Solving Triangular Systems

1. Forward Substitution Formulas
 - processing the L of the LU factorization
 - a third type of pipeline

2. Parallel Solving
 - using an n-stage pipeline
 - rewriting the formulas
 - a parallel solver with OpenMP
Solving Triangular Systems

1. **Forward Substitution Formulas**
 - processing the L of the LU factorization
 - a third type of pipeline

2. **Parallel Solving**
 - using an n-stage pipeline
 - rewriting the formulas
 - a parallel solver with OpenMP
LU factorization

To solve an n-dimensional linear system $Ax = b$ we factor A as a product of two triangular matrices, $A = LU$:

- L is lower triangular, $L = [\ell_{i,j}]$, $\ell_{i,j} = 0$ if $j > i$ and $\ell_{i,i} = 1$.
- U is upper triangular $U = [u_{i,j}]$, $u_{i,j} = 0$ if $i > j$.

Solving $Ax = b$ is equivalent to solving $L(Ux) = b$:

1. Forward substitution: $Ly = b$.
2. Backward substitution: $Ux = y$.

Factoring A costs $O(n^3)$, solving triangular systems costs $O(n^2)$.

formulas for forward substitution

Expanding the matrix-vector product $L \mathbf{y}$ in $L \mathbf{y} = \mathbf{b}$ leads to

\[
\begin{align*}
 y_1 & = b_1 \\
 \ell_{2,1}y_1 + y_2 & = b_2 \\
 \ell_{3,1}y_1 + \ell_{3,2}y_2 + y_3 & = b_3 \\
 & \vdots \\
 \ell_{n,1}y_1 + \ell_{n,2}y_2 + \ell_{n,3}y_3 + \cdots + \ell_{n,n-1}y_{n-1} + y_n & = b_n
\end{align*}
\]

and solving for the diagonal elements gives

\[
\begin{align*}
 y_1 & = b_1 \\
 y_2 & = b_2 - \ell_{2,1}y_1 \\
 y_3 & = b_3 - \ell_{3,1}y_1 - \ell_{3,2}y_2 \\
 & \vdots \\
 y_n & = b_n - \ell_{n,1}y_1 - \ell_{n,2}y_2 - \cdots - \ell_{n,n-1}y_{n-1}
\end{align*}
\]
For $k = 1, 2, \ldots, n$:

$$y_k = b_k - \sum_{i=1}^{k-1} \ell_{k,i} y_i.$$

As an algorithm:

```plaintext
for $k$ from 1 to $n$ do  
  $y_k := b_k;$  
  for $i$ from 1 to $k - 1$ do  
    $y_k := y_k - \ell_{k,i} \times y_i.$
```

We count

$$1 + 2 + \cdots + n - 1 = \frac{n(n-1)}{2}$$

multiplications and subtractions.
Solving Triangular Systems

1. Forward Substitution Formulas
 - processing the L of the LU factorization
 - a third type of pipeline

2. Parallel Solving
 - using an \(n \)-stage pipeline
 - rewriting the formulas
 - a parallel solver with OpenMP
Three types of pipelines:

1. Speedup only if multiple instances. Example: instruction pipeline.
2. Speedup already if one instance. Example: pipeline sorting.
3. Worker continues after passing information through. Example: solve $Ly = b$.

Typical for the 3rd type of pipeline is the varying length of each job.
Solving Triangular Systems

1. **Forward Substitution Formulas**
 - processing the \(L \) of the LU factorization
 - a third type of pipeline

2. **Parallel Solving**
 - using an \(n \)-stage pipeline
 - rewriting the formulas
 - a parallel solver with OpenMP
using an n-stage pipeline

We assume that L is available on every processor.

For $n = 4 = p$:

$$
y_1 := b_1$$

$$
y_2 := b_2 - \ell_{2,1} \ast y_1$$

$$
y_3 := b_3 - \ell_{3,1} \ast y_1 - \ell_{3,2} \ast y_2$$

$$
y_4 := b_4 - \ell_{4,1} \ast y_1 - \ell_{4,2} \ast y_2 - \ell_{4,3} \ast y_3$$
type 3 pipelining
Make y_1 available in the next pipeline cycle:
counting the steps

We count the steps for $p = 4$ or in general, for $p = n$:

1. The latency takes 4 steps for y_1 to be at P_4, or in general: n steps for y_1 to be at P_n.

2. It takes then 6 additional steps for y_4 to be computed by P_4, or in general: $2n - 2$ additional steps for y_n to be computed by P_n.

So it takes $n + 2n - 2 = 3n - 2$ steps to solve an n-dimensional triangular system by an n-stage pipeline.
Solving Triangular Systems

Forward Substitution Formulas
- processing the L of the LU factorization
- a third type of pipeline

Parallel Solving
- using an n-stage pipeline
- rewriting the formulas
- a parallel solver with OpenMP
rewriting the formulas

Solving $Ly = b$ for $n = 5$:

1. $y := b$;

2. $y_2 := y_2 - \ell_{2,1} \times y_1$;
 $y_3 := y_3 - \ell_{3,1} \times y_1$;
 $y_4 := y_4 - \ell_{4,1} \times y_1$;
 $y_5 := y_5 - \ell_{5,1} \times y_1$;

3. $y_3 := y_3 - \ell_{3,2} \times y_2$;
 $y_4 := y_4 - \ell_{4,2} \times y_2$;
 $y_5 := y_5 - \ell_{5,2} \times y_2$;

4. $y_4 := y_4 - \ell_{4,3} \times y_3$;
 $y_5 := y_5 - \ell_{5,3} \times y_3$;

5. $y_5 := y_5 - \ell_{5,4} \times y_4$;

⇒ all instructions in the j loop are independent from each other!
Consider the inner loop in the algorithm to solve $Ly = b$:

\[y := b; \]
\[\text{for } i \text{ from 2 to } n \text{ do} \]
\[\quad \text{for } j \text{ from } i \text{ to } n \text{ do} \]
\[\quad \quad y_j := y_j - \ell_{j,i-1} \ast y_{i-1}; \]

We distribute the update of $y_i, y_{i+1}, \ldots, y_n$ among p processors. If $n \gg p$, then we expect a close to optimal speedup.
Solving Triangular Systems

1. Forward Substitution Formulas
 - processing the L of the LU factorization
 - a third type of pipeline

2. Parallel Solving
 - using an n-stage pipeline
 - rewriting the formulas
 - a parallel solver with OpenMP
For our parallel solver for triangular systems:

- For $L = [\ell_{i,j}]$, we generate random numbers for $\ell_{i,j} \in [0, 1]$. The exact solution y: $y_i = 1$, for $i = 1, 2, \ldots, n$.
 We compute the right hand side $b = Ly$.

- For dimensions $n > 800$, hardware doubles are insufficient. With hardware doubles, the accumulation of round off is such that we lose all accuracy in y_n.
 We recall that condition numbers of n-dimensional triangular systems can grow as large as 2^n.
 Therefore, we use quad double arithmetic.

- We use OpenMP, because it is Friday and OpenMP is easy.
hardware doubles are too inaccurate

Relying on hardware doubles is problematic:

```
$ time /tmp/trisol 10
last number : 1.0000000000000009e+00
real 0m0.003s user 0m0.001s sys 0m0.002s

$ time /tmp/trisol 100
last number : 9.9999999999974221e-01
real 0m0.005s user 0m0.001s sys 0m0.002s

$ time /tmp/trisol 1000
last number : 2.7244600009080568e+04
real 0m0.036s user 0m0.025s sys 0m0.009s
```
a matrix of quad doubles

Allocating data in the main program:

```c
{
    qd_real b[n], y[n];
    int i, j;

    qd_real **L;
    L = (qd_real**) calloc(n,sizeof(qd_real*));
    for(i=0; i<n; i++)
        L[i] = (qd_real*) calloc(n,sizeof(qd_real));

    srand(time(NULL));
    random_triangular_system(n,L,b);
}
```
void random_triangular_system
(int n, qd_real **L, qd_real *b)
{
 int i, j;
 for(i=0; i<n; i++)
 {
 L[i][i] = 1.0;
 for(j=0; j<i; j++)
 {
 double r = ((double) rand())/RAND_MAX;
 L[i][j] = qd_real(r);
 }
 for(j=i+1; j<n; j++)
 {
 L[i][j] = qd_real(0.0);
 }
 }
 for(i=0; i<n; i++)
 {
 b[i] = qd_real(0.0);
 for(j=0; j<n; j++)
 {
 b[i] = b[i] + L[i][j];
 }
 }
}
void solve_triangular_system_swapped
 (int n, qd_real **L, qd_real *b, qd_real *y)
{
 int i,j;

 for(i=0; i<n; i++) y[i] = b[i];

 for(i=1; i<n; i++)
 {
 for(j=i; j<n; j++)
 y[j] = y[j] - L[j][i-1]*y[i-1];
 }
}

using OpenMP

```c
void solve_triangular_system_swapped
 ( int n, qd_real **L, qd_real *b, qd_real *y )
{
  int i, j;

  for(i=0; i<n; i++) y[i] = b[i];

  for(i=1; i<n; i++)
  {
    #pragma omp parallel shared(L,y) private(j)
    {
      #pragma omp for
      for(j=i; j<n; j++)
      {
        y[j] = y[j] - L[j][i-1]*y[i-1];
      }
    }
  }
}
```
experimental timings

running time /tmp/trisol_qd_omp n p

On dimension \(n = 8,000 \) for varying number \(p \) of cores.

<table>
<thead>
<tr>
<th>(p)</th>
<th>cpu time</th>
<th>real</th>
<th>user</th>
<th>sys</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.240s</td>
<td>35.095s</td>
<td>34.493s</td>
<td>0.597s</td>
</tr>
<tr>
<td>2</td>
<td>22.790s</td>
<td>25.237s</td>
<td>36.001s</td>
<td>0.620s</td>
</tr>
<tr>
<td>4</td>
<td>22.330s</td>
<td>19.433s</td>
<td>35.539s</td>
<td>0.633s</td>
</tr>
<tr>
<td>8</td>
<td>23.200s</td>
<td>16.726s</td>
<td>36.398s</td>
<td>0.611s</td>
</tr>
<tr>
<td>12</td>
<td>23.260s</td>
<td>15.781s</td>
<td>36.457s</td>
<td>0.626s</td>
</tr>
</tbody>
</table>

The serial part is the generation of the random numbers for \(L \) and the computation of \(b = Ly \). Recall Amdahl’s Law.

We can compute the serial time, subtracting for \(p = 1 \), from the real time the cpu time spent in the solver, i.e.: \(35.095 - 21.240 = 13.855 \). For \(p = 12 \), time spent on the solver is \(15.781 - 13.855 = 1.926 \). Compare 1.926 to \(21.240/12 = 1.770 \).
Summary + Exercises

We ended chapter 5 in the book of Wilkinson and Allen.

Exercises:

1. Consider the upper triangular system $Ux = y$, with $U = [u_{i,j}]$, $u_{i,j} = 0$ if $i > j$. Derive the formulas and general algorithm to compute the components of the solution x. For $n = 4$, draw the third type of pipeline.

2. Write a parallel solver with OpenMP to solve $Ux = y$. Take for U a matrix with random numbers in $[0, 1]$, compute y so all components of x equal one. Test the speedup of your program, for large enough values of n and a varying number of cores.

3. Describe a parallel solver for upper triangular systems $Uy = b$ for distributed memory computers. Write a prototype implementation using MPI and discuss its scalability.