1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with `MPI_Allgather`
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with `mpi4py`
 - a parallel matrix-vector product
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with mpi4py
 - a parallel matrix-vector product
We want to solve $A x = b$ for $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, for very large n.

Consider $A = L + D + U$, where

- $L = [\ell_{i,j}]$, $\ell_{i,j} = a_{i,j}$, $i > j$, $\ell_{i,j} = 0$, $i \leq j$. L is lower triangular.
- $D = [d_{i,j}]$, $d_{i,i} = a_{i,i} \neq 0$, $d_{i,j} = 0$, $i \neq j$. D is diagonal.
- $U = [u_{i,j}]$, $u_{i,j} = a_{i,j}$, $i < j$, $u_{i,j} = 0$, $i \geq j$. U is upper triangular.

Then we rewrite $A x = b$ as

$$A x = b \iff (L + D + U)x = b$$
$$\iff Dx = b - Lx - Ux$$
$$\iff Dx = Dx + b - Lx - Ux - Dx$$
$$\iff Dx = Dx + b - Ax$$
$$\iff x = x + D^{-1}(b - Ax).$$

The fixed point formula $x = x + D^{-1}(b - Ax)$ is well defined if $a_{i,i} \neq 0$.
the Jacobi iterative method

The fixed point formula $x = x + D^{-1}(b - Ax)$ leads to

$$x^{(k+1)} = x^{(k)} + D^{-1} \left(b - Ax^{(k)} \right), \quad k = 0, 1, \ldots$$

Writing the formula as an algorithm:

Input: A, b, $x^{(0)}$, ϵ, N.
Output: $x^{(k)}$, k is the number of iterations done.

for k from 1 to N do
 $\Delta x := D^{-1}(b - Ax^{(k)})$
 $x^{(k+1)} := x^{(k)} + \Delta x$
 exit when ($\|\Delta x\| \leq \epsilon$)
end for.
cost and convergence

Counting the number of operations in

for k from 1 to N do

$\Delta x := D^{-1}(b - Ax^{(k)})$

$x^{(k+1)} := x^{(k)} + \Delta x$

exit when ($\|\Delta x\| \leq \epsilon$)

end for.

we have a cost of $O(Nn^2)$, $O(n^2)$ for $Ax^{(k)}$, if A is dense.

Theorem

The Jacobi method converges for strictly row-wise or column-wise diagonally dominant matrices, i.e.: if

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| \quad \text{or} \quad |a_{i,i}| > \sum_{j \neq i} |a_{j,i}|, \quad i = 1, 2, \ldots, n.$$
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgatherv
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with mpi4py
 - a parallel matrix-vector product
parallel version of Jacobi iterations

for k from 1 to N do
\[\Delta x := D^{-1}(b - Ax^{(k)}) \]
\[x^{(k+1)} := x^{(k)} + \Delta x \]
exit when ($\|\Delta x\| \leq \epsilon$)
end for.

To run the code above with p processors:

- The n rows of A are distributed evenly (e.g.: $p = 4$):

$$
D \times \begin{bmatrix}
\Delta x^{[0]} \\
\Delta x^{[1]} \\
\Delta x^{[2]} \\
\Delta x^{[3]}
\end{bmatrix} = \begin{bmatrix}
b^{[0]} \\
b^{[1]} \\
b^{[2]} \\
b^{[3]}
\end{bmatrix} - \begin{bmatrix}
A^{[0,0]} & A^{[0,1]} & A^{[0,2]} & A^{[0,3]} \\
A^{[1,0]} & A^{[1,1]} & A^{[1,2]} & A^{[1,3]} \\
A^{[2,0]} & A^{[2,1]} & A^{[2,2]} & A^{[2,3]} \\
A^{[3,0]} & A^{[3,1]} & A^{[3,2]} & A^{[3,3]}
\end{bmatrix} \times \begin{bmatrix}
x^{[0],(k)} \\
x^{[1],(k)} \\
x^{[2],(k)} \\
x^{[3],(k)}
\end{bmatrix}
$$

- Synchronization is needed for ($\|\Delta x\| \leq \epsilon$).
butterfly synchronization

For $\| \cdot \|$, use $\| \Delta \mathbf{x} \|_1 = |\Delta x_1| + |\Delta x_2| + \cdots + |\Delta x_n|$.
The communication stages:

- At the start, every node must have $x^{(0)}$, ϵ, N,
 - a number of rows of the matrix A; and
 - the corresponding part of the right hand side vector b.
- After each update n/p elements of $x^{(k+1)}$ must be scattered.
- The butterfly synchronization takes $\log_2(p)$ steps.

The scattering of $x^{(k+1)}$ can coincide with the butterfly synchronization.

The computation effort: $O(n^2/p)$ in each stage.
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with mpi4py
 - a parallel matrix-vector product
For the dimension n, we consider the diagonally dominant system:

$$
\begin{bmatrix}
 n+1 & 1 & \cdots & 1 \\
 1 & n+1 & \cdots & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & 1 & \cdots & n+1 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix} =
\begin{bmatrix}
 2n \\
 2n \\
 \vdots \\
 2n \\
\end{bmatrix}.
$$

The exact solution is x: for $i = 1, 2, \ldots, n$, $x_i = 1$.

We start the Jacobi iteration method at $x^{(0)} = 0$.

Parameters: $\epsilon = 10^{-4}$ and $N = 2n^2$.

running the program

$ time ./jacobi 1000
 0 : 1.998e+03
 1 : 1.994e+03
 ...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05

real 0m42.411s
user 0m42.377s
sys 0m0.028s
C code to run Jacobi iterations

```c
void run_jacobi_method
( int n, double **A, double *b,
  double epsilon, int maxit,
  int *numit, double *x );
/*
 * Runs the Jacobi method for A*x = b.
 *
 * ON ENTRY :
 *  n    the dimension of the system;
 *  A    an n-by-n matrix A[i][i] /= 0;
 *  b    an n-dimensional vector;
 *  epsilon    accuracy requirement;
 *  maxit maximal number of iterations;
 *  x    start vector for the iteration.
 *
 * ON RETURN :
 *  numit number of iterations used;
 *  x    approximate solution to A*x = b. */
```
void run_jacobi_method
 (int n, double **A, double *b,
 double epsilon, int maxit,
 int *numit, double *x)
{
 double *dx,*y;
 dx = (double*) calloc(n,sizeof(double));
 y = (double*) calloc(n,sizeof(double));
 int i,j,k;

 for(k=0; k<maxit; k++) { ... } /* main loop */

 *numit = k+1;
 free(dx); free(y);
}
the main loop in C

```c
for(k=0; k<maxit; k++)
{
    double sum = 0.0;
    for(i=0; i<n; i++)
    {
        dx[i] = b[i];
        for(j=0; j<n; j++)
            dx[i] -= A[i][j]*x[j];
        dx[i] /= A[i][i];
        y[i] += dx[i];
        sum += ( (dx[i] >= 0.0) ? dx[i] : -dx[i]);
    }
    for(i=0; i<n; i++) x[i] = y[i];
    printf("%3d : %.3e\n",k,sum);
    if(sum <= epsilon) break;
}
```
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with `MPI_Allgather`
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with `mpi4py`
 - a parallel matrix-vector product
Gathering the four elements of a vector to four processors:

\[
\begin{align*}
P_0 & : 1 & 0 & 0 & 0 \\
P_1 & : 0 & 2 & 0 & 0 \\
P_2 & : 0 & 0 & 3 & 0 \\
P_3 & : 0 & 0 & 0 & 4 \\
\end{align*}
\]
The syntax of the gather-to-all command is

\[
\text{MPI_Allgather}(\text{sendbuf}, \text{sendcount}, \text{sendtype}, \text{recvbuf}, \text{recvcount}, \text{recvtype}, \text{comm})
\]

where the parameters are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendbuf</td>
<td>starting address of send buffer</td>
</tr>
<tr>
<td>sendcount</td>
<td>number of elements in send buffer</td>
</tr>
<tr>
<td>sendtype</td>
<td>data type of send buffer elements</td>
</tr>
<tr>
<td>recvbuf</td>
<td>address of receive buffer</td>
</tr>
<tr>
<td>recvcount</td>
<td>number of elements received from any process</td>
</tr>
<tr>
<td>recvtype</td>
<td>data type of receive buffer elements</td>
</tr>
<tr>
<td>comm</td>
<td>communicator</td>
</tr>
</tbody>
</table>
running **use_allgather**

```bash
$ mpirun -np 4 ./use_allgather

data at node 0 : 1 0 0 0
data at node 1 : 0 2 0 0
data at node 2 : 0 0 3 0
data at node 3 : 0 0 0 4
data at node 3 : 1 2 3 4
data at node 0 : 1 2 3 4
data at node 1 : 1 2 3 4
data at node 2 : 1 2 3 4
$ 
```
```c
int i, j, p;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &i);
MPI_Comm_size(MPI_COMM_WORLD, &p);
{
    int data[p];
    for (j = 0; j < p; j++) data[j] = 0;
    data[i] = i + 1;
    printf("data at node %d :", i);
    for (j = 0; j < p; j++) printf(" %d", data[j]);
    printf("\n");
    MPI_Allgather(&data[i], 1, MPI_INT, data, 1, MPI_INT, MPI_COMM_WORLD);
    printf("data at node %d :", i);
    for (j = 0; j < p; j++) printf(" %d", data[j]);
    printf("\n");
}
```
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgatherv
 - the parallel program
 - analysis of the computation and communication cost

3. Collective Communications with mpi4py
 - a parallel matrix-vector product
running `jacobi_mpi`

```
$ time mpirun -np 10 ./jacobi_mpi 1000
...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05
real 0m5.617s
user 0m45.711s
sys 0m0.883s
```

Recall the run with the sequential program:

```
real 0m42.411s
user 0m42.377s
sys 0m0.028s
```

Speedup: $\frac{42.411}{5.617} = 7.550$.
the parallel run_jacobi_method

void run_jacobi_method
 (int id, int p,
 int n, double **A, double *b,
 double epsilon, int maxit,
 int *numit, double *x)
{
 double *dx,*y;
 dx = (double*) calloc(n,sizeof(double));
 y = (double*) calloc(n,sizeof(double));
 int i,j,k;
 double sum[p];
 double total;
 int dnp = n/p;
 int istart = id*dnp;
 int istop = istart + dnp;
the main loop in jacobi_mpi.c

for(k=0; k<maxit; k++)
{
 sum[id] = 0.0;
 for(i=istart; i<istop; i++)
 {
 dx[i] = b[i];
 for(j=0; j<n; j++)
 dx[i] -= A[i][j]*x[j];
 dx[i] /= A[i][i];
 y[i] += dx[i];
 sum[id] += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);
 }
 for(i=istart; i<istop; i++) x[i] = y[i];
}
MPI_Allgather(&x[istart], dnp, MPI_DOUBLE, x, dnp, MPI_DOUBLE, MPI_COMM_WORLD);
MPI_Allgather(&sum[id], 1, MPI_DOUBLE, sum, 1, MPI_DOUBLE, MPI_COMM_WORLD);

total = 0.0;
for(i=0; i<p; i++) total += sum[i];
if(id == 0) printf("%3d : %.3e\n", k, total);
if(total <= epsilon) break;

*numit = k+1;
free(dx);
Parallel Iterative Methods for Linear Systems

1. **Jacobi iterations**
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. **a Parallel Implementation with MPI**
 - the sequential program
 - gather-to-all with \texttt{MPI_Allgather}
 - the parallel program
 - analysis of the computation and communication cost

3. **Collective Communications with mpi4py**
 - a parallel matrix-vector product
Computing $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$ with p processors costs

$$t_{\text{comp}} = \frac{n(2n + 3)}{p}.$$

We count $2n + 3$ operations because of

- one $-$ and one \ast when running over the columns of A; and
- one $/$, one $+$ for the update and one $+$ for the $\| \cdot \|_1$.

The communication cost is

$$t_{\text{comm}} = p \left(t_{\text{startup}} + \frac{n}{p} t_{\text{data}} \right).$$

In the examples, the time unit is the cost of one arithmetical operation. Then the costs t_{startup} and t_{data} are multiples of this unit.
finding the p with the minimum total cost

The computation, communication, and total cost for p from 2 to 32, for 1 iteration, $n = 1,000$, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$.
investigating the scalability

The computation, communication, and total cost for p from 16 to 256, for 1 iteration, $n = 10,000$, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$.
Parallel Iterative Methods for Linear Systems

1. Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization

2. A parallel implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgatherv
 - the parallel program
 - analysis of the computation and communication cost

3. Collective communications with mpi4py
 - a parallel matrix-vector product
a parallel matrix-vector product

Copied from the MPI for Python documentation:

```python
from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0]  # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype='d')
    comm.Allgather([x, MPI.DOUBLE],
                    [xg, MPI.DOUBLE])
    y = numpy.dot(A, xg)
    return y

```
We covered §6.3.1 in the book of Wilkinson and Allen.
Because of its slow convergence, the Jacobi method is seldomly used.

Exercises:

1. Use mpi4py for the parallel Jacobi method. Compare with the C version to demonstrate the correctness.

2. Use OpenMP to write a parallel version of the Jacobi method. Do you observe a better speedup than with MPI?

3. The power method to compute the largest eigenvalue of a matrix A uses the formulas $y := Ax^{(k)}; x^{(k+1)} := y/\|y\|$. Describe a parallel implementation of the power method.

4. Consider the formula for the total cost of the Jacobi method for an n-dimensional linear system with p processors. Derive an analytic expression for the optimal value of p. What does this expression tell about the scalability?