Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

GPU Programming in Julia

- about CUDA.jl
- a first kernel
- vendor agnostic GPU computing

MCS 572 Lecture 17 Introduction to Supercomputing Jan Verschelde, 4 October 2024

1/36

Data Parallelism

the programming model

- host (CPU) and device (GPU)
- matrix matrix multiplication

PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

3 GPU Programming in Julia

- about CUDA.jl
- a first kernel
- vendor agnostic GPU computing

the programming model

Programming model: Single Instruction Multiple Data (SIMD).

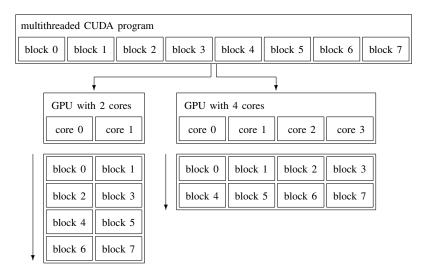
- Data parallelism: blocks of threads read from memory, execute the same instruction(s), write to memory.
- Massively parallel: need 10,000 threads for full occupancy.

The code that runs on the GPU is defined in a function, the *kernel*. What makes the programming model scalable?

4 3 5 4 3 5 5

a scalable programming model

each core represents a streaming multiprocessor



э

< 日 > < 同 > < 回 > < 回 > < 回 > <

dual warp scheduler

a warp consists of 32 threads

	Warp Scheduler	Warp Scheduler				
I	Instruction Dispatch Unit	Instruction Dispatch Unit				
	Warp 2 instruction 42 Warp 14 instruction 95	Warp 3 instruction 33 Warp 15 instruction 95				
time	:					
-	Warp 8 instruction 12	Warp 9 instruction 12				
	Warp 14 instruction 96	Warp 3 instruction 34				
Ļ	Warp 2 instruction 43	Warp 15 instruction 96				
Introduction to 0	Supercomputing (MCS 572) Programm	 < □ > < ∂ > < ≧ > < ≧ > < ≧ > < ≧ > < ≧ ≥ < E > E ing GPUs L-17 4 October 2024 				

5/36

launching kernels

A kernel launch

- creates a grid of blocks, and
- each block has one or more threads.
- The organization of the grids and blocks can be 1D, 2D, or 3D.

During the running of the kernel:

- Threads in the same block are executed simultaneously.
- Blocks are scheduled by the streaming multiprocessors.
 CUDA = Compute Unified Device Architecture, by NVIDIA.

Data Parallelism

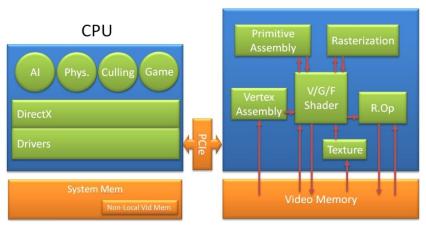
- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

2 PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained
- 3 GPU Programming in Julia
 - about CUDA.jl
 - a first kernel
 - vendor agnostic GPU computing

displaying images with programmable GPUs

GPU



from the GeForce 8 and 9 Series GPU Programming Guide (NVIDIA)

Introduction to Supercomputing (MCS 572)

Programming GPUs

(日)

Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

2 PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained
- 3 GPU Programming in Julia
 - about CUDA.jl
 - a first kernel
 - vendor agnostic GPU computing

data parallelism

Many applications process large amounts of data.

Data parallelism refers to the property where many arithmetic operations can be safely performed on the data simultaneously.

Consider the multiplication of matrices A and B: $C = A \cdot B$, with

$$A = [a_{i,j}] \in \mathbb{R}^{n \times m}, \quad B = [b_{i,j}] \in \mathbb{R}^{m \times p}, \quad C = [c_{i,j}] \in \mathbb{R}^{n \times p}.$$

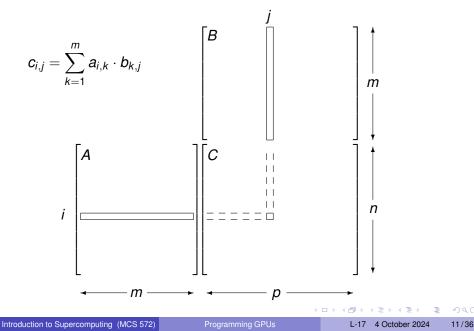
 $c_{i,j}$ is the inner product of the *i*th row of *A* with the *j*th column of *B*:

$$c_{i,j} = \sum_{k=1}^m a_{i,k} \cdot b_{k,j}.$$

All $c_{i,j}$'s can be computed independently from each other.

For n = m = p = 1,024 we have 1,048,576 inner products.

data parallelism in matrix multiplication



Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

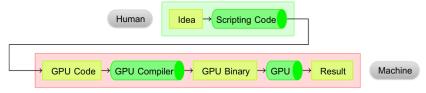
2 PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained
- 3 GPU Programming in Julia
 - about CUDA.jl
 - a first kernel
 - vendor agnostic GPU computing

about PyCUDA

A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih: **PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation.** *Parallel Computing*, 38(3):157–174, 2012.

The operating principle of GPU code generation:



Benefits:

- takes care of a lot of "boiler plate" code;
- focus on the kernel, with numpy typing.

We focus on PyCUDA. PyOpenCL is for GPUs not by NVIDIA.

< 回 > < 三 > < 三 >

checking the installation on pascal

```
$ python3
Python 3.6.8 (default, Nov 16 2020, 16:55:22)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44)] on linux
>>> import pycuda
>>> import pycuda.autoinit
>>> from pycuda.tools import make_default_context
>>> c = make_default_context()
>>> d = c.get_device()
>>> d.name()
'Tesla P100-PCIE-16GB'
>>>
```

checking the installation on a windows laptop which houses an NVIDIA GPU

```
$ python3
Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019,
23:11:46) [MSC v.1916 64 bit (AMD64)] on win32
>>> import pycuda
>>> import pycuda.autoinit
>>> from pycuda.tools import make_default_context
>>> c = make default context()
>>> d = c.get device()
>>> d.name()
'GeForce RTX 2080 with Max-O Design'
>>>
```

Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

2 PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained
- 3 GPU Programming in Julia
 - about CUDA.jl
 - a first kernel
 - vendor agnostic GPU computing

headers and type declarations

```
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy
```

```
(n, m, p) = (3, 4, 5)
```

```
n = numpy.int32(n)
m = numpy.int32(m)
n = numpy.int32(m)
```

```
p = numpy.int32(p)
```

```
a = numpy.random.randint(2, size=(n, m))
```

- b = numpy.random.randint(2, size=(m, p))
- c = numpy.zeros((n, p), dtype=numpy.float32)

```
a = a.astype(numpy.float32)
```

```
b = b.astype(numpy.float32)
```

allocation and copy from host to device

a_gpu = cuda.mem_alloc(a.size * a.dtype.itemsize) b_gpu = cuda.mem_alloc(b.size * b.dtype.itemsize) c_gpu = cuda.mem_alloc(c.size * c.dtype.itemsize)

cuda.memcpy_htod(a_gpu, a)
cuda.memcpy_htod(b_gpu, b)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

definition of the kernel

```
mod = SourceModule("""
    global void multiply
      (int n, int m, int p,
        float *a, float *b, float *c )
    {
        int idx = p*threadIdx.x + threadIdx.y;
        c[idx] = 0.0;
        for (int k=0; k < m; k++)
           c[idx] += a[m*threadIdx.x+k]
                     *b[threadIdx.y+k*p];
    }
    1111)
```

launching the kernel

```
func = mod.get_function("multiply")
func(n, m, p, a_gpu, b_gpu, c_gpu, \
          block=(int(n), int(p), 1), \
          grid=(1, 1), shared=0)
```

cuda.memcpy_dtoh(c, c_gpu)

```
print("matrix A:")
print(a)
print("matrix B:")
print(b)
print("multiplied A*B:")
print(c)
```

running the code

At the command prompt:

```
$ python3 matmatmulcuda.py
matrix A:
[[0. 0. 1. 0.]]
[0. 0. 1. 1.]
 [0. 1. 1. 0.]]
matrix B:
[[ 1. 1. 0. 1. 1.]
[1. 0. 1. 0. 0.]
 [0.0.1.1.0.]
 [0. 0. 1. 1. 0.]]
multiplied A*B:
[[0. 0. 1. 1. 0.]]
 [0.0.2.2.0.]
 [ 1. 0. 2. 1. 0.]]
Ś
```

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

2 PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

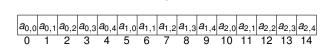
GPU Programming in Julia

- about CUDA.jl
- a first kernel
- vendor agnostic GPU computing

linear address system

Consider a 3-by-5 matrix stored row-wise (as in C):

<i>a</i> _{0,0}	<i>a</i> _{0,1}	<i>a</i> 0,2	a 0,3	<i>a</i> 0,4
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	a _{1,4}
a _{2,0}	a _{2,1}	a _{2,2}	a _{2,3}	a _{2,4}



The float *a in the kernel represents a one dimensional array.

∃ ► < ∃</p>

assigning inner products to threads

Consider a 3-by-4 matrix A and a 4-by-5 matrix B:

				b _{0,0}	<i>b</i> 0,1	b _{0,2}	b _{0,3}	b _{0,4}
<i>a</i> 0,0	<i>a</i> _{0,1}	<i>a</i> 0,2	a _{0,3}	b _{1,0}	b _{1,1}	b _{1,2}	b _{1,3}	b _{1,4}
a _{1,0}	a _{1,1}	a _{1,2}	a _{1,3}	b _{2,0}	b _{2,1}	b _{2,2}	b _{2,3}	b _{2,4}
<i>a</i> _{2,0}	a _{2,1}	a 2,2	a 2,3	b _{3,0}	b _{3,1}	b _{3,2}	b _{3,3}	b _{3,4}

<i>c</i> _{0,0}	<i>c</i> _{0,1}	<i>c</i> _{0,2}	<i>c</i> _{0,3}	<i>c</i> _{0,4}	c _{1,0}	<i>c</i> 1,1	c _{1,2}	c _{1,3}	c _{1,4}	<i>c</i> _{2,0}	<i>c</i> _{2,1}	<i>c</i> _{2,2}	<i>c</i> _{2,3}	<i>c</i> _{2,4}
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

The idx = p*threadIdx.x + threadIdx.y determines what entry in $C = A \cdot B$ will be computed.

< 回 > < 三 > < 三 >

a two dimensional grid of threads

A is *n*-by-*m*, *B* is *m*-by-*p*, and $C = A \cdot B$ is *n*-by-*p*.

```
func = mod.get_function("multiply")
func(n, m, p, a_gpu, b_gpu, c_gpu, \
          block=(numpy.int(n), numpy.int(p), 1), \
          grid=(1, 1), shared=0)
```

- One block of threads is launched of size n-by-p.
- Each thread computes one element of the product, defined by

Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

GPU Programming in Julia about CUDA.jl

- a first kernel
- vendor agnostic GPU computing

about CUDA.jl

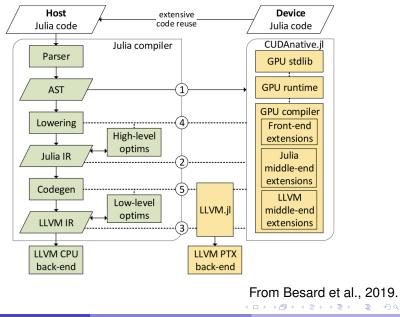
T. Besard, C. Foket, and B. De Sutter: **Effective Extensible Programming: Unleashing Julia on GPUs.** *IEEE Transactions on Parallel and Distributed Systems*, Vol. 30, No. 4, pages 827–841, 2019.

Installation:

- Verify that the computer has an NVIDIA GPU and that the CUDA Software Development Kit is installed.
- **2** Type using CUDA to install in Julia.
- **③** Type] to get the pkg> prompt and type test CUDA.
- Be patient.

https://juliagpu.org is the site of JuliaGPU, the organization to unify the many packages for programming GPUs in Julia.

the compilation process for Julia GPU code



Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

3 GPU Programming in Julia

- about CUDA.jl
- a first kernel
- vendor agnostic GPU computing

a first kernel

https://cuda.juliagpu.org/stable/tutorials/introduction

```
using CUDA
using Test
function gpu_add1!(y, x)
    for i = 1:length(v)
       (inbounds y[i] += x[i])
   end
    return nothing
end
N = 2^{2}
                 # adding one million Float32 numbers
x d = CUDA.fill(1.0f0, N) # stored on GPU filled with 1.0
v d = CUDA.fill(2.0f0, N) # stored on GPU filled with 2.0
fill!(y_d, 2)
@cuda qpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))
println(result)
```

running at the command prompt

The code on the previous slide is saved in gpuadd.jl.

Type julia gpuadd.jl at the command prompt.

Some warnings may appear ...

but Test Passed should be the result.

4 3 > 4 3

Data Parallelism

- the programming model
- host (CPU) and device (GPU)
- matrix matrix multiplication

PyCUDA

- about PyCUDA
- using PyCUDA for matrix matrix multiplication
- the kernel explained

3 GPU Programming in Julia

- about CUDA.jl
- a first kernel

vendor agnostic GPU computing

4 3 5 4 3 5

vendor agnostic GPU computing

In addition to CUDA.jl, the following packages are available:

- AMDGPU.jl for AMD GPUs,
- oneAPI.jl for the Intel oneAPI,
- Metal.jl to program GPUs in Apple hardware.

U. Utkarsh, V. Churavy, Y. Ma, T. Besard, P. Srisuma, T. Gymnich, A. R. Gerlach, A. Edelman, G. Barbastathis, R. D. Braatz, and C. Rackauckas: **Automated Translation and Accelerated Solving of Differential Equations on Multiple GPU Platforms**. *Computer Methods in Applied Mechanics and Engineering*, Vol 419, 2024, article 116591.

3

adding vectors on an M1 MacBook Air GPU with Metal

```
using Metal
using Test
function gpu_add1!(y, x)
   for i = 1:length(y)
       Qinbounds y[i] += x[i]
   end
   return nothing
end
N = 32
x_d = Metal.fill(1.0f0, N) # filled with Float32 1.0 on GPU
y_d = Metal.fill(2.0f0, N) # filled with Float32 2.0
# run with N threads
@metal threads=N gpu_add1!(y_d, x_d)
result = (@test all(Array(y_d) .== 3.0f0))
println(result)
```

multiplying matrices with Metal

The CUDA version of the example is copied from the Julia for High-Performance Scientific Computing web site, adjusted

- Using Metal instead of using CUDA,
- Work with Float32 instead of Float64,
- **3 use** MtlArray **instead of** CuArray.

```
using Metal
using BenchmarkTools
```

```
dim = 2^10
A_h = rand(Float32, dim, dim);
A_d = MtlArray(A_h);
```

@btime \$A_h * \$A_h; @btime \$A_d * \$A_d;

Prints 6.229 ms and 23.625 μs for CPU and GPU respectively.

Exercises

Read the literature on PyCUDA and at https://juliagpu.org.

- The matrix multiplication example with PyCUDA uses (3, 4, 5) as values for (n, m, p). Considering massive parallelism, what are the largest dimensions you could consider for one block of threads on the P100 and/or the A100? Illustrate your values for the dimensions experimentally.
- In the PyCUDA matrix matrix multiplication, change the float32 types into float64 and redo the previous exercise. Time the code. Do you notice a difference?
- On your own computer, check the vendor of the GPU and run the equivalent gpuadd.jl after installing the proper Julia package. Report on the performance, relative to the CPU in your computer.

3

イロト 不得 トイヨト イヨト