
Programming GPUs with PyCUDA and Julia
1 Data Parallelism

the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

MCS 572 Lecture 17
Introduction to Supercomputing

Jan Verschelde, 4 October 2024

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 1 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 2 / 36

the programming model

Programming model: Single Instruction Multiple Data (SIMD).
Data parallelism: blocks of threads read from memory,
execute the same instruction(s), write to memory.
Massively parallel: need 10,000 threads for full occupancy.

The code that runs on the GPU is defined in a function, the kernel.

What makes the programming model scalable?

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 3 / 36

a scalable programming model
each core represents a streaming multiprocessor

?
block 6

block 4

block 2

block 0

block 7

block 5

block 3

block 1

core 1core 0

GPU with 2 cores

core 3core 2core 1core 0

GPU with 4 cores

?

block 0 block 1 block 2 block 3

block 4 block 5 block 6 block 7

multithreaded CUDA program

? ?

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 4 / 36

dual warp scheduler
a warp consists of 32 threads

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 5 / 36

launching kernels

A kernel launch
creates a grid of blocks, and
each block has one or more threads.

The organization of the grids and blocks can be 1D, 2D, or 3D.

During the running of the kernel:
Threads in the same block are executed simultaneously.
Blocks are scheduled by the streaming multiprocessors.

CUDA = Compute Unified Device Architecture, by NVIDIA.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 6 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 7 / 36

displaying images with programmable GPUs

from the GeForce 8 and 9 Series GPU Programming Guide (NVIDIA)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 8 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 9 / 36

data parallelism

Many applications process large amounts of data.

Data parallelism refers to the property where many arithmetic
operations can be safely performed on the data simultaneously.

Consider the multiplication of matrices A and B: C = A · B, with

A = [ai,j] ∈ Rn×m, B = [bi,j] ∈ Rm×p, C = [ci,j] ∈ Rn×p.

ci,j is the inner product of the i th row of A with the j th column of B:

ci,j =
m∑

k=1

ai,k · bk ,j .

All ci,j ’s can be computed independently from each other.

For n = m = p = 1,024 we have 1,048,576 inner products.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 10 / 36

data parallelism in matrix multiplication

ci,j =
m∑

k=1

ai,k · bk ,j

A C

B













i

� m -

j
6

m

?

� p -

6

n

?

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 11 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 12 / 36

about PyCUDA

A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih:
PyCUDA and PyOpenCL: A scripting-based approach to GPU
run-time code generation. Parallel Computing, 38(3):157–174, 2012.

The operating principle of GPU code generation:

Benefits:
takes care of a lot of “boiler plate” code;
focus on the kernel, with numpy typing.

We focus on PyCUDA. PyOpenCL is for GPUs not by NVIDIA.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 13 / 36

checking the installation on pascal

$ python3
Python 3.6.8 (default, Nov 16 2020, 16:55:22)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
>>> import pycuda
>>> import pycuda.autoinit
>>> from pycuda.tools import make_default_context
>>> c = make_default_context()
>>> d = c.get_device()
>>> d.name()
’Tesla P100-PCIE-16GB’
>>>

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 14 / 36

checking the installation on a windows laptop
which houses an NVIDIA GPU

$ python3
Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019,
23:11:46) [MSC v.1916 64 bit (AMD64)] on win32

>>> import pycuda
>>> import pycuda.autoinit
>>> from pycuda.tools import make_default_context
>>> c = make_default_context()
>>> d = c.get_device()
>>> d.name()
’GeForce RTX 2080 with Max-Q Design’
>>>

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 15 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 16 / 36

headers and type declarations
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy

(n, m, p) = (3, 4, 5)

n = numpy.int32(n)
m = numpy.int32(m)
p = numpy.int32(p)

a = numpy.random.randint(2, size=(n, m))
b = numpy.random.randint(2, size=(m, p))
c = numpy.zeros((n, p), dtype=numpy.float32)

a = a.astype(numpy.float32)
b = b.astype(numpy.float32)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 17 / 36

allocation and copy from host to device

a_gpu = cuda.mem_alloc(a.size * a.dtype.itemsize)
b_gpu = cuda.mem_alloc(b.size * b.dtype.itemsize)
c_gpu = cuda.mem_alloc(c.size * c.dtype.itemsize)

cuda.memcpy_htod(a_gpu, a)
cuda.memcpy_htod(b_gpu, b)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 18 / 36

definition of the kernel

mod = SourceModule("""
__global__ void multiply
(int n, int m, int p,
float *a, float *b, float *c)

{
int idx = p*threadIdx.x + threadIdx.y;

c[idx] = 0.0;
for(int k=0; k<m; k++)

c[idx] += a[m*threadIdx.x+k]

*b[threadIdx.y+k*p];
}
""")

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 19 / 36

launching the kernel

func = mod.get_function("multiply")
func(n, m, p, a_gpu, b_gpu, c_gpu, \

block=(int(n), int(p), 1), \
grid=(1, 1), shared=0)

cuda.memcpy_dtoh(c, c_gpu)

print("matrix A:")
print(a)
print("matrix B:")
print(b)
print("multiplied A*B:")
print(c)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 20 / 36

running the code

At the command prompt:

$ python3 matmatmulcuda.py
matrix A:
[[0. 0. 1. 0.]
[0. 0. 1. 1.]
[0. 1. 1. 0.]]

matrix B:
[[1. 1. 0. 1. 1.]
[1. 0. 1. 0. 0.]
[0. 0. 1. 1. 0.]
[0. 0. 1. 1. 0.]]

multiplied A*B:
[[0. 0. 1. 1. 0.]
[0. 0. 2. 2. 0.]
[1. 0. 2. 1. 0.]]

$

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 21 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 22 / 36

linear address system

Consider a 3-by-5 matrix stored row-wise (as in C):

PP��

a0,0 a0,1 a0,2 a0,3 a0,4

a1,0 a1,1 a1,2 a1,3 a1,4

a2,0 a2,1 a2,2 a2,3 a2,4

a0,0 a0,1 a0,2 a0,3 a0,4 a1,0 a1,1 a1,2 a1,3 a1,4 a2,0 a2,1 a2,2 a2,3 a2,4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The float *a in the kernel represents a one dimensional array.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 23 / 36

assigning inner products to threads

Consider a 3-by-4 matrix A and a 4-by-5 matrix B:

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

b0,0 b0,1 b0,2 b0,3 b0,4

b1,0 b1,1 b1,2 b1,3 b1,4

b2,0 b2,1 b2,2 b2,3 b2,4

b3,0 b3,1 b3,2 b3,3 b3,4

c0,0 c0,1 c0,2 c0,3 c0,4 c1,0 c1,1 c1,2 c1,3 c1,4 c2,0 c2,1 c2,2 c2,3 c2,4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The idx = p*threadIdx.x + threadIdx.y
determines what entry in C = A · B will be computed.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 24 / 36

a two dimensional grid of threads

A is n-by-m, B is m-by-p, and C = A · B is n-by-p.

func = mod.get_function("multiply")
func(n, m, p, a_gpu, b_gpu, c_gpu, \

block=(numpy.int(n), numpy.int(p), 1), \
grid=(1, 1), shared=0)

One block of threads is launched of size n-by-p.
Each thread computes one element of the product, defined by

idx = p*threadIdx.x + threadIdx.y

c[idx] = 0.0;
for(int k=0; k<m; k++)

c[idx] += a[m*threadIdx.x+k]

*b[threadIdx.y+k*p];

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 25 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 26 / 36

about CUDA.jl

T. Besard, C. Foket, and B. De Sutter:
Effective Extensible Programming: Unleashing Julia on GPUs.
IEEE Transactions on Parallel and Distributed Systems,
Vol. 30, No. 4, pages 827–841, 2019.

Installation:
1 Verify that the computer has an NVIDIA GPU

and that the CUDA Software Development Kit is installed.
2 Type using CUDA to install in Julia.
3 Type] to get the pkg> prompt and type test CUDA.
4 Be patient.

https://juliagpu.org is the site of JuliaGPU, the organization to
unify the many packages for programming GPUs in Julia.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 27 / 36

the compilation process for Julia GPU code

From Besard et al., 2019.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 28 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 29 / 36

a first kernel
https://cuda.juliagpu.org/stable/tutorials/introduction

using CUDA
using Test

function gpu_add1!(y, x)
for i = 1:length(y)

@inbounds y[i] += x[i]
end
return nothing

end

N = 2^20 # adding one million Float32 numbers
x_d = CUDA.fill(1.0f0, N) # stored on GPU filled with 1.0
y_d = CUDA.fill(2.0f0, N) # stored on GPU filled with 2.0

fill!(y_d, 2)
@cuda gpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))
println(result)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 30 / 36

running at the command prompt

The code on the previous slide is saved in gpuadd.jl.

Type julia gpuadd.jl at the command prompt.

Some warnings may appear ...

but Test Passed should be the result.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 31 / 36

Programming GPUs with PyCUDA and Julia

1 Data Parallelism
the programming model
host (CPU) and device (GPU)
matrix matrix multiplication

2 PyCUDA
about PyCUDA
using PyCUDA for matrix matrix multiplication
the kernel explained

3 GPU Programming in Julia
about CUDA.jl
a first kernel
vendor agnostic GPU computing

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 32 / 36

vendor agnostic GPU computing

In addition to CUDA.jl, the following packages are available:
AMDGPU.jl for AMD GPUs,
oneAPI.jl for the Intel oneAPI,
Metal.jl to program GPUs in Apple hardware.

U. Utkarsh, V. Churavy, Y. Ma, T. Besard, P. Srisuma, T. Gymnich,
A. R. Gerlach, A. Edelman, G. Barbastathis, R. D. Braatz,
and C. Rackauckas: Automated Translation and Accelerated
Solving of Differential Equations on Multiple GPU Platforms.
Computer Methods in Applied Mechanics and Engineering,
Vol 419, 2024, article 116591.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 33 / 36

adding vectors on an M1 MacBook Air GPU with Metal
using Metal
using Test

function gpu_add1!(y, x)
for i = 1:length(y)

@inbounds y[i] += x[i]
end
return nothing

end

N = 32
x_d = Metal.fill(1.0f0, N) # filled with Float32 1.0 on GPU
y_d = Metal.fill(2.0f0, N) # filled with Float32 2.0

run with N threads

@metal threads=N gpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))

println(result)

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 34 / 36

multiplying matrices with Metal
The CUDA version of the example is copied from the Julia for
High-Performance Scientific Computing web site, adjusted

1 using Metal instead of using CUDA,
2 work with Float32 instead of Float64,
3 use MtlArray instead of CuArray.

using Metal
using BenchmarkTools

dim = 2^10
A_h = rand(Float32, dim, dim);
A_d = MtlArray(A_h);

@btime $A_h * $A_h;
@btime $A_d * $A_d;

Prints 6.229 ms and 23.625 µs for CPU and GPU respectively.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 35 / 36

Exercises

Read the literature on PyCUDA and at https://juliagpu.org.
1 The matrix matrix multiplication example with PyCUDA uses

(3,4,5) as values for (n,m,p). Considering massive parallelism,
what are the largest dimensions you could consider for one block
of threads on the P100 and/or the A100?
Illustrate your values for the dimensions experimentally.

2 In the PyCUDA matrix matrix multiplication, change the float32
types into float64 and redo the previous exercise.
Time the code. Do you notice a difference?

3 On your own computer, check the vendor of the GPU and run the
equivalent gpuadd.jl after installing the proper Julia package.
Report on the performance, relative to the CPU in your computer.

Introduction to Supercomputing (MCS 572) Programming GPUs L-17 4 October 2024 36 / 36

	Data Parallelism
	the programming model
	host (CPU) and device (GPU)
	matrix matrix multiplication

	PyCUDA
	about PyCUDA
	using PyCUDA for matrix matrix multiplication
	the kernel explained

	GPU Programming in Julia
	about CUDA.jl
	a first kernel
	vendor agnostic GPU computing

