	Evaluating Parallel Performance
	Metrics
	Isoefficiency
	Task Graph Scheduling
	The Roofline Model
	Bibliography

	Work Stealing
	Work Stealing Simulated by a Julia Program
	Multithreading in Python with Numba
	Multithreading in Python with Parsl
	the Intel Threading Building Blocks (TBB)
	using the parallel_for
	using the parallel_reduce
	Bibliography
	Exercises

	Acceleration with Graphics Processing Units
	A Massively Parallel Processor: the GPU
	Introduction to General Purpose GPUs
	Graphics Processors as Parallel Computers
	Bibliography
	Exercises

	Programming GPUs with PyCUDA and Julia
	Data Parallelism
	Matrix Matrix Multiplication
	PyCUDA
	Vendor Agnostic GPU Computing in Julia
	Bibliography
	Exercises

	Introduction to CUDA
	Our first GPU Program
	CUDA Program Structure
	using CUDA.jl
	Exercises

	Data Parallelism and Matrix Multiplication
	Data Parallelism
	Code for Matrix-Matrix Multiplication
	Two Dimensional Arrays of Threads
	Examining Performance
	using CUDA.jl and Metal.jl
	Exercises

	Device Memories and Matrix Multiplication
	Device Memories
	Matrix Multiplication
	using shared memory with CUDA.jl
	Bibliography
	Exercises

	Thread Organization and Matrix Multiplication
	Thread Organization
	Matrix Matrix Multiplication
	Submatrices with Threads in CUDA.jl
	Thread Synchronization
	Bibliography
	Exercises

	Warps and Reduction Algorithms
	More on Thread Execution
	Parallel Reduction Algorithms
	Julia Defined Kernels
	Bibliography
	Exercises

	Review for the Midterm Exam
	Four Sample Questions
	Scaled Speedup
	Network Topologies
	Task Graph Scheduling
	Compute Bound or Memory Bound

	Fall 2024 Midterm Questions
	Question 1 : Isoefficiency
	Question 2 : the roofline model
	Question 3 : tasking for enumeration
	Question 4 : CGMA ratio

	Pipelining and Synchronized Computations
	Pipelined Computations
	Functional Decomposition
	Loop Unrolling
	Pipeline Implementations
	Using MPI to implement a pipeline
	Exercises

	Pipelined Sorting, Sieving, Substitution
	Sorting Numbers
	Prime Number Generation
	Solving Triangular Systems
	Bibliography
	Exercises

	Solving Triangular Systems
	Ill Conditioned Matrices and Quad Doubles
	On a Parallel Shared Memory Computer with OpenMP
	Accelerated Back Substitution
	Bibliography
	Exercises

	Barriers for Synchronizations
	Synchronizing Computations
	The Prefix Sum Algorithm
	Brent’s Theorem
	Bibliography
	Exercises

	Parallel Iterative Methods for Linear Systems
	Jacobi Iterations
	A Parallel Implementation with MPI
	Gather-to-All with MPI_Allgather
	Strip Partitioning and Reduce Barriers in Julia
	Exercises

	Domain Decomposition Methods
	Gauss-Seidel Relaxation
	Parallel Gauss-Seidel with OpenMP
	Solving the Heat Equation
	Solving the Heat Equation with PETSc
	Bibliography
	Exercises

	Memory Coalescing Techniques
	Accessing Global and Shared Memory
	Memory Coalescing Techniques
	Avoiding Bank Conflicts
	Exercises

	Introduction to Tensor Cores
	High Throughput Computing
	Volta, Ampere, Hopper Architectures
	Simple Matrix Multiplication
	Bibliography
	Exercises

	Performance Considerations
	Dynamic Partitioning of Resources
	The Compute Visual Profiler
	Data Prefetching and Instruction Mix
	Thread Coarsening
	Exercises

	Indices and tables
	Index

