Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost
We want to solve $A x = b$ for $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, for very large n.

Consider $A = L + D + U$, where
- $L = [\ell_{i,j}], \ell_{i,j} = a_{i,j}, i > j, \ell_{i,j} = 0, i \leq j$. L is lower triangular.
- $D = [d_{i,j}], d_{i,i} = a_{i,i} \neq 0, d_{i,j} = 0, i \neq j$. D is diagonal.
- $U = [u_{i,j}], u_{i,j} = a_{i,j}, i < j, u_{i,j} = 0, i \geq j$. U is upper triangular.

Then we rewrite $A x = b$ as

$$A x = b \iff (L + D + U)x = b$$
$$\iff Dx = b - Lx - Ux$$
$$\iff Dx = Dx + b - Lx - Ux - Dx$$
$$\iff Dx = Dx + b - Ax$$
$$\iff x = x + D^{-1}(b - Ax).$$

The fixed point formula $x = x + D^{-1}(b - Ax)$ is well defined if $a_{i,i} \neq 0$.

The fixed point formula
the Jacobi iterative method

The fixed point formula $\mathbf{x} = \mathbf{x} + D^{-1}(\mathbf{b} - A\mathbf{x})$ leads to

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + D^{-1} \left(\mathbf{b} - A\mathbf{x}^{(k)} \right), \quad k = 0, 1, \ldots$$

Writing the formula as an algorithm:

```
Input: A, b, x^{(0)}, \epsilon, N.
Output: x^{(k)}, k is the number of iterations done.

for k from 1 to N do
    \Delta x := D^{-1}(b - Ax^{(k)});
    x^{(k+1)} := x^{(k)} + \Delta x;
    exit when (||\Delta x|| \leq \epsilon);
end for.
```
cost and convergence

Counting the number of operations in

for k from 1 to N do
 $\Delta x := D^{-1}(b - Ax^{(k)})$;
 $x^{(k+1)} := x^{(k)} + \Delta x$;
 exit when ($||\Delta x|| \leq \epsilon$);
end for.

we have a cost of $O(Nn^2)$, $O(n^2)$ for $Ax^{(k)}$, if A is dense.

Theorem

The Jacobi method converges for strictly row-wise or column-wise diagonally dominant matrices, i.e.: if

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| \quad \text{or} \quad |a_{i,i}| > \sum_{j \neq i} |a_{j,i}|, \quad i = 1, 2, \ldots, n.$$
1. **Jacobi iterations**
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. **A Parallel Implementation with MPI**
 - the sequential program
 - gather-to-all with `MPI_Allgather`
 - the parallel program
 - analysis of the computation and communication cost
parallel version of Jacobi iterations

for k from 1 to N do

$\Delta x := D^{-1}(b - Ax^{(k)})$;

$x^{(k+1)} := x^{(k)} + \Delta x$;

exit when ($||\Delta x|| \leq \epsilon$);

end for.

To run the code above with p processors:

- The n rows of A are distributed evenly (e.g.: $p = 4$):

\[
\begin{bmatrix}
\Delta x[0] \\
\Delta x[1] \\
\Delta x[2] \\
\Delta x[3]
\end{bmatrix}
=
\begin{bmatrix}
b[0] \\
b[1] \\
b[2] \\
b[3]
\end{bmatrix}
-
\begin{bmatrix}
\end{bmatrix}
\times
\begin{bmatrix}
x[0],(k) \\
x[1],(k) \\
x[2],(k) \\
x[3],(k)
\end{bmatrix}
\]

- Synchronization is needed for ($||\Delta x|| \leq \epsilon$).
butterfly synchronization

For $\| \cdot \|$, use $\| \Delta x \|_1 = |\Delta x_1| + |\Delta x_2| + \cdots + |\Delta x_n|$.
The communication stages:

- At the start, every node must have A, b, $x^{(0)}$, ϵ, and N.
- After each update n/p elements of $x^{(k+1)}$ must be scattered.
- The butterfly synchronization takes $\log_2(p)$ steps.

The scattering of $x^{(k+1)}$ can coincide with the butterfly synchronization.

The computation effort: $O(n^2/p)$ in each stage.
1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost
the test system

For the dimension n, we consider the diagonally dominant system:

$$
\begin{bmatrix}
n + 1 & 1 & \cdots & 1 \\
1 & n + 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & n + 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
= \begin{bmatrix}
2n \\
2n \\
\vdots \\
2n
\end{bmatrix}.
$$

The exact solution is \mathbf{x}: for $i = 1, 2, \ldots, n$, $x_i = 1$.

We start the Jacobi iteration method at $\mathbf{x}^{(0)} = \mathbf{0}$.

Parameters: $\epsilon = 10^{-4}$ and $N = 2n^2$.
running the program

$ time /tmp/jacobi 1000
 0 : 1.998e+03
 1 : 1.994e+03
...
8405 : 1.000e-04
8406 : 9.982e-05
cOMputed 8407 iterations
error : 4.986e-05

real 0m42.411s
user 0m42.377s
sys 0m0.028s
C code to run Jacobi iterations

void run_jacobi_method(
 int n, double **A, double *b,
 double epsilon, int maxit,
 int *numit, double *x);

/*
 * Runs the Jacobi method for A*x = b.
 *
 * ON ENTRY:
 * n the dimension of the system;
 * A an n-by-n matrix A[i][i] /= 0;
 * b an n-dimensional vector;
 * epsilon accuracy requirement;
 * maxit maximal number of iterations;
 * x start vector for the iteration.
 *
 * ON RETURN:
 * numit number of iterations used;
 * x approximate solution to A*x = b. */
local variables

```c
void run_jacobi_method
( int n, double **A, double *b,
  double epsilon, int maxit,
  int *numit, double *x )
{
    double *dx,*y;
    dx = (double*) calloc(n,sizeof(double));
    y = (double*) calloc(n,sizeof(double));
    int i,j,k;

    for(k=0; k<maxit; k++) { ... } /* main loop */

    *numit = k+1;
    free(dx); free(y);
}
```
the main loop in C

```c
for(k=0; k<maxit; k++)
{
    double sum = 0.0;
    for(i=0; i<n; i++)
    {
        dx[i] = b[i];
        for(j=0; j<n; j++)
            dx[i] -= A[i][j]*x[j];
        dx[i] /= A[i][i];
        y[i] += dx[i];
        sum += ( (dx[i] >= 0.0) ? dx[i] : -dx[i] );
    }
    for(i=0; i<n; i++) x[i] = y[i];
    printf("%3d : %.3e\n",k,sum);
    if(sum <= epsilon) break;
}
```
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost
Gathering the four elements of a vector to four processors:

\[
\begin{array}{cccc}
P_0 & 1 & 0 & 0 & 0 \\
P_1 & 0 & 2 & 0 & 0 \\
P_2 & 0 & 0 & 3 & 0 \\
P_3 & 0 & 0 & 0 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
P_0 & 1 & 2 & 3 & 4 \\
P_1 & 1 & 2 & 3 & 4 \\
P_2 & 1 & 2 & 3 & 4 \\
P_3 & 1 & 2 & 3 & 4 \\
\end{array}
\]
The syntax of the gather-to-all command is

```c
MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)
```

where the parameters are:

- `sendbuf`: starting address of send buffer
- `sendcount`: number of elements in send buffer
- `sendtype`: data type of send buffer elements
- `recvbuf`: address of receive buffer
- `recvcount`: number of elements received from any process
- `recvtype`: data type of receive buffer elements
- `comm`: communicator
Running `use_allgather`

```
$ mpirun -np 4 /tmp/use_allgather
data at node 0 : 1 0 0 0
data at node 1 : 0 2 0 0
data at node 2 : 0 0 3 0
data at node 3 : 0 0 0 4
data at node 3 : 1 2 3 4
data at node 0 : 1 2 3 4
data at node 1 : 1 2 3 4
data at node 2 : 1 2 3 4
$```
```c
int i, j, p;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &i);
MPI_Comm_size(MPI_COMM_WORLD, &p);
{
 int data[p];
 for (j = 0; j < p; j++) data[j] = 0;
 data[i] = i + 1;
 printf("data at node %d :", i);
 for (j = 0; j < p; j++) printf(" %d", data[j]);
 printf("\n");
 MPI_Allgather(&data[i], 1, MPI_INT,
 data, 1, MPI_INT, MPI_COMM_WORLD);
 printf("data at node %d :", i);
 for (j = 0; j < p; j++) printf(" %d", data[j]);
 printf("\n");
}
```
1. Jacobi iterations
   - derivation of the formulas
   - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
   - the sequential program
   - gather-to-all with MPI_Allgather
   - the parallel program
   - analysis of the computation and communication cost
running `jacobi_mpi`

```bash
$ time mpirun -np 10 /tmp/jacobi_mpi 1000
...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05
```

```
real 0m5.617s
user 0m45.711s
sys 0m0.883s
```

Recall the run with the sequential program:

```
real 0m42.411s
user 0m42.377s
sys 0m0.028s
```

**Speedup:** \(\frac{42.411}{5.617} = 7.550\).
the parallel run_jacobi_method

void run_jacobi_method
( int id, int p,
    int n, double **A, double *b,
    double epsilon, int maxit,
    int *numit, double *x )
{
    double *dx,*y;
    dx = (double*) calloc(n,sizeof(double));
    y = (double*) calloc(n,sizeof(double));
    int i,j,k;
    double sum[p];
    double total;
    int dnp = n/p;
    int istart = id*dnp;
    int istop = istart + dnp;
the main loop in `jacobi_mpi.c`

```c
for(k=0; k<maxit; k++)
{
 sum[id] = 0.0;
 for(i=istart; i<istop; i++)
 {
 dx[i] = b[i];
 for(j=0; j<n; j++)
 dx[i] -= A[i][j]*x[j];
 dx[i] /= A[i][i];
 y[i] += dx[i];
 sum[id] += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);
 }
 for(i=istart; i<istop; i++) x[i] = y[i];
}
```

the all-to-all communication

    MPI_Allgather(&x[istart],dnp,MPI_DOUBLE,x,dnp,
                     MPI_DOUBLE,MPI_COMM_WORLD);
    MPI_Allgather(&sum[id],1,MPI_DOUBLE,sum,1,
                     MPI_DOUBLE,MPI_COMM_WORLD);
    total = 0.0;
    for(i=0; i<p; i++) total += sum[i];
    if(id == 0) printf("%3d : %.3e\n",k,total);
    if(total <= epsilon) break;

    *numit = k+1;
    free(dx);
}
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
   - derivation of the formulas
   - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
   - the sequential program
   - gather-to-all with `MPI_Allgather`
   - the parallel program
   - analysis of the computation and communication cost
Computing $x^{(k+1)} := x^{(k)} + D^{-1}(b - Ax^{(k)})$ with $p$ processors costs

$$t_{\text{comp}} = \frac{n(2n + 3)}{p}.$$ 

We count $2n + 3$ operations because of

- one $-$ and one $\star$ when running over the columns of $A$; and
- one $/$, one $+$ for the update and one $+$ for the $\| \cdot \|_1$.

The communication cost is

$$t_{\text{comm}} = p \left( t_{\text{startup}} + \frac{n}{p} t_{\text{data}} \right).$$
finding the $p$ with the minimum total cost

The computation, communication, and total cost for $p$ from 2 to 32, for 1 iteration, $n = 1,000$, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$. 
investigating the scalability

The computation, communication, and total cost for $p$ from 10 to 256, for 1 iteration, $n = 10,000$, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$. 
Summary + Exercises

We covered §6.3.1 in the book of Wilkinson and Allen.

*Because of its slow convergence, the Jacobi method is seldomly used.*

Exercises:

1. Use OpenMP to write a parallel version of the Jacobi method. Do you observe a better speedup than with MPI?

2. The power method to compute the largest eigenvalue of a matrix $A$ uses the formulas $y := A x^{(k)}$; $x^{(k+1)} := y/||y||$. Describe a parallel implementation of the power method.

3. Consider the formula for the total cost of the Jacobi method for an $n$-dimensional linear system with $p$ processors. Derive an analytic expression for the optimal value of $p$. What does this expression tell about the scalability?