
Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

MCS 572 Lecture 12
Introduction to Supercomputing

Jan Verschelde, 23 September 2024

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 1 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 2 / 33

tasking with OpenMP

The OpenMP Application Programming Interface provides a model
for parallel programming that is portable
across shared memory architectures from different vendors.

The gcc compiler supports the OpenMP API, via gcc -fopenmp.

Two reference documents for this lecture:
the OpenMP API Specification, and
the OpenMP API Examples.

Tasking constructs provide units of work to a thread for execution.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 3 / 33

treading versus tasking

Definition (task)
A task provides a unit of work to a thread for execution.

Tasks are much lighter than threads.

Differences between threads and tasks:

Starting and terminating a task is much faster
than starting and terminating a thread.

A thread has its own process id and own resources,
whereas a task is typically a small routine.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 4 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 5 / 33

the Fibonacci numbers

The sequence of Fibonacci numbers Fn are defined as

F0 = 0, F1 = 1, and for n > 1 : Fn = Fn−1 + Fn−2.

This leads to a natural recursive function.

1 The recursion generates many function calls.
2 While inefficient to compute Fn,

this recursion serves as a parallel pattern.

The parallel version is part of the
OpenMP Application Programming Interface Examples.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 6 / 33

a parallel recursive Fibonacci function

The Fibonacci function with tasking
demonstrates the generation of a large number of tasks
with one thread.
No parallelism will result from this example.

But it is instructive to introduce basic task constructs.
The task construct defines an explicit task.
The taskwait construct synchronizes sibling tasks.
The shared clause of a task construct declares
a variable to be shared by tasks.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 7 / 33

command line arguments and number of threads
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int fib (int n);
/* Returns the n-th Fibonacci number,

* computed recursively with tasking. */

int main (int argc, char *argv[])
{

int n;

if(argc > 1)
n = atoi(argv[1]);

else
{

printf("Give n : "); scanf("%d", &n);
}
omp_set_num_threads(8);

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 8 / 33

the parallel region and single construct

The program from the previous slide continues:

#pragma omp parallel
{

#pragma omp single
printf("F(%d) = %d\n",n,fib(n));

}

The single construct specifies that the statement
is executed by only one thread in the team.

In this example, one thread generates many tasks.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 9 / 33

a parallel recursive Fibonacci function
int fib (int n)
{

if(n < 2)
return n;

else
{

int left,right; // shared by all tasks

#pragma omp task shared(left)
left = fib(n-1);

#pragma omp task shared(right)
right = fib(n-2);

// synchronize tasks
#pragma omp taskwait
return left + right;

}
}

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 10 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 11 / 33

parallel recursive quadrature

Apply a numerical integration rule R(f ,a,b,n) to
∫ b

a
f (x)dx .

The rule R(f ,a,b,n) takes on input
the function f , bounds a, b of [a,b], and
the number n of function evaluations.

The rule returns and approximation A and an error estimate e.

If e is larger than some tolerance, then
1 c = (b − a)/2 is the middle of [a,b],
2 compute A1,e1 = R(f ,a, c,n),
3 compute A2,e2 = R(f , c,a,n),
4 return A1 + A2,e1 + e2.

This is the same pattern as Fibonacci.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 12 / 33

the composite Trapezoidal rule applied recursively
Using n subintervals of [a,b], the rule is

R(f ,a,b,n) =
h
2
(f (a) + f (b)) + h

n−1∑
i=1

f (a + ih), h =
b − a

n
.

Our setup: f (x) = ex , [a,b] = [0,1],
∫ 1

0
exdx = e − 1.

Keep n fixed. Let d be the depth of the recursion. The level is ℓ.

F(ℓ,d , f ,a,b,n):
If ℓ = d then

return R(f ,a,b,n)
else

c = (b − a)/2
return F(ℓ+1,d , f ,a, c,n) + F(ℓ+1,d , f , c,b,n).

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 13 / 33

the tree of function calls

The root of the tree is the first call, omitting the value for n.

F(2,2, f ,0, 1
4) F(2,2, f , 1

2 ,
1
4) F(2,2, f , 1

4 ,
3
4) F(2,2, f , 3

4 ,1)

F(1,2, f ,0, 1
2)

�
�

@
@

F(1,2, f , 1
2 ,1)

�
�

@
@

F(0,2, f ,0,1)
���

�

HH
HH

At the leaves, the rule is applied.

As all computations are concentrated at the leaves,
we expect speedups from a parallel execution.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 14 / 33

a recursive parallel integration function
double rectraprule
(int level, int depth,
double (*f) (double x), double a, double b, int n)

{
if(level == depth)

return traprule(f,a,b,n);
else
{

double middle = (b - a)/2;
double left,right;

#pragma omp task shared(left)
left = rectraprule(level+1,depth,f,a,middle,n);

#pragma omp task shared(right)
right = rectraprule(level+1,depth,f,middle,b,n);

#pragma omp taskwait
return left + right;

}
}

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 15 / 33

with 8 threads, with OpenMP 4.5 on pascal
$ time ./comptraprec 200000 10
approximation = 1.7182818284620265e+00

exp(1) - 1 = 1.7182818284590451e+00, error = 2.98e-12

real 0m3.299s
user 0m3.298s
sys 0m0.001s
$ time ./comptraprecomp 200000 10
approximation = 1.7182818284620265e+00

exp(1) - 1 = 1.7182818284590451e+00, error = 2.98e-12

real 0m0.743s
user 0m4.003s
sys 0m0.004s
$

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 16 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 17 / 33

dependency analysis

Which statements can be executed in parallel?

Let u be an operation. Denote:
R(u) is the set of memory cells u reads,
M(u) is the set of memory cells u modifies.

Two operations u and v are independent if

M(u) ∩M(v) = ∅, and

M(u) ∩R(v) = ∅, and

R(u) ∩M(v) = ∅.

The above conditions are known as Bernstein’s conditions.

Checking Bernstein’s conditions is easy for operations on scalars,
is more difficult for array accesses,
and is almost impossible for pointer dereferencing.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 18 / 33

an example

Let x be some scalar and consider two statements:
u = [x = x + 1],
v = [x = x + 2].

We see that u and v are independent of each other,
because u followed by v or v followed by u is equivalent
to w = [x = x + 3].

However, execution of u and v happens by a sequence of more
elementary instructions:

u: r1 = x; r1 += 1; x = r1;
v : r2 = x; r2 += 2; x = r2;

where r1 and r2 are registers.

The elementary instructions are no longer independent.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 19 / 33

some references

A. J. Bernstein:
Analysis of Programs for Parallel Processing.
IEEE Transactions on Electronic Computers 15(5):757–763, 1966.

P. Feautrier: Bernstein’s Conditions.
In Encycopedia of Parallel Computing, edited by David Padua,
pages 130–133, Springer 2011.

B. Wilkinson and M. Allen: Parallel Programming. Techniques
and Applications Using Networked Workstations and Parallel
Computers. 2nd Edition. Prentice-Hall 2005.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 20 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 21 / 33

the depend clause of OpenMP

The order of execution of tasks can be ordered.

In the depend clause, we consider two dependence types:
1 The in type: the task depends on the sibling task(s)

that generates the item followed by the in:.

2 The out type: if an item appeared following an in:
then there should be task with the clause out.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 22 / 33

copied from the OpenMP API Examples
#include <stdio.h>
#include <omp.h}

int main (int argc, char *argv[])
{

int x = 1;

#pragma omp parallel
#pragma omp single
{

#pragma omp task shared(x) depend(out: x)
x = 2;
#pragma omp task shared(x) depend(in: x)
printf("x = %d\n", x);

}
return 0;

}

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 23 / 33

about the example

In the parallel region, the single construct indicates that
every instruction needs to be execute only once.

One task assigns 2 to x.
Another task prints the value of x.

Without depend, tasks could execute in any order,
and the program would have a race condition.

Definition (race condition)
A race condition occurs in a parallel program execution
when two or more threads access a common resource.

The depend clauses force the ordering of the tasks.
The example always prints x = 2.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 24 / 33

Tasking with OpenMP

1 Programming Parallel Shared Memory Computers
tasking with OpenMP

2 Parallel Recursive Functions
the Fibonacci numbers
parallel recursive quadrature

3 Bernstein’s Conditions
dependency analysis

4 Task Dependencies
flow dependence
parallel blocked matrix multiplication

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 25 / 33

blocked matrix multiplication

Our last example also comes from the OpenMP API Examples.

Consider the product of two blocked matrices A with B:[
A1,1 A1,2
A2,1 A2,2

] [
B1,1 B1,2
B2,1 B2,2

]
=

[
C1,1 C1,2
C2,1 C2,2

]
.

where
Ci,j = Ai,1B1,j + Ai,2B2,j ,

for all i and j .

The arguments of the depend clauses are blocked matrices.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 26 / 33

matrices are pointers to rows

Allocating a matrix of dimension dim:

{
double **A;
int i;

A = (double**)calloc(dim, sizeof(double*));

for(i=0; i<dim; i++)
A[i] = (double*)calloc(dim, sizeof(double));

Every row A[i] is allocated in the loop.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 27 / 33

multiplying blocked matrices of random doubles

At the command line, we specify
1 the block size, the size of each block,
2 the number of blocks in every matrix, and
3 the number of threads.

The dimension equals the block size times the number of blocks.

The parallel region:

#pragma omp parallel
#pragma omp single
matmatmul(dim,blocksize,A,B,C);

One single thread calls the function matmatmul.
The matmatmul generates a large number of tasks.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 28 / 33

the function matmatmul

void matmatmul
(int N, int BS,
double **A, double **B, double **C)

{
int i, j, k, ii, jj, kk;

for(i=0; i<N; i+=BS)
{

for(j=0; j<N; j+=BS)
{

for(k=0; k<N; k+=BS)
{

The triple loop computes the block Ci,j

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 29 / 33

multiplying each block in one task

Each task has its own indices ii, jj, and kk.

#pragma omp task private(ii, jj, kk) \
depend(in: A[i:BS][k:BS], B[k:BS][j:BS]) \
depend(inout: C[i:BS][j:BS])

{
for(ii=i; ii<i+BS; ii++)

for(jj=j; jj<j+BS; jj++)
for(kk=k; kk<k+BS; kk++)

C[ii][jj] = C[ii][jj] + A[ii][kk]*B[kk][jj];
}

The inout dependence type C[i:BS][j:BS] expresses
that the dependencies of the update of the block Ci,j

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 30 / 33

runs with 2 and 4 threads

$ gcc -fopenmp -O3 -o matmulomp matmulomp.c

$ time ./matmulomp 500 2 2

real 0m0.828s
user 0m1.558s
sys 0m0.020s

$ time ./matmulomp 500 2 4

real 0m0.445s
user 0m1.575s
sys 0m0.017s
$

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 31 / 33

parallel linear algebra

PLASMA (Parallel Linear Algebra Software for Multicore Architectures)
is a numerical library intended as a successor to LAPACK
for solving problems in dense linear algebra on multicore processors.

A. YarKhan, J. Kurzak, P. Luszczek, J. Dongarra:
Porting the PLASMA Numerical Library to the OpenMP Standard.
International Journal of Parallel Programming, May 2016.

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 32 / 33

exercises

1 Label the six elementary operations in the example on slide 19 as
u1, u2, u3, v1, v2, v3. Write for each the sets R(·) and M(·).
Based on the dependency analysis, arrange the six instructions
for a correct parallel computation.

2 The block size, number of blocks, and number of threads are the
three parameters in matmulomp.
Explore experimentally with matmulomp the relationship between
the number of blocks and the number of threads.
For which values do you obtain a good speedup?

Introduction to Supercomputing (MCS 572) Tasking with OpenMP L-12 23 September 2024 33 / 33

	Programming Parallel Shared Memory Computers
	tasking with OpenMP

	Parallel Recursive Functions
	the Fibonacci numbers
	parallel recursive quadrature

	Bernstein's Conditions
	dependency analysis

	Task Dependencies
	flow dependence
	parallel blocked matrix multiplication

